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7th International Conference on Mathematics and Computing
(ICMC 2021)

Shibpur, India, March 5, 2021
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Main primitives and building blocks in modern
cryptography

Primitives:

I Encryption/decryption of digital documents [this task is typically solved
using symmetric cryptography]

I Signature/verification of digital documents [This task is usually solved
using public key cryptography]

I Sharing a secret among two or more parties [this task is usually solved
using the Diffie-Hellman protocol or its variants]

Building blocks:

I Block ciphers and stream ciphers
I Hash functions
I Public key crypto-schemes
I ...
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Design problem: How to share a secret?. Solution:
Diffie-Hellman Protocol 1976

Alice and Bob decide to work in the Zp group, with p a large odd prime.
They also choose a generator g ∈ Zp (i.e., Ord(g) = p − 1).

Alice and Bob select a, b ∈ Zp, respectively

Alice and Bob compute a shared secret as,

K = (g a)b = (gb)a

Note: This protocol can only be secure against passive attackers
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Design problem: How to share a secret?. Solution:
Diffie-Hellman Protocol 1976

Protocol’s security lies in the computational intractability of solving the Discrete
Logarithm Problem (DLP), namely,

Given a prime p and a generator g , h ∈ [1, p − 1], find an integer k such that,
gk ≡ h mod p.
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Design problem: How to share a secret?. Solution:
Diffie-Hellman Protocol 1976

Diffie and Hellman published their protocol in their breakthrough paper,
Diffie, W.; Hellman, M. (1976). “New directions in cryptography”.
IEEE Transactions on Information Theory. 22 (6): 644–654.

“We stand today on the brink of a revolution in cryptography”

Diffie and Hellman won the 2015 Turing award

Since its publication in 1976, “New directions in cryptography” has inspired
many new ideas in the discipline.
In this talk we will revisit four different versions of this protocol [!!]
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Hard computational problems

1 Integer factorization problem: Given an integer N = p · q find its
prime factors p and q. Find p, q such that 2019 = p · q

answer: 2021 = 43 · 47

2 Discrete logarithm problem: Given a prime p and g , h ∈ [1, p − 1],
find an integer x (if one exists) such that, g x ≡ h mod p.
find x such that 2x ≡ 304 mod 419
answer: 2343 ≡ 304 mod 419.
More generally: Given g , h ∈ F∗q, find an integer x (if one exists) such

that, g x ≡ h, where q = pk is the power of a prime

3 Elliptic curve discrete logarithm problem: Given an elliptic curve
E/Fq and P,Q ∈ E (Fq), find an integer x (if one exists) such that,
xP = Q [More ECDLP material will be discussed later]
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Running time complexity

The efficiency of an algorithm is measured in terms of its input size.

I For the discrete logarithm problem in Fq, the input size is O(log q) bits.

A polynomial-time algorithm is one whose running time is bounded by
a polynomial in the input size: (log q)c , where c is a constant.

A fully exponential-time algorithm is one whose running time is of the
form qc , where c is a constant.

A subexponential-time algorithm as one whose running time is of the
form,

Lq[α, c] = ec(log q)α(log log q)1−α
,

where 0 < α < 1, and c is a constant.
α = 0: polynomial α = 1: fully exponential
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Francisco Rodŕıguez-Henŕıquez Four variants of the Diffie-Hellman protocol (10 / 47)



Running time complexity

The efficiency of an algorithm is measured in terms of its input size.
I For the discrete logarithm problem in Fq, the input size is O(log q) bits.

A polynomial-time algorithm is one whose running time is bounded by
a polynomial in the input size: (log q)c , where c is a constant.

A fully exponential-time algorithm is one whose running time is of the
form qc , where c is a constant.

A subexponential-time algorithm as one whose running time is of the
form,

Lq[α, c] = ec(log q)α(log log q)1−α
,

where 0 < α < 1, and c is a constant.
α = 0: polynomial α = 1: fully exponential
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Attacks on discrete log computation over small char Fqn:
Main developments in the last 30+ years

Let Q be defined as Q = qn.

