
A Parallel Architecture for Fast Computation of Elliptic Curve Scalar
Multiplication over GF (2m)

Nazar A. Saqib, Francisco Rodrı́guez-Henriquez and Arturo Dı́az-Pérez
Computer Science Section, Electrical Engineering Department

Centro de Investigación y de Estudios Avanzados del IPN
Av. Instituto Politécnico Nacional No. 2508, México D.F.

nabbas@computacion.cs.cinvestav.mx
francisco,adiaz@cs.cinvestav.mx

Abstract

This paper presents a generic parallel architecture for
fast elliptic curve scalar multiplication over binary exten-
sion fields. We show how the parallel strategy followed in
this work leads to high performance designs. We also imple-
mented the proposed architecture on reconfigurable hard-
ware devices where the predicted expeditious performance
figures were actually obtained. The results achieved show
that our proposed design is able to compute GF (2191) el-
liptic curve scalar multiplication operations in 56.44 µSecs.

1 Introduction

On October 24, 2003, the US National Security Agency
(NSA) signed an agreement to purchase a license for us-
ing elliptic curve cryptography (ECC) systems as a standard
means of securing all its classified documents. The agency
plans to use a 512-bit key for the ECC system, which is the
equivalent of an RSA key of 15,360 bits. This is the first
time ever that the NSA has endorsed any sort of public-key
cryptography system. [3]

Elliptic Curve Cryptosystems (ECC) were first proposed
in 1985 independently by N. Koblitz [9] and V. Miller
[12]. Since then it has been consistently proved that ellip-
tic curves offer more security by key length than any other
major public key cryptosystem.

Although elliptic curves can be defined over real num-
bers, complex numbers, and any other field, from the cryp-
tographic point of view, we are only interested on elliptic
curves defined over finite fields. Indeed, since a quite long
time it has been known that when an non-singular elliptic
curve is defined over a finite field, the points on the curve
together with a point addition operation form an Abelian
group [9].

The most important operation for elliptic curve cryp-
tosystems is the so-called Scalar multiplication operation.
Let n be a positive integer and P a point on an elliptic curve.
Then the scalar multiple Q = nP is the point resulting of
adding n− 1 copies of P to itself. The security of the cryp-
tosystem relies on the discrete logarithm problem that can
be defined as follows,

Given two points Q and P that belong to the curve,
the problem to find a positive scalar such that the equa-
tion Q = nP holds, is referred as the discrete logarithm
problem in this group. Solving the discrete logarithm prob-
lem over elliptic curves is believed to be an extremely hard
mathematical problem, much harder than its analogous one
defined over finite fields of the same size.

Since ECC proposal in 1985, a vast amount of investi-
gation has been carried out in order to obtain efficient ECC
implementations [4]. Numerous fast implementations have
been reported in all of them, software [11, 7, 21], VLSI
[18, 19] and reconfigurable hardware [15, 20, 6, 5, 2] plat-
forms with variable time and space performance results.

In order to compute elliptic curve scalar multiplication,
the vast majority of the aforementioned designs use the
three-layer hierarchical strategy depicted in Figure 1. This
way, high performance implementations of elliptic curve
cryptography depend heavily on the efficiency in the com-
putation of the underlying finite field arithmetic operations
included in the first layer of the model.

On the other hand and as it will be shown in this paper,
each one of the three layers included in Figure 1 are suit-
able for being implemented using parallel or semi-parallel
approaches. Although parallel architectures can potentially
trade area in exchange of speed, to our knowledge, only in
[20, 2] authors have explicitly essayed a parallel strategy to
compute elliptic curve scalar multiplication.

