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Francisco Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (1 / 56)



Main primitives and building blocks in modern
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Main primitives and building blocks in modern
cryptography

Primitives:

I Encryption/decryption of digital documents [this task is typically solved
using symmetric cryptography]

I Signature/verification of digital documents [This task is usually solved
using public key cryptography]

I Sharing a secret among two or more parties [this task is usually solved
using the Diffie-Hellman protocol or its variants]

Building blocks:

I Block ciphers and stream ciphers
I Hash functions
I Public key crypto-schemes
I ...
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Francisco Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (3 / 56)



Main primitives and building blocks in modern
cryptography

Primitives:

I Encryption/decryption of digital documents [this task is typically solved
using symmetric cryptography]

I Signature/verification of digital documents [This task is usually solved
using public key cryptography]

I Sharing a secret among two or more parties [this task is usually solved
using the Diffie-Hellman protocol or its variants]

Building blocks:

I Block ciphers and stream ciphers
I Hash functions
I Public key crypto-schemes
I ...
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Design problem: How to share a secret?
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Design problem: How to share a secret?. Solution:
Diffie-Hellman Protocol 1976
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Design problem: How to share a secret?. Solution:
Diffie-Hellman Protocol 1976

Alice and Bob decide to work in the Zp group, with p a large odd prime.
They also choose a generator g ∈ Zp (i.e., Ord(g) = p − 1).

Alice and Bob select a, b ∈ Zp, respectively

Alice and Bob compute a shared secret as,

K = (g a)b = (gb)a

Note: This protocol can only be secure against passive attackers
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Design problem: How to share a secret?. Solution:
Diffie-Hellman Protocol 1976

Protocol’s security lies in the computational intractability of solving the Discrete
Logarithm Problem (DLP), namely,

Given a prime p and a generator g , h ∈ [1, p − 1], find an integer k such that,
gk ≡ h mod p.
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Francisco Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (7 / 56)



Design problem: How to share a secret?. Solution:
Diffie-Hellman Protocol 1976

Diffie and Hellman published their protocol in their breakthrough paper,
Diffie, W.; Hellman, M. (1976). ”New directions in cryptography”.
IEEE Transactions on Information Theory. 22 (6): 644–654.“

Diffie and Hellman won the 2015 Turing award

Since its publication in 1976, ”New directions in cryptography” has inspired
many new ideas in the discipline. In this talk we will revisit four different
versions of this protocol [!!]
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Hard computational problems

1 Integer factorization problem: Given an integer N = p · q find its
prime factors p and q. Find p, q such that 2019 = p · q

answer: 2019 = 3 · 673

2 Discrete logarithm problem: Given a prime p and g , h ∈ [1, p − 1],
find an integer x (if one exists) such that, g x ≡ h mod p.
find x such that 2x ≡ 304 mod 419
answer: 2343 ≡ 304 mod 419.
More generally: Given g , h ∈ F∗q, find an integer x (if one exists) such

that, g x ≡ h, where q = pk is the power of a prime

3 Elliptic curve discrete logarithm problem: Given an elliptic curve
E/Fq and P,Q ∈ E (Fq), find an integer x (if one exists) such that,
xP = Q [More ECDLP material will be discussed later]
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Time complexity

borrowed from the xkcd site.
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Running time complexity

The efficiency of an algorithm is measured in terms of its input size.

I For the discrete logarithm problem in Fq, the input size is O(log q) bits.

A polynomial-time algorithm is one whose running time is bounded by
a polynomial in the input size: (log q)c , where c is a constant.

A fully exponential-time algorithm is one whose running time is of the
form qc , where c is a constant.

A subexponential-time algorithm as one whose running time is of the
form,

Lq[α, c] = ec(log q)α(log log q)1−α
,

where 0 < α < 1, and c is a constant.
α = 0: polynomial α = 1: fully exponential
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Attacks on discrete log computation over small char Fqn:
Main developments in the last 30+ years

Let Q be defined as Q = qn.