Hellman-Reyneri 1982: Index-calculus LQ [ 1
2 , 1.414]

Coppersmith 1984: LQ [ 1
3 , 1.526]

Joux-Lercier 2006: LQ [ 1
3 , 1.442] when q and n are “balanced”

Hayashi et al. 2012: Used an improved version of the Joux-Lercier
method to compute discrete logs over the field F36·97

Joux 2012: LQ [ 1
3 , 0.961] when q and n are “balanced”

Joux 2013: LQ [ 1
4 + o(1), c] when Q = qd ·m, d a small integer (e.g.

d = 2, 3) and q ≈ m

Göloğlu et al. 2013: similar to Joux 2013, BPA @ Crypto’2013
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Attacks on discrete log computation over small char Fq3n:
security level consequences
Let us assume that one wants to compute discrete logarithms in the field
Fq3n , with q = 36, n = 509, Notice that the group size of that field is,

#F36·509 = dlog2(3) · 6 · 509e = 4841 bits.

Algorithm Time complexity Equiv. bit security level

Hellman-Reyneri 1982 Lq6n [ 1
2 , 1.414] 337

Coppersmith 1984 Lq6n [ 1
3 , 1.526] 134

Joux-Lercier 2006 Lq6n [ 1
3 , 1.442] 126

Joux-Lercier 2006 Lq6n [ 1
3 , 1.270] 111

(as revised by Shinohara et al. 2012)

Joux 2012 Lq6n [ 1
3 , 1.175] 103

(personal estimation)

Joux 2013 Lq6n [ 1
4 , 1.530] 81

(as analyzed by Adj et al. Pairing 2013)

Joux-Pierrot 2014 Lq6n [ 1
4 , 1.530] 58

(as analyzed by Adj et al. Waifi 2014)
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Recommended key sizes (circa 2013)

Security RSA DL: Fp DL: F2m ECC
in bits ||N||2 ||p||2 m ||q||2

80 1024 1024 1500 160

112 2048 2048 3500 224

128 3072 3072 4800 256

192 7680 7680 12500 384

256 15360 15360 25000 512
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Recommended key sizes (2019)

Security RSA DLP: Fp DL: F2m ECC
in bits ||N||2 ||p||2 m ||q||2
≈ 74 1024 1024 1500 160

≈ 106 2048 2048 3500 224

128 3072 3072 4800∗ 256

192 7680 7680 12500 384

256 15360 15360 25000 512
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Security RSA DLP: Fp DL: F2m ECC
in bits ||N||2 ||p||2 m ||q||2
≈ 74 1024 1024 1500 160

≈ 106 2048 2048 3500 224

128 3072 3072 4800∗ 256

192 7680 7680 12500 384

256 15360 15360 25000 512

∗ Nowadays, the extension F24800 is estimated to provide a security level of
around 60 bits (see [Granger-Kleinjung-Zumbrägel’18], [AMOR’16]).

Barbulescu-Gaudry-Joux-Thomé: ”A Heuristic Quasi-Polynomial Algorithm for Discrete Logarithm in Finite Fields of Small
Characteristic“. EUROCRYPT 2014: 1-16
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Factorization (RSA): Using the Number Field Sieve (NFS) method leads to

subexponential complexity, ≈ LN
[

1
3 , 3

√
64
9

]
, Where N is the RSA modulus

DLP over Fp: Using index-calculus methods leads to subexponential

complexity, ≈ Lp
[

1
3 , 3

√
64
9

]
,

ECDLP: Using the Pollard’s rho method leads to exponential complexity√
π · q/2, where q = pk is the prime field extension where the elliptic curve

has been defined
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Elliptic-curve-based cryptography

Francisco Rodŕıguez-Henŕıquez Four variants of the Diffie-Hellman protocol (14 / 47)



Elliptic-curve-based cryptography

Figure: Professors Neal Koblitz and Victor Miller and a bunch of Mexican
graduate students at ECC 2012 in Querétaro, México

Elliptic-curve-based cryptography (ECC) was independently proposed by
Victor Miller and Neal Koblitz in 1985.

It took more than two decades for ECC to be widely accepted and become
the most popular public-key cryptographic scheme (above its archrival RSA)

Nowadays ECC is massively used in everyday applications
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Elliptic curves

E defined by a Weierstraß equation of the form

y2 = x3 + Ax + B

E (K ) set of rational points over a field K

Additive group law over E (K )

Many applications in cryptography since 1985
I EC-based Diffie-Hellman key exchange
I EC-based Digital Signature Algorithm

Interest: smaller keys than usual cryptosystems (RSA, ElGamal, ...)