In this paper we present a highly parallel architecture es-
pecially tailored to obtain an ultra fast implementation of

Scalar Multiplication
Q = k P

Point Doubling Q = 2 P
Point Addition R = P + Q

Multiplication, Squaring
Addition, Inversion

GF(2 m)
Arithmetic

Elliptic Curve
Operations

Figure 1. Three-Layer Model for Elliptic Curve
Scalar Multiplication

the elliptic curves scalar multiplication operation. Special
attention is devoted to the problem of finding efficient par-
allel architectures for the two upper layers of Figure 1. It
will be shown that standard Xilinx VirtexE 3200 devices
have enough resources to accommodate the realization of
the parallel architecture proposed here. We describe all
the implementation details of an architecture designed to
compute GF (2191) elliptic curve scalar multiplications in
56.44 µSecs. That constitutes a remarkable fast timing fig-
ure since to the best of our knowledge, before this work no
other design has reported timings figures under 100 µSecs
for computing elliptic curve point multiplications.

The rest of this paper is organized as follows. In section
§2 we describe parallel strategies for the implementations
of the second and third layers of Figure 1, i.e., point addi-
tion and point doubling operations based on the algorithm
devised by [11]. Section §3 describes an architectural de-
sign for the implementation of elliptic curve scalar multipli-
cation and parallel techniques for implementing finite field
arithmetic in GF(2191). FPGA’s implementation of elliptic
curve scalar multiplication and implementation results are
also presented in this section. Performance comparison is
made in section 4. Finally, in section §5 some conclusions
remarks as well as future work are drawn. References are
presented at the end.

2 Montgomery Point Multiplication

In this section we briefly discuss the algorithm used to
compute point addition and point doubling and ultimately
elliptic curve point multiplication. We follow the notation
given in [11].

2.1 The Montgomery Algorithm

Let P (x) be a degree-m polynomial, irreducible
over GF (2). Then P (x) generates the finite field
Fq = GF (2m) of characteristic two. A non-supersingular
elliptic curve E(Fq) is defined to be the set of points
(x, y) ∈ GF (2m) × GF (2m) that satisfy the affine equa-
tion,

y2 + xy = x3 + ax2 + b, (1)

Where a and b ∈ Fq, b �= 0, together with the point at
infinity denoted by 0.

Let P = (x1, y1) and Q = (x2, y2) be two points that
belong to the curve 1. Then P +Q = (x3, y3) and P −Q =
(x4, y4), also belong to the curve and it can be shown that
x3 is given as [7],

x3 = x4 +
x1

x1 + x2
+

(
x1

x1 + x2

)2

; (2)

Hence we only need the x coordinates of P , Q and P −Q to
exactly determine the value of the x-coordinate of the point
P + Q. Let the x coordinate of P be represented by X/Z.
Then, when the points 2P = (X2P , Y2P , Z2P) and P +
Q = (X3, Y3, Z3) are converted to projective coordinate
representation their coordinates can be computed as [11],

X2P = X4 + b · Z4;
Z2P = X2 · Z2;
Z3 = (X1 · Z2 + X2 · Z1)

2 ;
X3 = x · Z3 + (X1 · Z2) · (X2 · Z1);

(3)

Input: k = (kn−1, kn−2....., k1, k0)2 with kn−1 = 1,

P (x, y) ∈ E(F2m)

Output: Q = kP

1. Set X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2

2. For i from n− 2 downto 0 do

3. if (ki = 1) then

4. Madd(X1, Z1, X2, Z2), Mdouble(X2, Z2)

5. else

6. Madd(X2, Z2, X1, Z1), Mdouble(X1, Z1)

7. Return(Q = Mxy(X1, Z1, X2, Z2))

Figure 2. Montgomery point multiplication

The algorithm shown in Figure 2 computes elliptic point
multiplication over GF (2m) based on the formulae of equa-
tion 3 [7]. Its approximate running time is 6mM where M
represents a field multiplication operation. In the next sub-
section we discuss how to obtain an efficient parallel imple-
mentation of the above algorithm.

2.2 Point addition and point doubling

Let P (x, y) ∈ E(F2m) be a point defined on
the curve E, then the computation of point addition
Madd(X1, Z1,X2, Z2) can be obtained from the execution
of the sequence indicated in 4 that was directly obtained
from 3.

T2 = x
P = X1 × Z2

Q = Z1 × X2

R = P + Q
Z ′ = R2

M = P × Q
N = T2 × Z ′

X ′ = M + N

(4)

Thus, the point addition computation consists on 4 mul-
tiplications, 2 additions and only one squaring.

