Francisco Rodríguez Henríquez

francisco@cs.cinvestav.mx

CINVESTAV-IPN
Computer Science Departament

Friday $14^{\text {th }}$ June, 2019

Table of contents

1 Introduction

- Diffie-Helman
- Mathematical Background

2 State-of-the-art

- SIDH
- Computing isogenies
- Edwards curves
- Montgomery Curves

3 Extended SIDH

- eSIDH
\square CRT + eSIDH
- Parallelism in s^{e}-degree isogenies

4 Edwards-Montgomery Hybridization

- There and back again

5 Results

- Proposals

■ Results
6 Epilogue

Secret Sharing - Diffie Hellman

${ }^{1}$ https://commons.wikimedia.org/wiki/File:Diffie-Hellman_Key_Exchange.svg

Discrete Log on finite fields

Public parameters

- Prime p,
- base g (generator).

Alice
BobChoose a random integer
Choose a random integer
$a \in\{1, \ldots, p-1\}$.
Compute $g_{a}:=g^{a} \bmod p$.
Send g_{a} to Bob.
Compute $g_{b a}:=g_{b}^{a} \bmod p$.

$$
b \in\{1, \ldots, p-1\} .
$$

Compute $g_{b}:=g^{b} \bmod p$.
Send g_{b} to Alice.
Compute $g_{a b}:=g_{a}^{b} \bmod p$.

$$
g_{a b}=\left(g^{a}\right)^{b}=\left(g^{b}\right)^{a}=g_{b a}
$$

Discrete log consists in find a knowing g and g_{a}.

Mathematical Background

An Elliptic Curve in Weierstrass short model over a finite field \mathbb{F}_{q} where $q=p^{m}$ for some prime $p>3$, is given by the equation

$$
E / \mathbb{F}_{q}: Y^{2}=X^{3}+A X+B
$$

where $A, B \in \mathbb{F}_{q}$. The j-invariant $j(E)$ of a curve acts like a "fingerprint" of a
curve and it is given by

$$
j(E)=\frac{1728 \cdot 4 A^{2}}{4 A^{2}+27 B^{2}} .
$$

A point P in $E\left(\mathbb{F}_{q}\right)$ is a pair (x, y) such that $x^{3}+A x+B-y^{2}=0 . E$ is supersingular if

$$
\# E\left(\mathbb{F}_{q}\right)=q+1+k \cdot p .
$$

Mathematical Background

- (Hasse's Theorem) The number of rational points in an elliptic curve is bounded by

$$
\# E\left(\mathbb{F}_{q}\right)=q+1-t, \quad|t| \leq 2 \sqrt{q} .
$$

- Let E be an elliptic curve and consider the integer t given by Hasse theorem. An elliptic curve is called supersingular if $p \mid t$ otherwise is called ordinary.

Mathematical Background

- We can ADD points

$$
R:=P+Q,
$$

- DBL a point

$$
[2] P:=P+P
$$

- and multiply by an integer

$$
[m] P:=P+P+\cdots+P,(m-1)(\text { times }) .
$$

- The minimum integer m shuch that $[m] P=\mathcal{O}$ is called the order of P.

■ The subgroup generated by P is the set $\{P,[2] P,[3] P, \ldots,[m-1] P, \mathcal{O}\}$ and is denoted by $\langle P\rangle$.

- The m-torsion subgroup is defined as $E[m]=\{P \in E \mid[m] P=\mathcal{O}\}$.

Mathematical Background

- An Isogeny $\phi: E_{0} \rightarrow E_{1}$ is an homomorphism between elliptic curves given by rational functions. Given P and Q in E_{0} is fulfilled that
- $\phi(P+Q)=\phi(P)+\phi(Q)$,
- $\phi(\mathcal{O})=\mathcal{O}$.
- The Kernel of an Isogeny ϕ is the set

$$
K=\{P \in E \mid \phi(P)=\mathcal{O}\} .
$$

- The degree of an isogeny is $s:=\# K$
- If ϕ has degree s^{e} then we can "decompose" ϕ as the composition

$$
\phi_{e-1} \circ \phi_{e-2} \circ \cdots \phi_{1} \circ \phi_{0}
$$

where ϕ_{i} has degree s.