But there’s more:
I Bilinear pairings
I Isogenous elliptic curves
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Group cryptography

(G1, +), an additively-written cyclic group of prime order #G1 = `

P, a generator of the group: G1 = 〈P〉
Scalar multiplication: for any integer k , we have
kP = P + P + · · ·+ P︸ ︷︷ ︸

k times

P

k

kP

Discrete logarithm: given Q ∈ G1, compute k such that Q = kP

kQ = P

k

We assume that the discrete logarithm problem (DLP) in G1 is hard

Francisco Rodŕıguez-Henŕıquez Four variants of the Diffie-Hellman protocol (17 / 47)



Group cryptography

(G1, +), an additively-written cyclic group of prime order #G1 = `

P, a generator of the group: G1 = 〈P〉

Scalar multiplication: for any integer k , we have
kP = P + P + · · ·+ P︸ ︷︷ ︸

k times

P

k

kP

Discrete logarithm: given Q ∈ G1, compute k such that Q = kP

kQ = P

k

We assume that the discrete logarithm problem (DLP) in G1 is hard
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Francisco Rodŕıguez-Henŕıquez Four variants of the Diffie-Hellman protocol (17 / 47)



Group cryptography

(G1, +), an additively-written cyclic group of prime order #G1 = `

P, a generator of the group: G1 = 〈P〉
Scalar multiplication: for any integer k , we have
kP = P + P + · · ·+ P︸ ︷︷ ︸

k times

P

k

kP

Discrete logarithm: given Q ∈ G1, compute k such that Q = kP

kQ = P

k

We assume that the discrete logarithm problem (DLP) in G1 is hard
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The Elliptic Curve Diffie-Hellman (ECDH) Protocol

Algorithm 1 The elliptic curve Diffie-Hellman protocol

Public parameters: Prime p, curve E/Fp , point P = (x , y) ∈ E(Fp) of order r

Phase 1: Key pair generation

Alice

1: Select the private key a
$←− [1, r − 1]

2: Compute the public key QA ← [a]P

Bob

1: Select the private key b
$←− [1, r − 1]

2: Compute the public key QB ← [b]P

Phase 2: Shared secret computation

Alice
3: Send QA to Bob
4: Compute R ← [a]QB

Bob
3: Send QB to Alice
4: Compute R ← [b]QA

Final phase: The shared secret is the x-coordinate of the point R

Francisco Rodŕıguez-Henŕıquez Four variants of the Diffie-Hellman protocol (18 / 47)



How to efficiently compute the Elliptic Curve
Diffie-Hellman (ECDH) Protocol?
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The Montgomery ladder
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A famous elliptic curve: Curve25519

Curve25519 satisfies the Montgomery elliptic curve,

E : y2 = x3 + 48666 · x2 + x ,

Curve25519 is used for generating shared-secrets on applications such
as TLS 1.3 and WhatsApp, among others.

Proposed by Daniel J. Bernstein en 2006, it became massively
popular around 2013

Daniel J. Bernstein: ”Curve25519: New Diffie-Hellman Speed Records“. Public Key Cryptography 2006: 207-228
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Algorithm 2 Left-to-right Montgomery ladder [Montgomery’87]

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=k·P

1: R0 ← O; R1 ← uP ;
2: for i = n − 1 downto 0 do
3: if ki = 1 then
4: R0 ← R0+(P)R1; R1 ← 2R1

5: else
6: R1 ← R0+(P)R1; R0 ← 2R0

7: end if
8: end for
9: return uQ ← R0
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Algorithm 2 Left-to-right Montgomery ladder [Montgomery’87]

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=k·P

1: R0 ← O; R1 ← uP ;
2: for i = n − 1 downto 0 do
3: if ki = 1 then
4: R0 ← R0+(P)R1; R1 ← 2R1

5: else
6: R1 ← R0+(P)R1; R0 ← 2R0

7: end if
8: end for
9: return uQ ← R0

Peter L. Montgomery.: ”Speeding the Pollard and elliptic curve methods of factorization“.
Math. Comput. 48(177), 243–264 (1987)
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Algorithm 2 Left-to-right Montgomery ladder [Montgomery’87]

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=k·P

1: R0 ← O; R1 ← uP ;
2: for i = n − 1 downto 0 do
3: if ki = 1 then
4: R0 ← R0+(P)R1; R1 ← 2R1

5: else
6: R1 ← R0+(P)R1; R0 ← 2R0

7: end if
8: end for
9: return uQ ← R0

Remark 1: The Montgomery ladder maintains the invariant R1 − R0 = P by
computing at each iteration

(R0,R1)←
{

(2R0, 2R0 + P), if ki = 0

(2R0 + P, 2R0 + 2P), if ki = 1.
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Algorithm 2 Left-to-right Montgomery ladder [Montgomery’87]

