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Terminology

Cryptology: All-inclusive term used for the study of secure
communication over non-secure channels and related problems.

Cryptography: The process of designing systems to realize secure
communications over non-secure channels.

Cryptanalysis: The discipline of breaking cryptographic systems

Plaintext: Message that we want to transmit in a secure way.

ciphertext: Resulting document after performing encryption.

key: Secret information utilized for encrypting/decrypting documents.
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Enigma security model

Alan Turing potential goals:

1 To figure out who are Hitler’s receiver partners [traffic analysis]
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Enigma security model

Alan Turing potential goals:

1 To figure out who are Hitler’s receiver partners [traffic analysis]

2 To read [decrypt] the original message

3 To get Hitler’s secret key.

4 To modify the contents of the original message.
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Enigma security model

Alan Turing potential goals:

1 To figure out who are Hitler’s receiver partners [traffic analysis]

2 To read [decrypt] the original message

3 To get Hitler’s secret key.

4 To modify the contents of the original message.

5 To impersonate Hitler
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Kerckhkoff Principle

“La sécurité repose sur le secret de la clé, et non sur le secret de l’algorithme.”
It is assumed that the adversary knows the cryptographic algorithm being used.
Therefore, the security of the algorithm must be based on:
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Kerckhkoff Principle

“La sécurité repose sur le secret de la clé, et non sur le secret de l’algorithme.”
It is assumed that the adversary knows the cryptographic algorithm being used.
Therefore, the security of the algorithm must be based on:

The quality (cryptographic strength) of the algorithm

Secret key search space (size in bits of the secret key)
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Secret Sharing - Diffie Hellman

Problem:

Alice and Bob wants to paint his
houses of the same color.

They will not allow Eve to know
the color.

Common secret

= =

Secret colours

+ +

(assume
that mixture separation

is expensive)

Public transport

= =

Secret colours

+ +

Common paint

Alice Bob

1

1https://commons.wikimedia.org/wiki/File:Diffie-Hellman Key Exchange.svg
Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (5 / 36)

https://commons.wikimedia.org/wiki/File:Diffie-Hellman_Key_Exchange.svg


Design problem: How to share a secret?
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Design problem: How to share a secret?. Solution:
Diffie-Hellman Protocol 1976
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Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (7 / 36)



Design problem: How to share a secret?. Solution:
Diffie-Hellman Protocol 1976
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Design problem: How to share a secret?. Solution:
Diffie-Hellman Protocol 1976

Alice and Bob adecide to work in the Zp group, with p a large odd prime.
They also chose a generator g ∈ Zp (i.e., Ord(g) = p − 1).

Alice and Bob Choose x , y ∈ Zp, respectively

Alice and Bob compute a shared secret as,

K = (g x)y = (g y )x

Note: This protocol can only be secure against passive attackers
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Design problem: How to share a secret?. Solution:
Diffie-Hellman Protocol 1976

Protocol’s security lies in the computational intractability of solving the Discrete
Logarithm Problem (DLP), namely,

Given a prime p and a generator g , h ∈ [1, p − 1], find an integer x (if it exists)
such that, g x ≡ h mod p.
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Design problem: How to share a secret?. Solution:
Diffie-Hellman Protocol 1976

Diffie and Hellman published their protocol in their breakthrough paper,
Diffie, W.; Hellman, M. (1976). ”New directions in cryptography”.
IEEE Transactions on Information Theory. 22 (6): 644–654.“

Diffie and Hellman won the 2015 Turing award

Since its publication in 1976, ”New directions in cryptography” has inspired
many new ideas in the discipline. In this talk we will review four different
versions of this protocol [!]]
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Main primitives and building blocks in modern
cryptography
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Main primitives and building blocks in modern
cryptography

Primitives:

I Encryption/decryption of digital documents [this task is typically solved
using symmetric cryptography]

I Sharing a secret among two or more parties [this task is usually solved
using the Diffie-Hellman protocol or its variants]

I Signature/verification of digital documents [This task is usually solved
using public key cryptography]

Building blocks:

I Block ciphers and stream ciphers
I Hash functions
I Public key crypto-schemes
I ...
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Hard computational problems

1 Integer factorization problem: Given a positive integer N find its
prime factors.

[2019 =?]
[answer: 2019 = 3 · 673]

2 Discrete logarithm problem: Given a prime p and g , h ∈ [1, p − 1],
find an integer x (if one exists) such that, g x ≡ h mod p.
[find x such that 2x ≡ 304 mod 419]
answer: 2343 ≡ 304 mod 419.
More generally: Given g , h ∈ F∗q, find an integer x (if one exists) such

that, g x ≡ h, where q = pl is the power of a prime
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Elliptic-curve-based cryptography

Elliptic-curve-based cryptography (ECC) was independently proposed
by Victor Miller and Neal Koblitz in 1985.