Mathematical Background

Theorem: Let E and E^{\prime} be two elliptic curves. If there exists a degree-1 isogeny between E and E^{\prime} then $j(E)=j\left(E^{\prime}\right)$. We say that E and E^{\prime} are isomorphic. We denote that by $E \cong E^{\prime}$.

Given an isogeny $\phi: E_{0} \rightarrow E_{1}$ of degree d^{e} then

- We can "decompose" ϕ as the composition $\phi_{e-1} \circ \phi_{e-2} \circ \cdots \phi_{1} \circ \phi_{0}$ where ϕ_{i} has degree d.
- There exists an isogeny $\hat{\phi}: E_{1} \rightarrow E_{0}$ such that $\hat{\phi} \circ \phi=\left[d^{e}\right]$ and $\phi \circ \hat{\phi}=\left[d^{e}\right]$.

Mathematical Background

- Let E be an elliptic curve and $P \in E$ be an order m point.
- Then there exists an elliptic curve E_{P} and an isogeny $\phi_{P}: E \rightarrow E_{P}$ such that the Kernel of ϕ_{P} is $\langle P\rangle$, i.e. $\phi_{P}(p)=\mathcal{O}$ for each $p \in\langle P\rangle$. We write

$$
E_{P}=E /\langle P\rangle
$$

Mathematical Background

- Let E be an elliptic curve and $P \in E$ be an order m point.
- Then there exists an elliptic curve E_{P} and an isogeny $\phi_{P}: E \rightarrow E_{P}$ such that the Kernel of ϕ_{P} is $\langle P\rangle$, i.e. $\phi_{P}(p)=\mathcal{O}$ for each $p \in\langle P\rangle$. We write

$$
E_{P}=E /\langle P\rangle
$$

Elliptic Curve Isogeny

2 State-of-the-art

- SIDH

State-of-the-art

- Computing isogenies
- Edwards curves
- Montgomery Curves

SIDH Overview

- Luca De Feo, David Jao and Jérôme Plût proposed in 2014[FJP14] a new instance of Diffie-Hellman protocol using isogenies between supersingular elliptic curves as the core operation and curves as the secret shared (actually their j-invariants).
- They use a special kind of primes $p:=\ell_{a}^{e_{a}} \ell_{b}^{e_{b}} f-1$ which satisfies:
- ℓ_{a} and ℓ_{b} are small primes,
- $\log _{2}\left(\ell_{a}^{e}\right) \approx \log _{2}\left(\ell_{b}^{e}\right)$,
- f is a small integer which makes p to be a prime number.
- Public parameters are: prime p, an elliptic curve E_{0}, and points $P_{a}, Q_{a}, P_{b}, Q_{b} \in E_{0}$ such that $\left\langle P_{a}, Q_{a}\right\rangle=E\left[\ell_{a}^{a}\right]$ and $\left\langle P_{b}, Q_{b}\right\rangle=E\left[\ell_{b}^{e_{b}}\right]$.

SIDH public parameters

$$
\mathrm{p}:=2^{e_{2}} \quad 3^{e_{3}} \quad f-1
$$

Such that $3^{e_{3}} \approx 2^{e_{2}}$

SIDH public parameters

Choose P_{2} and Q_{2} such that $\left\langle P_{2}, Q_{2}\right\rangle=E\left[2^{e_{2}}\right]$

Choose P_{3} and Q_{3}
such that $\left\langle P_{3}, Q_{3}\right\rangle=E\left[3^{e_{3}}\right]$

Such that $3^{e_{3}} \approx 2^{e_{2}}$

SIDH protocol

$$
\begin{gathered}
K_{B}:=P_{2}+\left[n_{2}\right] Q_{2} \\
\text { Get } \phi_{B} \text { and } E_{B}=E_{0} /\left\langle K_{B}\right\rangle
\end{gathered}
$$

SIDH protocol

SIDH protocol

SIDH protocol

SIDH protocol

$$
\begin{gathered}
K_{B}^{\prime}:=\phi_{G}\left(P_{2}\right)+\left[n_{2}\right] \phi_{G}\left(Q_{2}\right) \\
\quad \text { Get } E_{G B}=E_{G} /\left\langle K_{B}^{\prime}\right\rangle
\end{gathered}
$$

SIDH protocol

The Models

- There are different Models (equations) for elliptic curves.