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=k·P

1: R0 ← O; R1 ← uP ;
2: for i = n − 1 downto 0 do
3: if ki = 1 then
4: R0 ← R0+(P)R1; R1 ← 2R1

5: else
6: R1 ← R0+(P)R1; R0 ← 2R0

7: end if
8: end for
9: return uQ ← R0

Remark 2: If the difference between the points R1 and R0 is known, it is possible
to derive efficient differential addition formulas, namely,

UR1 ← ZP ·((UR1 + ZR1 )·(UR0 − ZR0 ) + (UR1 − ZR1 )·(UR0 + ZR0 ))2

ZR1 ← uP ·((UR1 + ZR1 )·(UR0 − ZR0 )− (UR1 − ZR1 )·(UR0 + ZR0 ))2.

Using the standard trick of making ZP = 1 this can be computed at a cost of
2m + 1muP + 2s + 6a
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Algorithm 2 Left-to-right Montgomery ladder [Montgomery’87]

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=k·P

1: R0 ← O; R1 ← uP ;
2: for i = n − 1 downto 0 do
3: if ki = 1 then
4: R0 ← R0+(P)R1; R1 ← 2R1

5: else
6: R1 ← R0+(P)R1; R0 ← 2R0

7: end if
8: end for
9: return uQ ← R0

Remark 2: Similarly, the operation of doubling the point R0, can be efficiently
computed as,

UR0 ← (UR0 + ZR0 )2·(UR0 − ZR0 )2

T ← (UR0 + ZR0 )2 − (UR0 − ZR0 )2

ZR0 ←
[
a24·T + (UR0 − ZR0 )2

]
·T ,

which can be computed at a cost of 2m + 1ma24 + 2s + 4a, where ma24 stands
for one multiplication by the constant a24 = A+2

4 .

Francisco Rodŕıguez-Henŕıquez Four variants of the Diffie-Hellman protocol (22 / 47)



Algorithm 2 Left-to-right Montgomery ladder [Montgomery’87]

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=k·P

1: R0 ← O; R1 ← uP ;
2: for i = n − 1 downto 0 do
3: if ki = 1 then
4: R0 ← R0+(P)R1; R1 ← 2R1

5: else
6: R1 ← R0+(P)R1; R0 ← 2R0

7: end if
8: end for
9: return uQ ← R0

Total computational cost: In summary, the computational cost of the
Montgomery ladder is,

n · (4m + 1ma24 + 1muP + 4s + 8a) + 1m + 1i.

In the RFC 7748 [essentially] this algorithm is called X25519 (with n = 255)
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Algorithm 3 Low-level left-to-right Montgomery ladder
Require: P = (uP , vP ) ∈ EA/Fp , k = (kn−1 = 1, kn−2, ... , k1, k0)2, a24 = (A + 2)/4
Ensure: uQ=kP

1: Initialization: UR0
← 1, ZR0

← 0, UR1
← uP , ZR1

← 1, s ← 0

2: for i ← n − 1 downto 0 do
3: # timing-attack countermeasure

4: s ← s ⊕ ki
5: UR0

, UR1
← cswap(s, UR0

, UR1
)

6: ZR0
, ZR1

← cswap(s, ZR0
, ZR1

)

7: s ← ki
8: # common operations

9: A← UR0
+ ZR0

; B ← UR0
− ZR0

10: # addition

11: C ← UR1
+ ZR1

; D ← UR1
− ZR1

12: C ← C × B; D ← D × A
13: UR1

← D + C ; UR1
← U2

R1

14: ZR1
← D − C ; ZR1

← Z2
R1

; ZR1
← uP × ZR1

15: # doubling

16: A← A2; B ← B2

17: UR0
← A× B

18: A← A− B
19: ZR0

← a24 × A; ZR0
← ZR0

+ B; ZR0
← ZR0

× A

20: end for
21: UR0

, UR1
← cswap(s, UR0

, UR1
)

22: ZR0
, ZR1

← cswap(s, ZR0
, ZR1

)

23: ZR0
← Z−1

R0
; uR0

← UR0
× ZR0

24: return uQ ← uR0
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Computational cost of the X25519 and X448

At the 128 bits of security level, the X25519 function costs

1021m + 255ma24 + 255muP + 1020s + 2040a + 1i,

where each operation is performed in the prime field F2255−19.
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A (Pre-)computable Montgomery ladder
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Algorithm 4 Right-to-left double-and-and algorithm