The computational complexity of Point doubling (Mdou-
ble) is simpler than the one of point addition. The following
equation is the sequence of instructions needed to compute
a single point doubling operation Mdouble(X,Y).

T1 = c
S = X2

2

T = Z2
2

Z3 = S × T
W = T × T1

U = W 2

V = S2

X3 = U + V

(5)

The algorithm consists of only 2 multiplications, 4 squar-
ings and one addition.

2.3 Montgomery point multiplication: A parallel
approach

As it was mentioned earlier in the introduction section,
parallel implementations of the three-layer architecture de-
picted in Figure 1 constitutes the main interest of this pa-
per. We will briefly discuss how to do so in the case of the
first layer in subsection §3.1. However, hardware resource
limitations restrict us from attempting a fully parallel im-
plementation of second and third layers. Thus, a compro-
mising strategy must be adopted to exploit parallelism at
second and third layers. Several options to do so are shown
in Table 1.

Table 1 presents four different options that we can possi-
bly follow in order to parallelize the algorithm of Figure 2.
As is customary, the computational costs shown in table 1
are normalized with respect to the required number of field
multiplication operations.

Table 1. GF (2m) Elliptic Curve Point Multipli-
cation Computational Costs

Strategy Required No. EC Operation Cost Total Number
2nd 3rd of Field Doubling Addition of Field
Layer Layer Multipliers Multiplications

S S 1 2M 4M 6mM
S P 2 2M 4M 4mM
P S 2 M 2M 3mM
P P 4 M 2M 2mM

Due to area restrictions we can afford to accommodate in
our design, up to two fully parallel field multipliers. Hence,
we have no option but to parallelize either the second or the
third layer but not both, meaning that the first and fourth
options are therefore out of the scope of this work. Both
second and third options seem to be feasible; however, third
option proves to be more attractive as it demonstrates better
timing performance at the same area cost as compared to the
second option. As it is indicated in the third row of Table 1,
the estimated computational cost of our elliptic curve Point
multiplication implementation will be of only 3m field mul-
tiplications.

In next section we discuss how this approach can be car-
ried out on hardware platforms.

3 Architectural design

In this section, a generic parallel architecture for com-
puting elliptic curve scalar multiplication on hardware plat-
forms is described. The proposed architecture is based on a
parallel-sequential approach of the Montgomery algorithm
of Figure 2, discussed in the previous section. That ap-
proach corresponds to the one outlined in the third row of
Table 1.

Figure 3 represents a generic architecture proposed for
elliptic curve scalar multiplication by implementing equa-
tion 5 and equation 4 in just three clock cycles.

MUL
GF(2 m)

MUL
GF(2 m)

T2=c
X 2
Z2

T1=x
X 1
Z1

--

T2=c
X 2
Z2

T1=x
X 1
Z1

--

S
5

S
3

SQR

S
3

SQR

S
6

S
2

SQR

S1

SQR

S
0

SQR

S
4

SQR

M1

M2

Figure 3. kP scalar multiplication

The parallel architecture shown in Figure 3 utilizes two
multipliers in GF(2m) together with two memory blocks
to retrieve and store operands. A two-port RAM is the
suggested configuration for the memory blocks. This con-
figuration makes possible to have two independent data
accesses simultaneously. Some combinational logic units
comprising squarers, XOR operators, multiplexers are lo-
cated before or after the two multipliers to perform pre or
post computations in order to achieve the required final out-
put.

Referring to the algorithm of Figure 2, each bit of
vector k is tested from left to right (in descending or-
der) where both of them, Madd and Mdouble opera-
tions are executed no matter if the test-bit is zero or
one. The difference lies in the order of the passed ar-
guments. if the test bit is ’1’ then Mdouble(X2, Z2)
and Madd(X1, Z1,X2, Z2) are performed. Otherwise
Mdouble(X1, Z1) and Madd(X2, Z2,X1, Z1) are com-
puted. Madd and Mdouble blocks are computed according
to Equations 5 and 4.