Hellman-Reyneri 1982: Index-calculus LQ [ 1
2 , 1.414]

Coppersmith 1984: LQ [ 1
3 , 1.526]

Joux-Lercier 2006: LQ [ 1
3 , 1.442] when q and n are “balanced”

Hayashi et al. 2012: Used an improved version of the Joux-Lercier
method to compute discrete logs over the field F36·97

Joux 2012: LQ [ 1
3 , 0.961] when q and n are “balanced”

Joux 2013: LQ [ 1
4 + o(1), c] when Q = qd ·m, d a small integer (e.g.

d = 2, 3) and q ≈ m

Göloğlu et al. 2013: similar to Joux 2013, BPA @ Crypto’2013
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Attacks on discrete log computation over small char Fq3n:
security level consequences
Let us assume that one wants to compute discrete logarithms in the field
Fq3n , with q = 36, n = 509, Notice that the group size of that field is,

#F36·509 = dlog2(3) · 6 · 509e = 4841 bits.

Algorithm Time complexity Equiv. bit security level

Hellman-Reyneri 1982 Lq6n [ 1
2 , 1.414] 337

Coppersmith 1984 Lq6n [ 1
3 , 1.526] 134

Joux-Lercier 2006 Lq6n [ 1
3 , 1.442] 126

Joux-Lercier 2006 Lq6n [ 1
3 , 1.270] 111

(as revised by Shinohara et al. 2012)

Joux 2012 Lq6n [ 1
3 , 1.175] 103

(personal estimation)

Joux 2013 Lq6n [ 1
4 , 1.530] 81

(as analyzed by Adj et al. Pairing 2013)

Joux-Pierrot 2014 Lq6n [ 1
4 , 1.530] 58

(as analyzed by Adj et al. Waifi 2014)
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Recommended key sizes (circa 2013)

Security RSA DL: Fp DL: F2m ECC
in bits ||N||2 ||p||2 m ||q||2

80 1024 1024 1500 160

112 2048 2048 3500 224

128 3072 3072 4800 256

192 7680 7680 12500 384

256 15360 15360 25000 512
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Recommended key sizes (2019)

Security RSA DLP: Fp DL: F2m ECC
in bits ||N||2 ||p||2 m ||q||2
≈ 74 1024 1024 1500 160

≈ 106 2048 2048 3500 224

128 3072 3072 4800∗ 256

192 7680 7680 12500 384

256 15360 15360 25000 512
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Recommended key sizes (2019)

Security RSA DLP: Fp DL: F2m ECC
in bits ||N||2 ||p||2 m ||q||2
≈ 74 1024 1024 1500 160

≈ 106 2048 2048 3500 224

128 3072 3072 4800∗ 256

192 7680 7680 12500 384

256 15360 15360 25000 512

∗ Nowadays, the extension F24800 is estimated to provide a security level of
around 60 bits (see [Granger-Kleinjung-Zumbrägel’18], [AMOR’16]).

Barbulescu-Gaudry-Joux-Thomé: ”A Heuristic Quasi-Polynomial Algorithm for Discrete Logarithm in Finite Fields of Small
Characteristic“. EUROCRYPT 2014: 1-16
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Factorization (RSA): Using the Number Field Sieve (NFS) method leads to

subexponential complexity, ≈ LN
[

1
3 , 3

√
64
9

]
, Where N is the RSA modulus

DLP over Fp: Using index-calculus methods leads to subexponential

complexity, ≈ Lp
[

1
3 , 3

√
64
9

]
,

ECDLP: Using the Pollard’s rho method leads to exponential complexity√
π · q/2, where q = pk is the prime field extension where the elliptic curve

has been defined
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Elliptic-curve-based cryptography
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Elliptic-curve-based cryptography

Figure: Professors Neal Koblitz and Victor Miller and many Mexican graduate
students at ECC 2012 in Querétaro, México

Elliptic-curve-based cryptography (ECC) was independently proposed by
Victor Miller and Neal Koblitz in 1985.