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: Q = k·P

1: R0 ← P, R1 = O
2: for i ← 0 to n − 1 do
3: if ki = 1 then
4: R1 ← R0+R1

5: end if
6: R0 ← 2·P
7: end for
8: return R1
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Algorithm 4 Right-to-left double-and-and algorithm [with pre-computation]

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: Q = k·P

1: Pre-computation: Calculate and store Pi = 2iP, for 1 ≤ i ≤ n
2: R0 ← P, R1 = O
3: for i ← 0 to n − 1 do
4: if ki = 1 then
5: R1 ← R0+R1

6: end if
7: R0 ← Pi+1

8: end for
9: return R1
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Algorithm 4 Right-to-left Montgomery ladder

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=hkP

1: Pre-computation: Calculate and store uPi
, where Pi = 2iP, for 0 ≤ i ≤ n

2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0+(R2)R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0+(R1)R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1

Remark 0: This procedure only makes sense if we are in the fixed-point scenario
(corresponding to the key generation phase of the DH protocol)
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Algorithm 4 Right-to-left Montgomery ladder

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=hkP

1: Pre-computation: Calculate and store uPi
, where Pi = 2iP, for 0 ≤ i ≤ n

2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0+(R2)R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0+(R1)R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1

Remark 0: This procedure only makes sense if we are in the fixed-point scenario
(corresponding to the key generation phase of the DH protocol)
and if you are not particularly interested in recovering the y -coordinate of the
output point anyway :)
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Algorithm 4 Right-to-left Montgomery ladder

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=hkP

1: Pre-computation: Calculate and store uPi
, where Pi = 2iP, for 0 ≤ i ≤ n

2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0+(R2)R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0+(R1)R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1

Remark 1: R1 must be initialized with a point S /∈ 〈P〉 because the differential
formulas are not complete on Montgomery curves.

Francisco Rodŕıguez-Henŕıquez Four variants of the Diffie-Hellman protocol (26 / 47)



Algorithm 4 Right-to-left Montgomery ladder

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=hkP

1: Pre-computation: Calculate and store uPi
, where Pi = 2iP, for 0 ≤ i ≤ n

2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0+(R2)R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0+(R1)R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1

Remark 1: R1 must be initialized with a point S /∈ 〈P〉 because the differential
formulas are not complete on Montgomery curves. (Really? More on this later)
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Algorithm 4 Right-to-left Montgomery ladder

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=hkP

1: Pre-computation: Calculate and store uPi
, where Pi = 2iP, for 0 ≤ i ≤ n

2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0+(R2)R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0+(R1)R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1

At each iteration, the accumulator R1 is updated in the same fashion as it
would be done in a traditional right-to-left double-and-add algorithm. It
follows that at the end of the main loop, R1 = kP + S .

R2 is updated such that R2 = R0 − R1 is always true.
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Algorithm 4 Right-to-left Montgomery ladder

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=hkP

1: Pre-computation: Calculate and store uPi
, where Pi = 2iP, for 0 ≤ i ≤ n

2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0+(R2)R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0+(R1)R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1

Remark 2: One can eliminate S by performing a scalar multiplication by the
cofactor h, thus obtaining,
hR1 = h · (kP + S) = hkP + hS = hkP.
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Algorithm 4 Right-to-left Montgomery ladder

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=hkP

1: Pre-computation: Calculate and store uPi
, where Pi = 2iP, for 0 ≤ i ≤ n

2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0+(R2)R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0+(R1)R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1

Computational cost: At the space price of allocating n + 1 elements uPi ∈ Fp,
this ladder variant saves n point doubling computations as compared with the
classical ladder.
Notice that this pre-computation table contains only public information. Hence,
no special protection against side-channel attacks is required.
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Algorithm 4 Right-to-left Montgomery ladder

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=hkP

1: Pre-computation: Calculate and store uPi
, where Pi = 2iP, for 0 ≤ i ≤ n

2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0+(R2)R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0+(R1)R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1

Computational cost: However, notice that the point additions become more
expensive, because in general the Z coordinate of the difference will not be equal
to one anymore.
This implies that the differential point addition costs now one more field
multiplication, namely, 4m + 2s + 6a
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Algorithm 4 Right-to-left Montgomery ladder

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=hkP

1: Pre-computation: Calculate and store uPi
, where Pi = 2iP, for 0 ≤ i ≤ n

2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0+(R2)R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0+(R1)R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1

Expected time saving?: something around 30% for the X25519 function.
Question: Can we do better?
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Algorithm 4 Right-to-left Montgomery ladder