Table 2 demonstrates the algorithm flow to complete
both point addition and point doubling operations in three
normal clock cycles if test-bit is one. M1 and M2 are two
memory blocks and each block has two input ports PT1
and PT2. The notation is the same used in Equations 5 and
4. It must be noted that the modular product computed by
the multipliers is not always directly stored in the RAMs, as
some logical operations required by the algorithm need to
be performed. The same can be said with respect to the pa-
rameters extracted from RAMs into the multiplier’s inputs.

Table 2. kP computation, if test-bit is ’1’
Cycle Read Write

M1 M2 M1/M2
PT1 PT2 PT1 PT2 PT1 PT2

1 X1 Z2 Z1 X2 P Q
2 X2 Z2 Z2 T1 Z2=Z3 X2=X3

3 P Q Q T2 X1=X ′ Z1=Z′

If the test-bit is zero, then the order for the arguments
passed is reversed but the storage locations remain the same.
Table 3 details all the computational steps needed to execute
the operation in three normal cycles. The same notation
from Equations 5 and 4 was adopted.

The resultant vectors X1,Z1,X2,Z2, are therefore up-
dated for the next cycle. As it takes three cycles to complete
point addition and point doubling for one bit, 191×3×T is
the time taken for 191-bit test vector, where T is the allowed
time period.

The generic architecture of Figure 3 can be extended for
implementations of elliptic curve scalar multiplication on
hardware platforms like FPGAs, VLSI, with minor modifi-

Table 3. kP computation, if test-bit is ’0’
Cycle Read Write

M1 M2 M1/M2
PT1 PT2 PT1 PT2 PT1 PT2

1 X2 Z1 Z2 X1 P Q
2 X1 Z1 Z1 T1 Z1=Z3 X1=X3

3 P Q Q T2 X2=X ′ Z2=Z′

cations. In the rest of this section, it is explained how the
proposed architecture can be optimized for FPGA devices
to achieve high timing performances.

3.1 Finite Field Arithmetic

In this subsection we address the problem of how to im-
plement efficiently finite field operations in reconfigurable
hardware. In particular, we study how to implement two of
the blocks shown in Figure 3: field multiplication and field
squaring.

Let the field GF (2m) be constructed using the irre-
ducible polynomial P (x), of degree m, and let A,B be
two elements in GF (2m) given in the polynomial basis

as A =
m−1∑
i=0

aix
i and B =

m−1∑
i=0

bix
i, respectively, with

ai, bi ∈ GF (2).
By definition, the field product C′ ∈ GF (2m) of the

elements A,B ∈ GF (2m) is given as

C ′(x) = A(x)B(x) mod P (x). (6)

However, in the approach followed in this work, equation
(6) is computed in two steps: polynomial multiplication fol-
lowed by modular reduction.

Let A(x), B(x), C ′(x) ∈ GF (2m) and P (x) be the irre-
ducible polynomial generating GF (2m). In order to com-
pute (6) we first obtain the product polynomial C(x) of de-
gree at most 2m − 2, as

C(x) = A(x)B(x) = (
m−1∑
i=0

aix
i)(

m−1∑
i=0

bix
i) (7)

Then, in the second step, a reduction operation is performed
in order to obtain the m−1 degree polynomial C′(x), which
is defined as

C ′(x) = C(x)modP (x). (8)

In the rest of this subsection we show how to compute
equation (7) efficiently, considering two separate cases.
First, we describe an efficient method to compute poly-
nomial squaring, which is a particular case of polynomial
multiplication. Then, a practical reconfigurable hardware

implementation of Karatsuba-Ofman algorithm is briefly
analyzed as one of the most efficient techniques to find
the polynomial product of (7). Finally we discuss how to
implement in a highly efficient way the reduction step of
equation (8).

Squaring over GF (2m)

Polynomial squaring over GF (2) is a special case of
polynomial multiplication, generally considered a costly
operation in software. However in hardware platforms it
is free of cost as it can be implemented occupying almost
none hardware resource.