It took more than two decades for ECC to be widely accepted and become
the most popular public-key cryptographic scheme (above its archrival RSA)

Nowadays ECC is massively used in everyday applications
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Elliptic-curve-based cryptography

An elliptic curve is defined by the set of affine points (x , y) ∈ Fp × Fp, with p > 3
an odd large prime, which satisfies the short Weierstrass equation given as,

E : y2 = x3 + ax + b,

along with a point at infinity denoted as O.
Let E (Fp) be the set of points that satisfy the elliptic curve equation above. This
set forms an Abelian group with order (size) given as, #E (Fp) = h · r , where r is
a large prime and the cofactor is a small integer.
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Elliptic curves

E defined by a Weierstraß equation of the form

y2 = x3 + Ax + B

E (K ) set of rational points over a field K

Additive group law over E (K )

Many applications in cryptography since 1985
I EC-based Diffie-Hellman key exchange
I EC-based Digital Signature Algorithm
I

Interest: smaller keys than usual cryptosystems (RSA, ElGamal, ...)

But there’s more:
I Bilinear pairings
I Isogenous elliptic curves
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Francisco Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (18 / 56)



Elliptic curves

E defined by a Weierstraß equation of the form

y2 = x3 + Ax + B

E (K ) set of rational points over a field K

Additive group law over E (K )

Many applications in cryptography since 1985
I EC-based Diffie-Hellman key exchange
I EC-based Digital Signature Algorithm
I

Interest: smaller keys than usual cryptosystems (RSA, ElGamal, ...)

But there’s more:
I Bilinear pairings
I Isogenous elliptic curves
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Group cryptography

(G1, +), an additively-written cyclic group of prime order #G1 = `

P, a generator of the group: G1 = 〈P〉
Scalar multiplication: for any integer k , we have
kP = P + P + · · ·+ P︸ ︷︷ ︸

k times

P

k

kP

Discrete logarithm: given Q ∈ G1, compute k such that Q = kP

kQ = P

k

We assume that the discrete logarithm problem (DLP) in G1 is hard
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Francisco Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (19 / 56)



Group cryptography

(G1, +), an additively-written cyclic group of prime order #G1 = `

P, a generator of the group: G1 = 〈P〉
Scalar multiplication: for any integer k , we have
kP = P + P + · · ·+ P︸ ︷︷ ︸

k times

P

k

kP

Discrete logarithm: given Q ∈ G1, compute k such that Q = kP

kQ = P

k

We assume that the discrete logarithm problem (DLP) in G1 is hard
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The Elliptic Curve Diffie-Hellman (ECDH) Protocol

Algorithm 1 The elliptic curve Diffie-Hellman protocol

Public parameters: Prime p, curve E/Fp , point P = (x , y) ∈ E(Fp) of order r

Phase 1: Key pair generation

Alice

1: Select the private key dA
$←− [1, r − 1]

2: Compute the public key QA ← dAP

Bob

1: Select the private key dB
$←− [1, r − 1]

2: Compute the public key QB ← dBP

Phase 2: Shared secret computation

Alice
3: Send QA to Bob
4: Compute R ← dAQB

Bob
3: Send QB to Alice
4: Compute R ← dBQA

Final phase: The shared secret is x-coordinate of the point R
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[Apocalyptic] scenario for the next years: The arrival of
large-scale quantum computers
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[Apocalyptic] scenario for the next years: The arrival of
large-scale quantum computers

I A quantum computer implementation of Peter Shor algorithm for
factorization of integer numbers will imply that the computational
effort for breaking elliptic-curve discrete logs will become polynomial.