It took more than two decades for ECC to be widely accepted and
become the most popular public-key cryptographic scheme (above its
archrival RSA)

Nowadays ECC is massively used in everyday applications
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Elliptic-curve-based cryptography

An elliptic curve is defined by the set of affine points (x , y) ∈ Fp × Fp, with p > 3
an odd large prime, which satisfies the short Weierstrass equation given as,

E : y2 = x3 + ax + b,

along with a point at infinity denoted as O.
Let E (Fp) be the set of points that satisfy the elliptic curve equation above. This
set forms an Abelian group with order (size) given as, #E (Fp) = h · r , where r is
a large prime and the cofactor is a small integer.
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Elliptic curves

E defined by a Weierstraß equation of the form

y2 = x3 + Ax + B

E (K ) set of rational points over a field K

Additive group law over E (K )

Many applications in cryptography since 1985
I EC-based Diffie-Hellman key exchange
I EC-based Digital Signature Algorithm
I

Interest: smaller keys than usual cryptosystems (RSA, ElGamal, ...)

But there’s more:
I Bilinear pairings
I Isogenous elliptic curves
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Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (16 / 36)



Elliptic curves

E defined by a Weierstraß equation of the form

y2 = x3 + Ax + B

E (K ) set of rational points over a field K

Additive group law over E (K )

Many applications in cryptography since 1985
I EC-based Diffie-Hellman key exchange
I EC-based Digital Signature Algorithm
I

Interest: smaller keys than usual cryptosystems (RSA, ElGamal, ...)

But there’s more:
I Bilinear pairings
I Isogenous elliptic curves
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Group cryptography

(G1, +), an additively-written cyclic group of prime order #G1 = `

P, a generator of the group: G1 = 〈P〉
Scalar multiplication: for any integer k , we have
kP = P + P + · · ·+ P︸ ︷︷ ︸

k times

P

k

kP

Discrete logarithm: given Q ∈ G1, compute k such that Q = kP

kQ = P

k

We assume that the discrete logarithm problem (DLP) in G1 is hard
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Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (17 / 36)



Group cryptography

(G1, +), an additively-written cyclic group of prime order #G1 = `

P, a generator of the group: G1 = 〈P〉
Scalar multiplication: for any integer k , we have
kP = P + P + · · ·+ P︸ ︷︷ ︸

k times

P

k

kP

Discrete logarithm: given Q ∈ G1, compute k such that Q = kP

kQ = P

k

We assume that the discrete logarithm problem (DLP) in G1 is hard
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The Elliptic Curve Diffie-Hellman (ECDH) Protocol

Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (18 / 36)



The Elliptic Curve Diffie-Hellman (ECDH) Protocol

Algorithm 1 The elliptic curve Diffie-Hellman protocol

Public parameters: Prime p, curve E/Fp , point P = (x , y) ∈ E(Fp) of order r

Phase 1: Key pair generation

Alice

1: Select the private key dA
$←− [1, r − 1]

2: Compute the public key QA ← dAP

Bob

1: Select the private key dB
$←− [1, r − 1]

2: Compute the public key QB ← dBP

Phase 2: Shared secret computation

Alice
3: Send QA to Bob
4: Compute R ← dAQB

Bob
3: Send QB to Alice
4: Compute R ← dBQA

Final phase: The shared secret is x-coordinate of the point R
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How to efficiently compute the Elliptic Curve
Diffie-Hellman (ECDH) Protocol?
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The Montgomery ladder
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A famous elliptic curve: Curve25519

Curve25519 satisfies the Montgomery elliptic curve,

E : y2 = x3 + 48666 · x2 + x ,

Curve25519 is used for generating shared-secrets on applications such
as TLS 1.3 and WhatsApp, among others.