Let us assume that we have an element A given as A =
m−1∑
i=0

aix
i. Then the square of A is given as

C(x) = A(x)A(x) = A2(x)

= (
m−1∑
i=0

aix
i)(

m−1∑
i=0

aix
i)

=
m−1∑
i=0

aix
2i.

From the above equation, we immediately conclude that
the first k < m bits of A completely determine the first 2k
bits of A2. Notice also that half the bits of A2 (the odd ones)
are zeroes. This property happens to benefit hardware im-
plementations as computation for polynomial squaring can
be accomplished by just placing a zero value (connection
to ground) at each alternative position of the original bits as
shown in Figure 4. The implementation has a computational
complexity O(1), hence its cost can be neglected.

SQUARE REDUCTION

IN OUT

Figure 4. Squaring Circuit

Multiplication over GF (2m)

Several architectures have been reported for multiplica-
tion in GF (2m). For example, efficient bit-parallel mul-

tipliers for both canonical and normal basis representation
have been proposed in [8, 22, 13, 23, 2]. All these algo-
rithms exhibit a space complexity O(m2). However, there
are some asymptotically faster methods for finite field mul-
tiplications, such as the Karatsuba-Ofman algorithm [16].
Discovered in 1962, it was the first algorithm to accomplish
polynomial multiplication in under O(m2) operations [1].
Karatsuba-Ofman multipliers may result in fewer bit opera-
tions at the expense of some design restrictions, particularly
in the selection of the degree of the generating irreducible
polynomial m.

In this research work we utilized a variation of the classic
Karatsuba-Ofman Multiplier called binary Karatsuba mul-
tipliers that was first presented in [17]. Binary Karatsuba
multipliers can be efficiently utilized regardless the form of
the required degree m.

Let us consider the multiplication of two polynomials
A,B ∈ GF (2m) with m = rn = 2kn (n is an integer),
where A and B can be expressed as A = x

m
2 AH + AL and

B = x
m
2 BH + BL, then by using classical Karatsuba mul-

tiplier, the product of A and B can be expressed as:

C = AB = AHBHxm+
+(AHBH + ALBL + (AH + AL)(BH + BL))x

m
2 +

+ALBL

(9)

Three multiplications each one of 2
m
2 bits are therefore

used to compute C.
Let us consider now the case (relevant for elliptic curve

cryptography) where m is a prime, that can be expressed
as m = 2k + d, where d represents some leftover bits. One
could be tempted to use direct Karatsuba algorithm by pro-
moting m to 2k+1. However this approach will clearly
causes a wastage of extra arithmetic operations as all 2k −d
most significant bits are zeroes. Binary Karatsuba algorithm
strategy suggests not to promote 2k +d to 2k+1, but instead
perform multiplications separately for 2k and d where only
d is promoted to 2k′

where k′ is an integer [17].
As a design example, consider the binary Karatsuba mul-

tiplier shown in Figure 5. That circuit computes the polyno-
mial multiplication of the elements A and B ∈ GF (2191).
Notice that for this case m = 191 = 2k + d = 27 + 63.
We can do much better by assuming that the d = 63 most
significant leftover bits are 64.

Once the polynomial multiplication/squaring over
GF (2m) is completed, reduction must be performed as is
explained in the remaining part of this subsection

Reduction

Let A(x), B(x) ∈ GF (2m) with irreducible polynomial
P (x) and we assume that the computation of polynomial

MUL
2128

MUL
2128

MUL
264

XOR256

CONCATENATION

ALBL[255:0]
ALBL[127:0]AL[127:0]

BL[127:0]

AL[127:0]
AH[62:0]

BL[127:0]

BH[62:0]

U = (A L+A H)[127:0]

V = (B L+BH)[127:0]

AH[62:0]

BH[62:0]
AHBH[122:0]

(AH+A L)(BH+B L)[255:0]

 AHBH[122:0]A LBL[255:128]
M[252:0]

REDUCTION

O[380:0]
OP[190:0]

U

V

A LBL[255:128]

Figure 5. Karatsuba Multiplier

product C(x) has already been made by using any of the
two methods described in previous two subsections, then
the modular product C′ can be achieved by XOR operations
only. Recall that the polynomial product C and the modular
product C ′, have 2m − 1 and m, coordinates, respectively,
i.e.,

C = [c2m−2, c2m−3, . . . , cm+1, cm, . . . , c1, c0];
C ′ = [c′m−1, c

′
m−2, . . . , c′1, c

′
0].