Twisted Edwards Model

Twisted Edwards Curves:

$$
E_{(a, d)} / \mathbb{F}_{q}: a x^{2}+y^{2}=1+d x^{2} y^{2} .
$$

Advantages:
■ Faster enough to be considered in some standards.

- Allows a y-only arithmetic.

$$
\begin{aligned}
P & =\left(\frac{x}{z}, \frac{y}{z}\right) \\
\mathcal{Y}(P) & =\left(y_{P}: z_{P}\right)
\end{aligned}
$$

- Complete addition formulas.
- Dustin Moody and Daniel Shumow[MS11] proposed formulas for computing isogenies between Twisted Edwards curves ${ }^{2}$.

[^0]
Montgomery Model

Projective Constant Montgomery Curves:

$$
E_{(A: C)} / \mathbb{F}_{q}: C y^{2}=x\left(C x^{2}+A x+C\right) .
$$

Advantages:

- Faster enough to be considered in some standards.
- Allows an x-only arithmetic.

$$
\begin{aligned}
P & =\left(\frac{x}{z}, \frac{y}{z}\right) \\
\mathcal{X}(P) & =\left(x_{P}: z_{P}\right)
\end{aligned}
$$

- Costello and Hisil [CH17] proposed formulas for computing isogenies between Montgomery curves.

$$
3 y^{2}=x\left(x^{2}+7 x+1\right)
$$

There and back again

We can transfer back and forth from Montgomery to Edwards curves "almost for free":

$$
\begin{aligned}
E_{(a, d)} & \rightarrow E_{(A: C)} & E_{(A: C)} & \rightarrow E_{(a, d)} \\
(y: z) & \mapsto(z+y: z-y), & (x: z) & \mapsto(x-z: x+z), \\
(a, d) & \mapsto\left(\frac{a+d}{2}: \frac{a-d}{4}\right) & (A: C) & \mapsto(A+2 C, A-2 C)
\end{aligned}
$$

Get s-isogeny

"How to get" an s-isogeny for $s=2 \ell+1$.

Edwards	Montgomery
Order s point $K_{e} \in E_{a, d}$.	Order s point $K_{m} \in E_{(A: C)}$.
$E_{a, d} \xrightarrow{\phi} E_{a^{\prime}, d^{\prime}}$	$E_{A} \xrightarrow{\phi} E_{A^{\prime}}$
$a^{\prime}:=B_{z} a^{s}, \quad d^{\prime}=B_{y}^{8} d^{s}$,	$A^{\prime}=(6 \sigma+A) \cdot \pi^{2}$
$B_{y}=\prod_{i=1}^{\ell} y_{[i] K_{e}}$.	$\sigma_{x}=\sum_{i=1}^{\ell} \frac{z_{[i] K}^{2}-x_{[i] K}^{2}}{x_{[i] K} z_{[i] K}}$
$B_{z}=\prod_{i=1}^{\ell} z_{[i] K_{e}}$.	$\pi_{x}=\prod_{i=1}^{\ell} x_{[i] K_{m}}, \pi_{z}=\prod_{i=1}^{\ell} z_{[i] K_{m}}$.

Eval s-isogeny

Eval an s-isogeny for $s=2 \ell+1$.
Edwards...

Eval s-isogeny

Eval an s-isogeny for $s=2 \ell+1$.
It does not works in the sense that there is not an evaluation using only Y Z-coordinates

Eval s-isogeny

Eval an s-isogeny for $s=2 \ell+1$.
MontgomeryOrder s point $K_{m} \in E_{(A: C)}$. Point $Q \in E_{(A: C)}$ not in

$$
\begin{aligned}
& \left\langle K_{m}\right\rangle \cdot \phi_{K_{m}}(\mathcal{X}(Q))=\left(x_{Q^{\prime}}: z_{Q^{\prime}}\right) \cdot x_{Q^{\prime}}= \\
& x_{Q} \cdot\left(\prod_{i=1}^{\ell}\left[\left(x_{Q}-z_{Q}\right)\left(x_{[i] K_{m}}+z_{[i] K_{m}}\right)+\left(x_{Q}+z_{Q}\right)\left(x_{[i] K_{m}}-z_{[i] K_{m}}\right)\right]\right)^{2} \\
& z_{Q^{\prime}}= \\
& z_{Q} \cdot\left(\prod_{i=1}^{\ell}\left[\left(x_{Q}-z_{Q}\right)\left(x_{[i] K_{m}}+z_{[i] K_{m}}\right)-\left(x_{Q}+z_{Q}\right)\left(x_{[i] K_{m}}-z_{[i] K_{m}}\right)\right]\right)^{2} \text { Cost }
\end{aligned}
$$