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=hkP

1: Pre-computation: Calculate and store uPi
, where Pi = 2iP, for 0 ≤ i ≤ n

2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0+(R2)R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0+(R1)R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1

A closer look shows that we can express the differential point addition of R3 = R0+(R2)R1 as,

UR3
← ZR2

((UR1
+ ZR1

) + µ(UR1
− ZR1

))2

ZR3
← UR2

((UR1
+ ZR1

)− µ(UR1
− ZR1

))2,

where, µ =
uR0

+ 1

uR0
− 1

. The above differential point addition formula can be computed at a cost

of 3m + 2s + 6a
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Algorithm 5 Right-to-left Montgomery ladder

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=hkP

1: Pre-computation: Calculate and store uPi
, where Pi = 2iP, for 0 ≤ i ≤ n

2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0+(R2)R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0+(R1)R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1
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2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0+(R2)R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0+(R1)R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1

Assuming that the architecture is byte-addressable, the memory space required for
the X25519 function is,
(255− 3) · 32B ≈ 8KB,
while in the X448 function setting, we need,
(448− 2) · 56B ≈ 25KB.
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Design problem: How to establish a one-round tripartite
shared-secret protocol?
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Design problem: How to establish a one-round tripartite
shared-secret protocol?

This problem remained open since the 1976 Diffie-Hellman paper,:
There exists a tripartite Diffie-Hellman protocol that can be executed
in just one round of public key exchanges?
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Bilinear pairings

(G2,×), a multiplicatively-written cyclic group of order
#G2 = #G1 = `

A bilinear pairing on (G1,G2) is a map

ê : G1 ×G1 → G2

that satisfies the following conditions:

I non-degeneracy: ê(P,P) 6= 1G2 (equivalently ê(P,P) generates G2)
I bilinearity:

ê(Q1+Q2,R) = ê(Q1,R)·ê(Q2,R) ê(Q,R1+R2) = ê(Q,R1)·ê(Q,R2)
I computability: ê can be efficiently computed

Immediate property: for any two integers k1 and k2

ê(k1Q, k2R) = ê(Q,R)k1k2

Rk2k1Q
k1

ê
ê(Q,R) k2
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I computability: ê can be efficiently computed

Immediate property: for any two integers k1 and k2
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I computability: ê can be efficiently computed

Immediate property: for any two integers k1 and k2
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ê(Q,R) k2
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ê(Q,R) k2
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Pairings in cryptography

At first, used to attack supersingular elliptic curves
I Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

DLPG1 <P DLPG2

kP −→ ê(kP,P) = ê(P,P)k

I for cryptographic applications, we will also require the DLP in G2 to be
hard

One-round three-party key agreement (Joux, 2000)

Identity-based encryption
I Boneh–Franklin, 2001
I Sakai–Kasahara, 2001

Short digital signatures, Aggregate signatures
I Boneh–Lynn–Shacham, 2001
I Boneh–Gentry–Lynn–Shacham, 2004

cryptocurrencies, Pinocchio, Zcash 2013
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Design problem: How to establish a one-round tripartite
shared-secret protocol? Solution:A One Round Protocol
for Tripartite Diffie-Hellman.
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Francisco Rodŕıguez-Henŕıquez Four variants of the Diffie-Hellman protocol (31 / 47)



Design problem: How to establish a one-round tripartite
shared-secret protocol? Solution:A One Round Protocol
for Tripartite Diffie-Hellman.
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Design problem: How to establish a one-round tripartite
shared-secret protocol? Solution:A One Round Protocol
for Tripartite Diffie-Hellman.

This problem remained open since the 1976 Diffie-Hellman paper,:
There exists a tripartite Diffie-Hellman protocol that can be executed
in just one round of public key exchanges?
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Design problem: How to establish a one-round tripartite
shared-secret protocol? Solution:A One Round Protocol
for Tripartite Diffie-Hellman.

The protocol works because of,

ê(bP, cP)a = ê(aP, cP)b = ê(aP, bP)c = ê(P,P)abc
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Design problem: How to establish a one-round tripartite
shared-secret protocol? Solution:A One Round Protocol
for Tripartite Diffie-Hellman.

R. Sakai, K. Oghishi, and M. Kasahara. ”Cryptosystems based on pairing“. SCIS2000: 26–28, January 2000
Antoine Joux: ”A One Round Protocol for Tripartite Diffie-Hellman“. ANTS 2000: 385-394

S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Trans. Fundamentals , E85A(2):481–484, Feb 2002
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[Apocalyptic] scenario for the next years: The arrival of
large-scale quantum computers
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[Apocalyptic] scenario for the next years: The arrival of
large-scale quantum computers

I A quantum computer implementation of Peter Shor algorithm for
factorization of integer numbers will imply that the computational
effort for breaking elliptic-curve discrete logs will become polynomial.