(10)

Figure 6 shows how to implement on reconfigurable hard-
ware the reduction strategy for a general generating polyno-
mial P (x) = xm +xn +1. As it was mentioned before, the
reduction step involves XOR and overlap operations. No-
tice that if we assume that P (x) is a trinomial, then reduc-
tion becomes very economical as XOR operation fits well
in 4-input/1-output typical structures of FPGA devices.

 C L(m bits)
0m-1m2m-2

 CL(m bits)

0m-1

 C H(m-1 bits)

0m-2

 C H(m-1 bits)
n(m-2)-nk

k = (m-2)-[(m-2)-n)+1]
 = n-1 bits

CHH

CHH

CHH

 Result (m bits)
m-1

k

k

0

 C H(m-1 bits)

Figure 6. Reduction Diagram

Although the strategy shown in Figure 6 is completely
general, for the purposes of this research work we utilized
a fixed irreducible generating polynomial, namely, P (x) =
x191 + x9 + 1.

3.2 FPGA’s implementation of Elliptic Curve
Scalar Multiplication

For our FPGA implementation two 191-bit field multi-
pliers were used in combination with eight multiplexers and

six field squarer blocks. The design can be accommodated
in a VirtexE XCV3200 Xilinx device. The VirtexE fam-
ily of devices contains more than 280 fast access memory
modules BlockRams (BRAMs). A dual port BRAM can be
configured into two independent single port BRAMs. This
special feature was exploited in our design in order to store
and retrieve data from different memory locations irrespec-
tively of the input port utilized.

Two similar memory blocks each of 12 BRAMs were
used. It can be shown that only two BRAMs are sufficient,
since the combination of 12 BRAMs actually allows storing
and retrieving word lengths of 191 bits. The usage of those
12 BRAM helps to reduce the design complexity by saving
a lot of register and multiplexer operations.

As is shown in Figure 3, Two pairs of multiplicands
are read from the two BRAM blocks and multiplications
are then computed in parallel by using the two available
multipliers. Thus, six field multiplications (four for point
addition and two for point doubling) can be completed in
just three clock cycles. Since Read/Write operations for
BRAMs are executed within one normal clock cycle, two
separated clocks were designed. A master clock was used
for the BRAMs, and then that clock was divided by two to
serve as a second master clock for the rest of the design.

A control unit (CU) is designed to provide correct data
paths as described in Table 2 and Table 3. It generates se-
lect signals (si) for the multiplexers as well as addresses to
the BRAMs. The CU also testify each bit of the test vec-
tor k from left to right (in descending order) and then set
correct data paths for reading and writing to the BRAMs
before and after multiplication operation in a synchronized
way. The test-bit is verified at the rising edge of 3rd clock
cycle just after completing six multiplications for point ad-
dition and doubling, the data paths are ,therefore, set for the
next clock cycle to start EC operations without loosing any
cycle. The resultant vectors are up-dated at the completion
of EC operations for each bit of test vector k . The loop is
therefore executed 191 times to complete kP computations.

3.3 Implementation summary

All finite field arithmetic and then kP computational
architectures were implemented on VirtexE XCV3200 by
using Xilinx Foundation Tool F4.1i for design entry, syn-
thesis, testing, implementation and verification of results.
Table 4 represents timing performances and occupied re-
sources by the said architectures.