per iteration: $2 \mathrm{M}+2 \mathrm{~S}$

Parameters

Such that $3^{e_{3}} 5^{e_{5}} \approx 2^{e_{2}}$
and $3^{e_{3}} \approx 5^{e_{5}}$

Parameters

Choose P_{3} and Q_{3}
such that $\left\langle P_{3}, Q_{3}\right\rangle=E\left[3^{e_{3}}\right]$

Choose P_{2} and Q_{2} such that $\left\langle P_{2}, Q_{2}\right\rangle=E\left[2^{e_{2}}\right]$

Choose P_{5} and Q_{5} such that $\left\langle P_{5}, Q_{5}\right\rangle=E\left[5^{e_{5}}\right]$

Such that $3^{e_{3}} 5^{e_{5}} \approx 2^{e_{2}}$

$$
\text { and } 3^{e_{3}} \approx 5^{e_{5}}
$$

Define $S:=P_{3}+P_{5}$ and $T:=Q_{3}+Q_{5}$ to be the public parameters of Ron and Harry

eSIDH

$$
\begin{gathered}
K_{2}:=P_{2}+\left[n_{2}\right] Q_{2} \\
\text { Get } \phi_{H} \text { and } E_{H}
\end{gathered}
$$

eSIDH

Get ϕ_{R} and E_{R}. Send $\phi_{R}\left(K_{5}\right)$ to Harry.

eSIDH

Use $\phi_{R}\left(K_{5}\right)$ to get $E_{R H}$ and $\phi_{R H}$

eSIDH

eSIDH

eSIDH

$$
\begin{gathered}
K_{2}^{\prime}:=\phi_{R H}\left(P_{2}\right)+\left[n_{2}\right] \phi_{R H}\left(Q_{2}\right) \\
G e t E_{R H H}
\end{gathered}
$$

eSIDH

Get ϕ_{R}^{\prime} and $E_{H R}$. Send $\phi_{R}^{\prime}\left(\bar{K}_{5}^{\prime}\right)$ to Harry.

eSIDH

Use $\phi_{R}^{\prime}\left(K_{5}^{\prime}\right)$ to get $E_{H R H}$

CRT + eSIDH

- Choose $n_{3} \in\left[1,3^{e_{3}}\right]$ and $n_{5} \in\left[1,5^{e_{5}}\right]$ such that $\left(n_{3}, 5^{e_{5}}\right)=\left(n_{5}, 3^{e_{3}}\right)=1$.
- Compute $\hat{n}_{3}:=n_{3}^{-1} \bmod 5^{e_{5}}, \quad \hat{n}_{5}:=n_{5}^{-1} \bmod 3^{e_{3}}$.
- Finally compute the integer private keys
- ($\left.\bar{n}_{3}:=n_{3} \cdot \hat{n}_{3} \bmod 3^{e_{3}}, \bar{n}_{5}:=n_{5} \cdot \hat{n}_{5} \bmod 5^{e_{5}}\right)$.
- $n_{35}:=n_{3} \cdot \hat{n}_{3} \cdot n_{5} \cdot \hat{n}_{5} \bmod \left(3^{e_{3}} 5^{e_{5}}\right)$.

CRT + eSIDH

■ Choose $n_{3} \in\left[1,3^{e_{3}}\right]$ and $n_{5} \in\left[1,5^{e_{5}}\right]$ such that $\left(n_{3}, 5^{e_{5}}\right)=\left(n_{5}, 3^{e_{3}}\right)=1$.