Proposed by Daniel J. Bernstein en 2006, it became massively
popular around 2013

Daniel J. Bernstein: ”Curve25519: New Diffie-Hellman Speed Records“. Public Key Cryptography 2006: 207-228
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Algorithm 2 Left-to-right Montgomery ladder [Montgomery’87]

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=k·P

1: R0 ← O; R1 ← uP ;
2: for i = n − 1 downto 0 do
3: if ki = 1 then
4: R0 ← R0+(P)R1; R1 ← 2R1

5: else
6: R1 ← R0+(P)R1; R0 ← 2R0

7: end if
8: end for
9: return uQ ← R0
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5: else
6: R1 ← R0+(P)R1; R0 ← 2R0
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Peter L. Montgomery.: ”Speeding the Pollard and elliptic curve methods of factorization“.
Math. Comput. 48(177), 243–264 (1987)
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Algorithm 2 Left-to-right Montgomery ladder [Montgomery’87]

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=k·P

1: R0 ← O; R1 ← uP ;
2: for i = n − 1 downto 0 do
3: if ki = 1 then
4: R0 ← R0+(P)R1; R1 ← 2R1

5: else
6: R1 ← R0+(P)R1; R0 ← 2R0

7: end if
8: end for
9: return uQ ← R0

Remark 1: The Montgomery ladder maintains the invariant R1 − R0 = P by
computing at each iteration

(R0,R1)←

{
(2R0, 2R0 + P), if ki = 0

(2R0 + P, 2R0 + 2P), if ki = 1.
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1: R0 ← O; R1 ← uP ;
2: for i = n − 1 downto 0 do
3: if ki = 1 then
4: R0 ← R0+(P)R1; R1 ← 2R1

5: else
6: R1 ← R0+(P)R1; R0 ← 2R0

7: end if
8: end for
9: return uQ ← R0

Remark 2: If the difference between the points R1 and R0 is known, it is possible
to derive efficient differential addition formulas, namely,

UR1 ← ZP ·((UR1 + ZR1 )·(UR0 − ZR0 ) + (UR1 − ZR1 )·(UR0 + ZR0 ))2

ZR1 ← uP ·((UR1 + ZR1 )·(UR0 − ZR0 )− (UR1 − ZR1 )·(UR0 + ZR0 ))2.

Using the standard trick of making ZP = 1 this can be computed at a cost of
2m + 1muP + 2s + 6a
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Ensure: uQ=k·P

1: R0 ← O; R1 ← uP ;
2: for i = n − 1 downto 0 do
3: if ki = 1 then
4: R0 ← R0+(P)R1; R1 ← 2R1

5: else
6: R1 ← R0+(P)R1; R0 ← 2R0

7: end if
8: end for
9: return uQ ← R0

Remark 2: Similarly, the operation of doubling the point R0, can be efficiently
computed as,

UR0 ← (UR0 + ZR0 )2·(UR0 − ZR0 )2

T ← (UR0 + ZR0 )2 − (UR0 − ZR0 )2

ZR0 ←
[
a24·T + (UR0 − ZR0 )2

]
·T ,

which can be computed at a cost of 2m + 1ma24 + 2s + 4a, where ma24 stands
for one multiplication by the constant a24 = A+2

4 .
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Algorithm 2 Left-to-right Montgomery ladder [Montgomery’87]

Require: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, ... , k1, k0)2

Ensure: uQ=k·P

1: R0 ← O; R1 ← uP ;
2: for i = n − 1 downto 0 do
3: if ki = 1 then
4: R0 ← R0+(P)R1; R1 ← 2R1

5: else
6: R1 ← R0+(P)R1; R0 ← 2R0

7: end if
8: end for
9: return uQ ← R0

Total computational cost: In summary, the computational cost of the
Montgomery ladder is,

n · (4m + 1ma24 + 1muP + 4s + 8a) + 1m + 1i.