I In practice, this means that breaking commercial [EC]DLP would go
from billions of years to hundred of hours.
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[Apocalyptic] scenario for the next years: The arrival of
large-scale quantum computers

Along with ECC, RSA and DSA public key crypto-schemes will also
go to extinction
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Design problem: How to construct a post-quantum
Diffie-Hellman protocol?
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Answers against the [Apocalyptic] scenario: Post-Quantum
Cryptography (PQC)

About two years ago, NIST launched a Post-Quantum Cryptography
(PQC) standardization contest. NIST stated that
’regardless of whether we can estimate the exact time of the arrival of the quantum

computing era, we must begin now to prepare our information security systems to be able

to resist quantum computing.“

The main focus of the contest is to find new PQC
signature/verification and shared key establishment protocols. The
latter task should be done using a scheme known as Key
Encapsulation Mechanism (KEM).
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Answers against the [Apocalyptic] scenario: Post-Quantum
Cryptography (PQC)

Out of 82 initial candidates only seven advanced to the third round, whereas
another eight were declared alternative candidates. The surviving candidates
can be classified into five main categories.

I Lattice-based cryptography
I Code-based crypto
I Multivariate-based crypto
I hash-based crypto
I isogeny-based crypto
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Design problem: How to construct a post-quantum
Diffie-Hellman protocol using isogeny-based crypto?
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[More] Mathematical definitions: recap

An Elliptic Curve in Weierstrass short model over a finite field Fq where q = pm

for some prime p > 3, is given by the equation

E/Fq : Y 2 = X 3 + AX + B

where A,B ∈ Fq.

The j-invariant j(E ) of a curve acts like a fingerprint of a curve and it is given by

j(E ) =
1728 · 4A2

4A2 + 27B2
.

A point P in E (Fq) is a pair (x , y) such that x3 + Ax + B − y2 = 0.
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[More] Mathematical definitions: recap

We can Add points
R := P + Q,

Double a point
[2]P := P + P

and multiply by a scalar as,

[m]P := P + P + · · ·+ P, (m − 1)(times).

The minimum integer m such that [m]P = O is called the order of P.

The subgroup generated by P is the set {P, [2]P, [3]P, ... , [m − 1]P,O}
and is denoted by 〈P〉.
The m-torsion subgroup is defined as E [m] = {P ∈ E | [m]P = O}.
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[More] Mathematical definitions: recap

(Hasse’s Theorem)The number of rational points in an elliptic curve is
bounded by

#E (Fq) = q + 1− t, | t |≤ 2
√
q.

E is supersingular if p|t, i.e., if

#E (Fq) = q + 1 mod p.

Otherwise E is said to be ordinary.

Francisco Rodŕıguez-Henŕıquez Four variants of the Diffie-Hellman protocol (40 / 47)



Basic definitions of isogenies

An Isogeny φ : E → E ′ is an homomorphism between elliptic curves given by
rational functions. Given P and Q in E0 it follows that

I φ(P + Q) = φ(P) + φ(Q),
I φ(O) = O.

The Kernel of an Isogeny φ is the set

K = {P ∈ E | φ(P) = O}.

Note: In this talk the degree of an isogeny is s := #K .

Let E and E ′ be two elliptic curves defined over Fq. If there exists an
isogeny φ : E → E ′, then we say that E and E ′ are isogenous.

If two elliptic curves E and E ′ are isogenous over Fq, either both of them
are supersingular or both of them are ordinary.
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Basic definitions of isogenies

Let E be an elliptic curve and P ∈ E be an order m point.

Then there exists an elliptic curve E ′ and an isogeny φP : E → E ′ such that
the Kernel of φP is K = 〈P〉, i.e. φP(Q) = O for each Q ∈ 〈P〉. We write

E ′ = E/〈P〉
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Design problem: How to construct a post-quantum
Diffie-Hellman protocol using isogeny-based crypto?
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Diffie-Hellman like protocol using isogenies: The SIDH
protocol [de Feo-Jao 2011]

SIDH framework:

Find a prime p of the form p = 2eA · 3eB − 1,

Let E be a supersingular elliptic curve defined over Fp2 with
#E (Fp2) = (p + 1)2.

E [2eA ](Fp2) = 〈PA,QA〉 and E [3eB ](Fp2) = 〈PB ,QB〉.