- Compute $\hat{n}_{3}:=n_{3}^{-1} \bmod 5^{e_{5}}, \quad \hat{n}_{5}:=n_{5}^{-1} \bmod 3^{e_{3}}$.
- Finally compute the integer private keys

■ $\left(\bar{n}_{3}:=n_{3} \cdot \hat{n}_{3} \bmod 3^{e_{3}}, \bar{n}_{5}:=n_{5} \cdot \hat{n}_{5} \bmod 5^{e_{5}}\right)$.
■ $n_{35}:=n_{3} \cdot \hat{n}_{3} \cdot n_{5} \cdot \hat{n}_{5} \bmod \left(3^{e_{3}} 5^{e_{5}}\right)$.
Key Generation is the same as in previous approach

1 Ron computes: $K_{3}:=P_{3}+\left[\bar{n}_{3}\right] Q_{3}$,
2 Harry computes: $K_{5}:=P_{5}+\left[\bar{n}_{5}\right] Q_{5}$.
3 Ron computes: E_{R}, ϕ_{R} using K_{3}.
4 Harry computes: $E_{R H}, \phi_{R H}$ using $\phi_{R}\left(K_{5}\right)$.

CRT + eSIDH

■ Choose $n_{3} \in\left[1,3^{e_{3}}\right]$ and $n_{5} \in\left[1,5^{e_{5}}\right]$ such that $\left(n_{3}, 5^{e_{5}}\right)=\left(n_{5}, 3^{e_{3}}\right)=1$.

- Compute $\hat{n}_{3}:=n_{3}^{-1} \bmod 5^{e_{5}}, \quad \hat{n}_{5}:=n_{5}^{-1} \bmod 3^{e_{3}}$.
- Finally compute the integer private keys

■ $\left(\bar{n}_{3}:=n_{3} \cdot \hat{n}_{3} \bmod 3^{e_{3}}, \bar{n}_{5}:=n_{5} \cdot \hat{n}_{5} \bmod 5^{e_{5}}\right)$.
■ $n_{35}:=n_{3} \cdot \hat{n}_{3} \cdot n_{5} \cdot \hat{n}_{5} \bmod \left(3^{e_{3}} 5^{e_{5}}\right)$.
Key agreement phase:

1 Ron computes: $K^{\prime}:=\phi_{H}\left(P_{3}\right)+\left[n_{35}\right] \phi_{H}\left(Q_{3}\right)$,
2 Ron computes: $K_{3}^{\prime}:=\left[5^{e_{5}}\right] K^{\prime}$.
3 Ron computes: $E_{H R}, \phi_{R}^{\prime}$ using K_{3}.
4 Harry computes: $E_{H R H}, \phi_{R H}^{\prime}$ using $\phi_{R}^{\prime}\left(K^{\prime}\right)$.

Parallelism in s^{e}-degree isogenies

Example for a 2^{5}-isogeny.

Rules:

- Once you go down, you can't go back.
- The only way to go down along a non-blue line is reaching first the dot rounded by the same color of the line. Example: if you want to go down by a red line, first you need to reach the dot rounded by a red circle.

Cinvestav

Parallelism in s^{e}-degree isogenies

Example for a 2^{5}-isogeny.

Rules:

- Once you go down, you can't go back.
- The only way to go down along a non-blue line is reaching first the dot rounded by the same color of the line. Example: if you want to go down by a red line, first you need to reach the dot rounded by a red circle.

Cinvestav

Parallelism in s^{e}-degree isogenies

Unbalanced path: Evaluation oriented
Costs:

-
- Evaluations: 10

Fully parallelizable. (Need more than 250 cores in real life)

Parallelism in s^{e}-degree isogenies

Parallelism in s^{e}-degree isogenies

There and back again

- We make use of Edwards isogeny construction

There and back again

- We make use of Edwards isogeny construction
- Montgomery evaluation use Kernel points in YZ-Coordinates.

$$
\begin{aligned}
& x^{\prime}=\mathbf{x}_{\mathbf{Q}} \cdot\left(\prod_{i=1}^{\ell}\left[z_{Q} y_{[i] P}+y_{Q} z_{[i] P}\right]\right)^{2} \\
& z^{\prime}=\mathbf{z}_{\mathbf{Q}} \cdot\left(\prod_{i=1}^{\ell}\left[z_{Q} y_{[i] P}-y_{Q} z_{[i] P}\right]\right)^{2} .
\end{aligned}
$$

There and back again

- We make use of Edwards isogeny construction
- Montgomery evaluation use Kernel points in YZ-Coordinates.
- Once that the Kernel points are in $Y Z$-coordinates it is not necessary to go back to Montgomery anymore.