I In practice, this means that breaking commercial [EC]DLP would go
from billions of years to hundred of hours.
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[Apocalyptic] scenario for the next years: The arrival of
large-scale quantum computers

Along with ECC, RSA and DSA public key crypto-schemes will also
go to extinction
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Design problem: How to construct a post-quantum
Diffie-Hellman protocol?
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Answers against the [Apocalyptic] scenario: Post-Quantum
Cryptography (PQC)

About two years ago, NIST launched a Post-Quantum Cryptography
(PQC) standardization contest. NIST stated that
’regardless of whether we can estimate the exact time of the arrival of the quantum

computing era, we must begin now to prepare our information security systems to be able

to resist quantum computing.“

The main focus of the contest is to find new PQC
signature/verification and shared key establishment protocols. The
latter task should be done using a scheme known as Key
Encapsulation Mechanism (KEM).
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Answers against the [Apocalyptic] scenario: Post-Quantum
Cryptography (PQC)

Out of 82 initial candidates only 23 made it to the second round. The
surviving candidates have been classified in five main categories.

Here at Latincrypt2019 and ASCrypto 2019, we will be hearing a lot about,

I Lattice-based cryptography
I Code-based crypto
I Multivariate-based crypto
I hash-based crypto
I isogeny-based crypto
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Design problem: How to construct a post-quantum
Diffie-Hellman protocol using isogeny-based crypto?
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[More] Mathematical definitions: recap

An Elliptic Curve in Weierstrass short model over a finite field Fq where q = pm

for some prime p > 3, is given by the equation

E/Fq : Y 2 = X 3 + AX + B

where A,B ∈ Fq.

The j-invariant j(E ) of a curve acts like a fingerprint of a curve and it is given by

j(E ) =
1728 · 4A2

4A2 + 27B2
.

A point P in E (Fq) is a pair (x , y) such that x3 + Ax + B − y2 = 0.
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[More] Mathematical definitions: recap

We can Add points
R := P + Q,

Double a point
[2]P := P + P

and multiply by a scalar as,

[m]P := P + P + · · ·+ P, (m − 1)(times).

The minimum integer m such that [m]P = O is called the order of P.

The subgroup generated by P is the set {P, [2]P, [3]P, ... , [m − 1]P,O}
and is denoted by 〈P〉.

The m-torsion subgroup is defined as E [m] = {P ∈ E | [m]P = O}.
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[More] Mathematical definitions: recap

(Hasse’s Theorem)The number of rational points in an elliptic curve is
bounded by

#E (Fq) = q + 1− t, | t |≤ 2
√
q.

E is supersingular if p|t, i.e., if

#E (Fq) = q + 1 mod p.

Otherwise E is said to be ordinary.
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Basic definitions of isogenies

An Isogeny φ : E0 → E1 is an homomorphism between elliptic curves given
by rational functions. Given P and Q in E0 is fulfilled that

I φ(P + Q) = φ(P) + φ(Q),
I φ(O) = O.

The Kernel of an Isogeny φ is the set

K = {P ∈ E | φ(P) = O}.

Note: In this talk the degree of an isogeny is s := #K .

Let E and E ′ be two elliptic curves defined over Fq. If there exists an
isogeny φ : E → E ′, then we say that E and E ′ are isogenous.
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Basic definitions of isogenies

Tate’s theorem states that two elliptic curves E and E ′ are isogenous over
Fq, iff #E (Fq) = #E ′(Fq).

If two elliptic curves E and E ′ are isogenous over Fq, either both of them
are supersingular or both of them are ordinary.
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Basic definitions of isogenies

Let E be an elliptic curve and P ∈ E be an order m point.

Then there exists an elliptic curve EP and an isogeny φP : E → EP such that
the Kernel of φP is 〈P〉, i.e. φP(p) = O for each p ∈ 〈P〉. We write

EP = E/〈P〉

Moreover, given E defined over Fq, and K = 〈P〉, Vélu’s formulas outputs
EP and φP . The running time of Vélu’s formulas is polynomial in s = #K
and log2(q).
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Basic definitions of isogenies

Let E and E ′ be two elliptic curves defined over Fq. If there exists a
degree-1 isogeny between E and E ′ then j(E ) = j(E ′). We say that E and
E ′ are isomorphic. We denote that by E ∼= E ′.