In the RFC 7748 [essentially] this algorithm is called X25519 (with n = 255)

Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (23 / 36)



Algorithm 3 Low-level left-to-right Montgomery ladder
Require: P = (uP , vP ) ∈ EA/Fp , k = (kn−1 = 1, kn−2, ... , k1, k0)2, a24 = (A + 2)/4
Ensure: uQ=kP

1: Initialization: UR0
← 1, ZR0

← 0, UR1
← uP , ZR1

← 1, s ← 0

2: for i ← n − 1 downto 0 do
3: # timing-attack countermeasure

4: s ← s ⊕ ki
5: UR0

, UR1
← cswap(s, UR0

, UR1
)

6: ZR0
, ZR1

← cswap(s, ZR0
, ZR1

)

7: s ← ki
8: # common operations

9: A← UR0
+ ZR0

; B ← UR0
− ZR0

10: # addition

11: C ← UR1
+ ZR1

; D ← UR1
− ZR1

12: C ← C × B; D ← D × A
13: UR1

← D + C ; UR1
← U2

R1

14: ZR1
← D − C ; ZR1

← Z2
R1

; ZR1
← uP × ZR1

15: # doubling

16: A← A2; B ← B2

17: UR0
← A× B

18: A← A− B
19: ZR0

← a24 × A; ZR0
← ZR0

+ B; ZR0
← ZR0

× A

20: end for
21: UR0

, UR1
← cswap(s, UR0

, UR1
)

22: ZR0
, ZR1

← cswap(s, ZR0
, ZR1

)

23: ZR0
← Z−1

R0
; uR0

← UR0
× ZR0

24: return uQ ← uR0
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Design problem: How to establish a one-round tripartite
shared-secret protocol?
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Design problem: How to establish a one-round tripartite
shared-secret protocol?

This problem remained open since the 1976 Diffie-Hellman paper,:
There exists a tripartite Diffie-Hellman protocol that can be executed
in just one round of public key exchanges?
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Bilinear pairings

(G2,×), a multiplicatively-written cyclic group of order
#G2 = #G1 = `

A bilinear pairing on (G1,G2) is a map

ê : G1 ×G1 → G2

that satisfies the following conditions:

I non-degeneracy: ê(P,P) 6= 1G2 (equivalently ê(P,P) generates G2)
I bilinearity:

ê(Q1+Q2,R) = ê(Q1,R)·ê(Q2,R) ê(Q,R1+R2) = ê(Q,R1)·ê(Q,R2)
I computability: ê can be efficiently computed

Immediate property: for any two integers k1 and k2

ê(k1Q, k2R) = ê(Q,R)k1k2

Rk2k1Q
k1

ê
ê(Q,R) k2
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I bilinearity:
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ê(k1Q, k2R) = ê(Q,R)k1k2
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Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (26 / 36)



Bilinear pairings

(G2,×), a multiplicatively-written cyclic group of order
#G2 = #G1 = `

A bilinear pairing on (G1,G2) is a map
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Pairings in cryptography

At first, used to attack supersingular elliptic curves
I Menezes-Okamoto-Vanstone and Frey-Rück attacks, 1993 and 1994

DLPG1 <P DLPG2

kP −→ ê(kP,P) = ê(P,P)k

I for cryptographic applications, we will also require the DLP in G2 to be
hard

One-round three-party key agreement (Joux, 2000)

Identity-based encryption
I Boneh–Franklin, 2001
I Sakai–Kasahara, 2001

Short digital signatures, Aggregate signatures
I Boneh–Lynn–Shacham, 2001
I Boneh–Gentry–Lynn–Shacham, 2004

cryptocurrencies, Pinocchio, Zcash 2013
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Design problem: How to establish a one-round tripartite
shared-secret protocol? Solution:A One Round Protocol
for Tripartite Diffie-Hellman.
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Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (28 / 36)



Design problem: How to establish a one-round tripartite
shared-secret protocol? Solution:A One Round Protocol
for Tripartite Diffie-Hellman.
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Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (28 / 36)



Design problem: How to establish a one-round tripartite
shared-secret protocol? Solution:A One Round Protocol
for Tripartite Diffie-Hellman.
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Design problem: How to establish a one-round tripartite
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for Tripartite Diffie-Hellman.

This problem remained open since the 1976 Diffie-Hellman paper,:
There exists a tripartite Diffie-Hellman protocol that can be executed
in just one round of public key exchanges?

Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (28 / 36)



Design problem: How to establish a one-round tripartite
shared-secret protocol? Solution:A One Round Protocol
for Tripartite Diffie-Hellman.