There and back again

■ We make use of Edwards isogeny construction
■ Montgomery evaluation use Kernel points in YZ-Coordinates.
■ Once that the Kernel points are in $Y Z$-coordinates it is not necessary to go back to Montgomery anymore.

- Translate xDBL and xADD into yDBL and yADD respectively to compute $[i] K$.

Proposals

Our proposals	$\left[\mathbf{J A C}^{+}\right.$17 $]$proposals
$P_{508}=2^{258} 3^{74} 5^{57}-1$	$P_{503}=2^{250} 3^{159}-1$
$P_{764}=2^{391} 3^{121} 5^{78}-1$	$P_{751}=2^{372} 3^{239}-1$
$P_{1013}=2^{512} 3^{157} 5^{108}-1$	$P_{964}=2^{486} 3^{301}-1$
	$\left[\mathbf{A C V C D}^{+18}\right]$ proposals
$P_{443}=2^{222} 3^{73} 5^{45}-1$	$P_{434}=2^{216} 3^{137}-1$
$P_{557}=2^{280} 3^{86} 5^{61}-1$	$P_{546}=2^{273} 3^{172}-1$

Table 1: Our proposals for eSIDH primes in comparison with the current state-of the art

Proposals

Our proposals	$\left[\mathbf{J A C}^{+}\right.$17] proposals
$P_{508}=2^{258} 3^{74} 5^{57}-1$	$P_{503}=2^{250} 3^{159}-1$
$P_{764}=2^{391} 3^{121} 5^{78}-1$	$P_{751}=2^{372} 3^{239}-1$
$P_{1013}=2^{512} 3^{157} 5^{108}-1$	$P_{964}=2^{486} 3^{301}-1$
	$\left[\mathbf{A C V C D}^{+18}\right]$ proposals
$P_{443}=2^{222} 3^{73} 5^{45}-1$	$P_{434}=2^{216} 3^{137}-1$
$P_{557}=2^{280} 3^{86} 5^{61}-1$	$P_{546}=2^{273} 3^{172}-1$

Table 1: Our proposals for eSIDH primes in comparison with the current state-of the art

- Our primes are Montgomery Friendly so we can achieve a faster modular reduction.
- There are more eSIDH primes than SIDH primes.
- It is possible to improve the security (few bits).

Implementation considerations

- We compare against the recent library version of Costello-Longa-Naehrig instead of the reported one [CLN16].
- We do not compare with results of Faz-López-Ochoa-Rodríguez article [FHLOJRH18] because the specifications submitted to NIST[JAC ${ }^{+}$17] does not allow the use of all improvements reported by them.
- All the timings were measured using an Intel core i7-6700K processor with micro-architecture Skylake at 4.0 GHz . Using the Clang-3.9 compiler and the flags -Ofast -fwrapv -fomit-frame-pointer -march=native -madx -mbmi2.

Arithmetic Results

Operation	$\left[\mathrm{JAC}^{+} 17\right]$	Ours	$\left[\mathrm{JAC}^{+} 17\right]$	Ours	Ours
	p_{503}	p_{509}	p_{751}	p_{765}	p_{1013}
Mult $\mathbb{F}_{p^{2}}$	557	500	1,054	972	1,610
Sqr $\mathbb{F}_{p^{2}}$	411	370	769	711	1,217
Inv $\mathbb{F}_{p^{2}}$	110,927	102,530	314,354	250,131	675,623

	Operation	$\left[\mathrm{ACVCD}^{+} 18\right]$	Ours	$\left[\mathrm{ACVCD}^{+} 18\right]$
	p_{434}	p_{443}	p_{546}	p_{557}
Mult $\mathbb{F}_{p^{2}}$	509	467	774	680
Sqr $\mathbb{F}_{p^{2}}$	345	340	519	515
Inv $\mathbb{F}_{p^{2}}$	79,018	80,253	207,854	154,931

Table 2: Arithmetic cost comparison. Timings are reported in clock cycles measured over a Skylake processor at 4.0 GHz .