Given an isogeny φ : E0 → E1 of degree de then

I Then we can decompose φ as the composition

φe−1 ◦ φe−2 ◦ · · ·φ1 ◦ φ0

where φi has degree d .
I There exists an isogeny φ̂ : E1 → E0 (called the dual isogeny of φ) such

that,
φ̂ ◦ φ = [de ] and φ ◦ φ̂ = [de ].
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Computing composition of isogenies

2

2

2

2

2

2

2

2

2

2

Example for a 25-isogeny.

Rules:

Once you go down, you
can’t go back.

The only way to go
down along a non-blue
line is reaching first the
dot rounded by the same
color of the line.
Example: if you want to
go down on a red line,
first you need to reach
the red rounded circle
node.
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Computing composition of isogenies

2

2

2

2

2

2

2

2

2

2

Unbalanced path: Isogeny
evaluation oriented
Costs:

[2] : 4

Evaluations : 10

Fully parallelizable. (Needs
more than 250 cores for real
world implementations)
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Computing composition of isogenies

2

2

2

2

2

2

2

2

2

2

Balanced path
Costs:

[2] : 6

Evaluations : 6
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Design problem: How to construct a post-quantum
Diffie-Hellman protocol using isogeny-based crypto?
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Diffie-Hellman like protocol using isogenies: The SIDH
protocol [de Feo-Jao 2011]

SIDH framework:

Find a prime p of the form p = 2eA · 3eB − 1,

Let E be a supersingular elliptic curve defined over Fp2 with
#E (Fp2) = (p + 1)2.

E [2eA ](Fp2) = 〈PA,QA〉 and E [3eB ](Fp2) = 〈PB ,QB〉.

General description of the SIDH protocol

RA ← [nA] + [mA]

RB ← [nB ] + [mB ]

E

E/〈RA,RB〉

where the shared secret key is the j-invariant j(E/〈RA,RB〉).
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E [2eA ](Fp2) = 〈PA,QA〉 and E [3eB ](Fp2) = 〈PB ,QB〉.

General description of the SIDH protocol
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φA
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〉
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The CSSI problem [Charles-Goren-Lauter 2005]

The SIDH protocol bases its security guarantees in the hardness of the
following hard problem,

Problem (CSSI)

Given the public parameters eA, eB , p, E , PA, QA, and the elliptic curve
E/〈RA〉, compute a degree-2eA isogeny φA : E → E/〈RA〉.
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How to [classically] attack the SIDH protocol
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How to attack SIDH: The CSSI problem modeled as a
collision finding problem [Adj-Cervantes-Chi-Menezes-RH’2018]

Let’s write (R, `, e) to mean either (RA, 2, eA) or (RB , 3, eB), E1 = E , and
E2 = E/〈R〉. Notice that the degree-(`e) isogeny φ : E → E/〈R〉 can be
written as the composition of two degree-`e/2 isogenies.

φR̃0

R̃0 =
[
`
e
2

]
R

φR̃1

R̃1 = φR̃0
(R)

E1 E1/〈R̃0〉 E2
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How to attack SIDH: The CSSI problem modeled as a
collision finding problem [Adj-Cervantes-Chi-Menezes-RH’2018]

Let’s write (R, `, e) to mean either (RA, 2, eA) or (RB , 3, eB), E1 = E , and
E2 = E/〈R〉. Therefore, E1 and E2 satisfies:

φ[`e/2]R1

∀R1 ∈ E1[`e ](Fp2)
of order `e

just one
collision

φ[`e/2]R2

∀R2 ∈ E2[`e ](Fp2)
of order `e

E1 j(E1/〈R1〉) E2j(E2/〈R2〉)
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Meet-in-the-middle attack

Let us illustrate how MITM works by an example. Let eA = 4, eB = 2,
p = 24 · 32 · 5− 1,

E1 : y2 = x3 +
(
0x040 · i + 0x1F0

)
x +

(
0x1E6 · i + 0x0C7

)
,

P1 = (0x16E · i + 0x1B4, 0x10B · i + 0x05F),

Q1 = (0x203 · i + 0x0CC, 0x047 · i + 0x0C5), and

E2 : y2 = x3 +
(
0x1CF · i + 0x047

)
x +

(
0x1EA · i + 0x00D

)
.