General description of the SIDH protocol

RA ← [nA] + [mA]

RB ← [nB ] + [mB ]

E

E/〈RA,RB〉

where the shared secret key is the j-invariant j(E/〈RA,RB〉).
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Diffie-Hellman like protocol using isogenies: The SIDH
protocol [de Feo-Jao 2011]
SIDH framework:

Find a prime p of the form p = 2eA · 3eB − 1,

Let E be a supersingular elliptic curve defined over Fp2 with
#E (Fp2) = (p + 1)2.

E [2eA ](Fp2) = 〈PA,QA〉 and E [3eB ](Fp2) = 〈PB ,QB〉.

General description of the SIDH protocol

RA ← [nA]PA + [mA]QA

RB ← [nB ]PB + [mB ]QB

E E/〈RA〉

E/〈RB〉 E/〈RA,RB〉

φA

φB

where the shared secret key is the j-invariant j(E/〈RA,RB〉).

Francisco Rodŕıguez-Henŕıquez Four variants of the Diffie-Hellman protocol (44 / 47)



Diffie-Hellman like protocol using isogenies: The SIDH
protocol [de Feo-Jao 2011]
SIDH framework:

Find a prime p of the form p = 2eA · 3eB − 1,

Let E be a supersingular elliptic curve defined over Fp2 with
#E (Fp2) = (p + 1)2.

E [2eA ](Fp2) = 〈PA,QA〉 and E [3eB ](Fp2) = 〈PB ,QB〉.

General description of the SIDH protocol

RA ← [nA]PA + [mA]QA

RB ← [nB ]PB + [mB ]QB

E E/〈RA〉

E/〈RB〉 E/〈RA,RB〉

φA

φB

φA
(PB

),φA
(QB

),E
/〈RA
〉

where the shared secret key is the j-invariant j(E/〈RA,RB〉).
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φA(RB)← [nB ]φA(PB) + [mB ]φA(QB)

E E/〈RA〉

E/〈RB〉 E/〈RA,RB〉

φA

φB φ′B

φA
(PB

),φA
(QB

),E
/〈RA
〉

φB
(PA

),φB
(QA

),E
/〈RB
〉

φ′A

where the shared secret key is the j-invariant j(E/〈RA,RB〉).
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Design problem: How to construct a post-quantum
Diffie-Hellman protocol?
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Overviewing the CSIDH
[Castryck-Lange-Martindale-Panny-Renes Asiacrypt’18]

Public parameter:
E/Fp : By2 = x3 +Ax2 + x,

Alice

eA = (e1, . . . , en)
$←− J−m . . mKn

EA = le11 ∗ · · · ∗ lenn ∗ E

Eba = le11 ∗ · · · ∗ lenn ∗ EB

Bob

eB = (f1, . . . , fn)
$←− J−m . . mKn

EB = lf11 ∗ · · · ∗ lfnn ∗ E

Eab = lf11 ∗ · · · ∗ lfnn ∗ EA

EA

EB

Figure: CSIDH key-exchange protocol

CSIDH works over a finite field Fp, where p is a prime of the form

p := 4
n∏

i=1

`i − 1
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Alice
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$←− J−m . . mKn
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Figure: CSIDH key-exchange protocol

(p + 1)/4 = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 67 · 71 · 73 · 79 · 83 · 89 · 97 · 101 · 103·
107 · 109 · 113 · 127 · 131 · 137 · 139 · 149 · 151 · 157 · 163 · 167 · 173 · 179 · 181 · 191 · 193 · 197 · 199 · 211 · 223·
227 · 229 · 233 · 239 · 241 · 251 · 257 · 263 · 269 · 271 · 277 · 281 · 283 · 293 · 307 · 311 · 313 · 317 · 331 · 337 · 347·
349 · 353 · 359 · 367 · 373 · 587
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Gracias-Thanks-dhanyavaad

Pictures of Botero paintings taken by the author in the Botero museum, Bogotá, Colombia.

Thanks are due to Jean-Luc Beuchat, Daniel Cervantes-Vázquez and Jesús Chi-Doḿınguez for designing several of the
animations of this presentation

The AMOR team composed by Gora Adj, Alfred Menezes, Thomaz Oliveira and FRH made several of the contributions
presented on the Discrete Logarithm Problem for small characteristic

The Montgomery ladder material presented in this talk is joint work with Thomaz Oliveira, Julio César
López-Hernández, Hüseyin Hisil and Armando Faz-Hernández
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