Protocol Results

	Alice KeyGen			Bob KeyGen			Alice KeyAgr			Bob KeyAgr		
	NP	P	AF									
P503 [JAC^{+}17]		8.24			9.13			6.70			7.71	
$2^{258} \cdot 3^{74} \cdot 5^{57} \cdot 1-1$	7.50	5.92	1.39	8.04	5.46	1.67	6.11	5.38	1.43	7.58	5.55	1.38
P751 [JAC ${ }^{+} 17$]		23.72			26.70			19.38			22.81	
$2^{391} \cdot 3^{121} \cdot 5^{78} \cdot 1-1$	22.27	16.72	1.42	24.10	15.43	1.73	18.35	15.32	1.26	22.77	15.78	1.44
$2^{512} \cdot 3^{157} \cdot 5^{108} \cdot 1-1$	49.27	36.44		54.79	34.57		40.84	33.26		51.78	35.40	
P434 [ACVCD ${ }^{+} 18$]		5.3			5.9			5.0			5.8	
$2^{222} \cdot 3^{73} \cdot 5^{45} \cdot 1-1$	5.93	4.68	1.13	6.60	4.61	1.28	4.79	4.27	1.17	6.17	4.69	1.23
P546 [ACVCD ${ }^{+}$18]		10.6			11.6			9.9			11.3	
$2^{280} \cdot 3^{86} \cdot 5^{61} \cdot 1-1$	11.17	8.63	1.23	12.45	8.29	1.40	9.09	7.83	1.26	11.65	8.48	1.33

Table 3: Performance comparison of the eSIDH against the proposed in [JAC $\left.{ }^{+} 17\right]$ and [ACVCD ${ }^{+}$18]. The running time is reported in 10^{6} clock cycles measured in an Intel Skylake proccessor at 4.0 GHz. Parallel version performance using 3 cores.

Results
6 Epilogue

Publications

Accepted:
■ Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domínguez, Alfred Menezes and Francisco Rodríguez-Henríquez. On the cost of computing isogenies between supersingular elliptic curves. Selected Areas in Cryptology 2018(Conference).
Work in progress:

- Daniel Cervantes-Vázquez, Eduardo Ochoa-Jiménez and Francisco Rodríguez-Henríquez. A parallel approach for SIDH.
- Daniel Cervantes-Vázquez, Mathilde Chenu-de-La Morinerie, Luca de Feo, Jesús Chi-Domínguez, Francisco Rodríguez-Henríquez and Ben Smith. Stronger and Faster Side-Channel Protections for CSIDH. Submitted.

Future Work

- To implement different parallel strategies and analyze those strategies.
- To study other models to improve performance (Huff, Split/Twisted Normal Form).

Bibliography I

[ACVCD $\left.{ }^{+} 18\right]$ Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domínguez, Alfred Menezes, and Francisco Rodríguez-Henríquez.
On the cost of computing isogenies between supersingular elliptic curves.
Cryptology ePrint Archive, Report 2018/313, 2018.
https://eprint.iacr.org/2018/313.
[CH17] Craig Costello and Huseyin Hisil.
A simple and compact algorithm for sidh with arbitrary degree isogenies.
Cryptology ePrint Archive, Report 2017/504, 2017.
https://eprint.iacr.org/2017/504.
[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for supersingular isogeny diffie-hellman. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016, pages 572-601, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

Bibliography II

[FHLOJRH18] A. Faz-Hernández, J. López, E. Ochoa-Jiménez, andF. Rodríguez-Henríquez.
A faster software implementation of the supersingular isogeny diffie-hellman key exchange protocol.
IEEE Transactions on Computers, pages 1-1, 2018.
[FJP14] Luca De Feo, David Jao, and Jérôme Plût.
Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies.
J. Mathematical Cryptology, 8(3):209-247, 2014.
[JAC ${ }^{+}$17] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian
LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, and David Urbanik.
Supersingular isogeny key encapsulation, 2017.
sike.org.

Cinvestav

Bibliography III

[MS11]
Dustin Moody and Daniel Shumow.
Analogues of velu's formulas for isogenies on alternate models of elliptic curves.
Cryptology ePrint Archive, Report 2011/430, 2011.
https://eprint.iacr.org/2011/430.

[^0]: ${ }^{2}$ Also for non-twisted Edwards curves and Huff curves