Then, the goal is to find a degree-24 isogeny from E1 to E2 using the
following strategy:
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Meet-in-the-middle attack

First, compute the degree-22 isogeny tree rooted at E1, and store its
leaves.

E1

E12

0x000 · i + 0x000

0x000 · i + 0x000

E11

0x000 · i + 0x088

0x000 · i + 0x000

E10

0x000 · i + 0x000

0x000 · i + 0x000

E2

E20

0x000 · i + 0x000

0x000 · i + 0x000

E21

0x000 · i + 0x000

0x000 · i + 0x000

E22

0x000 · i + 0x000

0x000 · i + 0x000
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Meet-in-the-middle attack

First, compute the degree-22 isogeny tree rooted at E1, and store its
leaves.

E1

E12

0x255 · i + 0x01D

0x081 · i + 0x2C5

0x10D · i + 0x25F

0x031 · i + 0x09D

0x059 · i +
0x1B1

E11

0x088 · i + 0x01F

0x160 · i + 0x108

0x045
0x160 · i + 0x108

0x0FF · i + 0x053

E10

0x00A

0x0F9 · i + 0x150

0x07F · i + 0x0DD
0x1F5 · i + 0x046

0x
17

7
· i

+
0x

0C
B

E2

E20

0x000 · i + 0x000

0x000 · i + 0x000

E21

0x000 · i + 0x000

0x000 · i + 0x000

E22

0x000 · i + 0x000

0x000 · i + 0x000
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Meet-in-the-middle attack

Second, compute degree-22 isogenies at E2 until the match is found.

E1

E12

0x255 · i + 0x01D

0x081 · i + 0x2C5

0x10D · i + 0x25F

0x031 · i + 0x09D

0x059 · i +
0x1B1

E11

0x088 · i + 0x01F

0x160 · i + 0x108

0x045
0x160 · i + 0x108

0x0FF · i + 0x053

E10

0x00A

0x0F9 · i + 0x150

0x07F · i + 0x0DD
0x1F5 · i + 0x046

0x
17

7
· i

+
0x

0C
B

E2

E20

0x0A0 · i + 0x1B3
0x101 · i + 0x0DC

0x05B
0x14D · i + 0x23F

0x127 · i +
0x026

E21

0x07F · i + 0x0DD
0x047 · i + 0x218

0x000 · i + 0x000

0x22D · i + 0x228

E22

0x000 · i + 0x000
0x00 · i + 0x000

0x000 · i + 0x000
0x00 · i + 0x000

0x
00
· i

+
0x

00
0
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Meet-in-the-middle attack
Then, we can reconstruct φA : E1 → E2 by composing the following
isogenies:
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−−−−−−−−−−→

ψ
E210
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7
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Meet-in-the-middle attack

Now, let λ be the discrete log of φA(QA) in base φA(PA) (or vice versa).
Then, the secret kernel of Alice is 〈QA − [λ]PA〉 (or PA − [λ]QA). In our
toy example, λ = 3.
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Meet-in-the-middle attack

Clearly, The average-case time complexity is 1.5N and it has space

complexity N, where N ≈ (`A + 1)`
eA/2−1
A ≈ p1/4 (Infeasible for N ≥ 280).

Consequently, using m processors and w cells of memory, the running time
of MITM is approximately

(w/m + N/m)
N

w
≈ N2/(w ·m) ≈ p1/2/(w ·m).
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Collision search problem: Modeling

Let S be a finite set of size N. The goal is to find a collision for a random

function f : S → S . Note: Recall that in the case of SIDH, N ≈= p
1
4 .
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van Oorschot-Wiener (VW) collision search

First, let us define an element x of S to be distinguished if it has some
easily-testable distinguishing property, and let θ be the proportion of
elements of S that are distinguished.