The protocol works because of,

ê(bP, cP)a = ê(aP, cP)b = ê(aP, bP)c = ê(P,P)abc
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Design problem: How to establish a one-round tripartite
shared-secret protocol? Solution:A One Round Protocol
for Tripartite Diffie-Hellman.

Antoine Joux: ”A One Round Protocol for Tripartite Diffie-Hellman“. ANTS 2000: 385-394
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Recommended key sizes (circa 2013)

Security RSA DL: Fp DL: F2m ECC
in bits ||N||2 ||p||2 m ||q||2

80 1024 1024 1500 160

112 2048 2048 3500 224

128 3072 3072 4800 256

192 7680 7680 12500 384

256 15360 15360 25000 512
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Recommended key sizes (2019)

Security RSA DL: Fp DL: F2m ECC
in bits ||N||2 ||p||2 m ||q||2
≈ 74 1024 1024 1500 160

≈ 106 2048 2048 3500 224

128 3072 3072 4800∗ 256

192 7680 7680 12500 384

256 15360 15360 25000 512
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Recommended key sizes (2019)

Security RSA DL: Fp DL: F2m ECC
in bits ||N||2 ||p||2 m ||q||2
≈ 74 1024 1024 1500 160

≈ 106 2048 2048 3500 224

128 3072 3072 4800∗ 256

192 7680 7680 12500 384

256 15360 15360 25000 512

∗ Nowadays, the extension F24800 is estimated to provide a security level of
around 60 bits (see [Granger-Kleinjung-Zumbrägel’18], [AMOR’16]).

Barbulescu-Gaudry-Joux-Thomé: ”A Heuristic Quasi-Polynomial Algorithm for Discrete Logarithm in Finite Fields of Small
Characteristic“. EUROCRYPT 2014: 1-16

Rodŕıguez-Henŕıquez Modern Alice’s Adventures in Cryptoland (29 / 36)



[Apocalyptic] scenario for the next years: The arrival of
large-scale quantum computers
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[Apocalyptic] scenario for the next years: The arrival of
large-scale quantum computers

A quantum computer implementation of Peter Shor algorithm for
factorization of integer numbers will produce that the computational
effort for breaking elliptic-curve discrete logs would go from billions of
years to hundred of hours.
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[Apocalyptic] scenario for the next years: The arrival of
large-scale quantum computers

Along with ECC, RSA and DSA public key crypto-schemes will also
go to extinction
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Answers against the [Apocalyptic] scenario: Post-Quantum
Cryptography (PQC)

About two years ago, NIST launched a Post-Quantum Cryptography
(PQC) standardization contest. NIST stated that
’regardless of whether we can estimate the exact time of the arrival of the quantum

computing era, we must begin now to prepare our information security systems to be able

to resist quantum computing.“

The main focus of the contest is to find new PQC
signature/verification and shared key establishment protocols. The
latter task should be done using a scheme known as Key
Encapsulation Mechanism (KEM).
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Answers against the [Apocalyptic] scenario: Post-Quantum
Cryptography (PQC)

Out of 82 initial candidates only 23 made it to the second round. The
surviving candidates have been classified in six categories.

Here at Co-Crypto2019, we will be hearing a lot about,

I Lattice-based cryptography
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Answers against the [Apocalyptic] scenario: Post-Quantum
Cryptography (PQC)

Out of 82 initial candidates only 23 made it to the second round. The
surviving candidates have been classified in six categories.

Here at Co-Crypto2019, we will be hearing a lot about,

I Lattice-based cryptography

I Code-based crypto

I Multivariate-based crypto

I hash-based crypto

I isogeny-based crypto
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Design problem: How to construct a post-quantum
Diffie-Hellman protocol?
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Design problem: How to construct a post-quantum
Diffie-Hellman protocol?

Castryck-Lange-Martindale-Panny-Renes: ”CSIDH: An Efficient Post-Quantum Commutative
Group Action“. ASIACRYPT (3) 2018: 395-427
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Thanks

All pictures shown in this presentation were taken by the author in the
Botero Museum and the Museo de oro at Bogotá

Thanks are due to Dr. Jean-Luc Beuchat for designing several of the
animations of this presentation
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