Then, using m processors, the expected time complexity of the VW
method is approximately 1

m

√
πN/2 + 2.5/θ.
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van Oorschot-Wiener (VW) golden collision search

A random function f : S → S is expected to have (N − 1)/2 unordered
collisions.

Suppose that we seek a particular one of these collisions, called
a golden collision, which can be efficiently recognized.
Consequently, one continues generating distinguished points and collisions
until the golden collision is encountered.
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van Oorschot-Wiener (VW) golden collision search
The golden collision might occur with very small probability compared to
other collision.

Thus, it is necessary to change the version of f periodically.
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Figure: Functional graph of a random function f : {0, ... , 27} → {0, ... , 27}. The
desire golden collision is marked with Orange.
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van Oorschot-Wiener (VW) golden collision search

Let

w be the number of elements we can store in memory,

θ = 2.25
√
w/N,

10w be the number of distinguished elements that each version of f
produces,

210 ≤ w ≤ N/210.

Heuristically, van Oorschot and Wiener observed that each version of f
generates approximately 1.3w collisions, of which approximately 1.1w are
distinct. In summary, the expected running time to find the golden
collisions when m processors are employed is

1

m

(
2.5
√
N3/w

)
. (1)
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Solving CSSI with VW golden collision search

Therefore, using m processors and w cells of memory, the VW method can
be used to find this golden collision in expected time

1

m

(
2.5
√

8N3/w
)
≈ 7.1p3/8/(w1/2m).
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Solving CSSI with VW golden collision search: 128-, 160-,
192-bit security

p ≈ 2448 p ≈ 2512 p ≈ 2536 p ≈ 2614

# processors space calendar total calendar total calendar total calendar total
m w time time time time time time time time

Meet-in-the-middle using Depth-first search
48 64 106 154 138 186 150 198 188 236
48 80 90 138 122 170 134 182 172 220
64 80 74 138 106 170 118 182 156 220

van Oorschot and Wiener golden collision search
48 64 88 136 112 160 121 169 149 197
48 80 80 128 104 152 113 161 141 189
64 80 64 128 88 152 97 161 125 189

Table: Time complexity estimates of CSSI attacks for p ≈ 2448, p ≈ 2512, p ≈ 2536

and p ≈ 2614. All numbers are expressed in their base-2 logarithms. The unit of
time is a 2e/2-isogeny computation 2, and we are ignoring communication costs.

Conclusion: MITM is more costly than VW golden collision search.

2Calendar time is the elapsed time taken for a computation, whereas total time is the
sum of the time expended by all m processors.
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Comments about quantum attacks

Tani’s algorithm

The fastest known quantum attack on CSSI is Tani’s algorithm [Tani’09],
which has an running time equal to O(p1/6) and requires O(p1/6) space.

Grover’s algorithm

Clearly, CSSI can also be solved by an application of Grover’s quantum
search [Grover’96], which has a running time equal to O(p1/4). However,
using m quantum circuits only yields a speedup by a factor of√
m [Zalka’99].

Tani vs Grover: the recent work of Jaques and Schanck in their
Crypto’2019 paper (which won the BPA) argue that Tani’s algorithm is
more costly than Grover’s algorithm using all reasonable cost measures
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Comments about quantum attacks
NIST suggests that 240 is the maximum depth of a quantum circuit that
can be executed in one year using presently envisioned quantum
computing architectures [NIST’16].

Thus, assuming that the maximum circuit depth is 2k , the number of
quantum circuits needed to perform Grover’s search in one year for p ≈ 2r

is approximately
(

2
r
4

2k

)2
.

Maximum depth of p ≈ 2448 p ≈ 2512 p ≈ 2536 p ≈ 2614

a quantum circuit m m m m

40 144 176 188 227

64 96 128 140 179

Table: Number of quantum circuits needed to perform Grover’s search in one year
for p ≈ 2448, p ≈ 2512, p ≈ 2536, and p ≈ 2614. All numbers are expressed in their
base-2 logarithms.
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Recommendations

Assuming m ≤ 264 and w ≤ 280, we suggest

p434 = 22163137 − 1 (instead of p751 = 23723239 − 1
[Costello et al.’16]) in order to achieve 128-bit security,

p546 = 22733172 − 1 (instead of p964 = 24863301 − 1 [Jao et al.’17]) in
order to achieve 160-bit security, and

p610 = 23053192 − 1 in order to achieve 192-bit security.
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Recommendations

SIDH operations are about 4.8 times faster when p434 is used instead of
p751.

Protocol CLN library [Costello et al.’16] CLN + enhancements
phase p751 p434 p546 p751 p434 p546

Key
Gen.

Alice 35.7 7.51 13.20 26.9 5.3 10.5

Bob 39.9 8.32 14.84 30.5 6.0 11.7

Shared
Secret

Alice 33.6 7.01 12.56 24.9 5.0 10.0

Bob 38.4 7.94 14.35 28.6 5.8 11.5

Table: Performance of the SIDH protocol. All timings are reported in 106 clock
cycles, measured on an Intel Core i7-6700 supporting a Skylake
micro-architecture. The “CLN + enhancements” columns incorporates improved
formulas for degree-4 and degree-3 isogenies from [Costello & Hisil’17] and
Montgomery ladders from [Faz-Hernández et al.’17] into the CLN library.
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Summary

Golden collision search is more cost effective that the
meet-in-the-middle attack.

SIDH operations are about 4.8 times faster when p434 is used instead
of p751.
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Summary

SIDH parameters with p434 could be deemed to meet the security
requirements in NIST’s Category 2 [NIST’16] (classical and quantum
security comparable or greater than that of SHA-256 with respect to
collision resistance).

SIDH parameters with p610 could be deemed to meet the security
requirements in NIST’s Category 4 [NIST’16] (classical and quantum
security comparable to that of SHA-384).

Note: The above suggestions have been endorsed by the SIKE team for
the NIST round-2 version of their protocol
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Design problem: How to construct a post-quantum
Diffie-Hellman protocol?
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Design problem: How to construct a post-quantum
Diffie-Hellman protocol?

Castryck-Lange-Martindale-Panny-Renes: ”CSIDH: An Efficient Post-Quantum Commutative
Group Action“. ASIACRYPT (3) 2018: 395-427
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Francisco Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (56 / 56)



Reference I

D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies”, Post-Quantum Cryptography — PQCrypto 2011, LNCS 7071
(2011), 19–34.

D. Charles, E. Goren and K. Lauter, “Cryptographic hash functions from expander
graphs”, Journal of Cryptology, 22 (2009), 93–113.

J.M. Pollard, “Monte Carlo Methods for Index Computation (mod p)”. Mathematics of
Computation, 32 (1978).

P. van Oorschot and M. Wiener, “Improving implementable meet-in-the-middle attacks by
orders of magnitude”, Advances in Cryptology — CRYPTO ’96, LNCS 1109 (1996),
229–236.
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Francisco Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (55 / 56)

https://en.wikipedia.org/wiki/Sunway_TaihuLight
https://en.wikipedia.org/wiki/Exabyte#Google


Reference II

National Institute of Standards and Technology, “Submission requirements and evaluation
criteria for the post-quantum cryptography standardization process”, December 2016.

L. Grover, “A fast quantum mechanical algorithm for database search”, Proceedings of the
Twenty-Eighth Annual Symposium on Theory of Computing — STOC ’96, ACM Press
(1996), 212–219.

S. Tani, “Claw finding algorithms using quantum walk”, Theoretical Computer Science,
410 (2009), 5285–5297.

C. Zalka, “Grover’s quantum searching algorithm is optimal”, Physical Review A, 60
(1999), 2746–2751.

C. Costello and H. Hisil, “A simple and compact algorithm for SIDH with arbitrary degree
isogenies”, Advances in Cryptology — ASIACRYPT 2017, LNCS 10624 (2017), 303–329.
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