Elliptic curve point addition and point doubling do not
participate directly as a single computational unit in this de-
sign however parallel computations for both point addition
and point doubling are designed together as it was shown in
Figure 3. Both point addition and point doubling occupy
18300 (56.39 %) CLB slices and it takes 100.1ηs (9.99

Table 4. Summary of Implemented designs
Design Device CLB Timings

(XCV) slices

Binary Karatsuba 3200E 8721 43.1ηs
Multiplier GF (2191)
Point addition + 3200E 18300 300.3ηs
Point doubling
GF (2191)(Fig 3)
Point Multiplication 3200E 18314 56.44µs
GF (2191) 26 BRAMs

MHz) for one computational cycle. As it is earlier men-
tioned that three cycles are used for computing both point
addition and point doubling (six multiplications), 300.3ηs
is the total consumed time. Finally, point multiplication
is performed in 56.44µs which is m (m=191 for our case)
times the computational time for point addition and point
doubling. It costs 18314 (56%) CLB slices and 24 (11%)
BRAMs which act like registers for storing results and for
saving numerous multiplexer operations. Our Binary Karat-
suba Multiplier in GF (2191) occupies 8721 (26.87%)CLB
slices and one field multiplication is performed in 43.1ηs.

4 Comparison

Table 5 provides a quick comparison of the existing
FPGA’s implementations of elliptic curve scalar multipli-
cation over GF (2m). Table 5 sum-up the last three years
state of the art implementations, where most of the works
featured have been published this same year. The design
at [10] is a microcoded EC processor implemented on An-
napolis Microsytems Wildstar board. For this design, EC
multiplication is executed in 4.3ms, 8.3ms and 11.1ms for
GF(2113), GF(2155), and GF(2173) respectively. An effi-
cient VLSI EC processor at [18] supports EC scalar multi-
plication both in GF(p) and GF(2n). Achieved results for
a 160-bit EC scalar multiplication are 1.21ms and 0.19ms
for GF(p) and GF(2n) respectively. Another reconfigurable
system on chip ECC implementation is reported on a spe-
cial architecure AT94K40 from Atmel that integerates var-
ious components including an AVR 8-bit RISC microcon-
troller core, several peripherals and up to 36K Bytes SRAM
within a single chip. That design execute EC operation in
just 1.4ms. All other designs [14, 20, 6, 2] implements EC
scalar multiplication on a single chip FPGA. Among them
our design is well compared with the fastest design at [2]
showing an improvement of 79.26% in execution time. That
high performance is achieved not only because of the usage
of a relatively large FPGA target device, but also because
of efficient field multipliers optimized for critical paths. We
also investigated structural arrangements related to the com-

putation of point addition and point doubling according to
the block diagram shown in Figure 3.

The design presented in [18] can handle arbitrary fields
and elliptic curves without changing its hardware configura-
tion, while those parameters have been fixed in our imple-
mentation. However the design in [18] was implemented
on a traditional ASIC chip, where the flexibility for design
changes is quite limited or many times even inexistent. In
our approach on the other hand, taking advantage of the
reconfigurability feature of the platform selected, we pre-
ferred to optimize the performance of our design for a given
field while the possibility to reconfigure the design for other
parameters can still be instrumented.

Table 5. GF (2m) Elliptic Curve Point Multipli-
cation Hardware Performance Comparison

Reference Field Platform kP

[10] GF (2113) Annapolis Micro 4.3ms
GF (2155) Systems 8.3ms
GF (2173) Wildstar board 11.1ms

[18] GF (2160) 0.13µ CMOS 0.19ms
ASIC

[14] GF (2167) XCV400E 0.21ms
[20] GF (2191) XCV4000XL 11.82ms
[6] GF (2163) XCV2000E 0.143ms
[6] GF (2193) XCV2000E 0.187ms
[5] GF (2113) AT94K40 1.4ms
[2] GF (2191) XCV1000BG 0.27ms

This work GF (2191) XCV3200E 0.056ms

5 Conclusions

In this work, a parallel generic design strategy for elliptic
curve point multiplication is presented which can work effi-
ciently on hardware platforms, reconfigurables or not. The
architecture is then optimized for GF (2191) which results
an ultra fast elliptic curve point multiplication with a per-
formance time of just 56.44µs which is more than 3.4 times
faster than any other work reported in the literature. The
architecture targets Xilinx VirtexE XCV3200 FPGA device
and occupies 18314 CLB slices.

Although our design has specifically targeted the field
generated by the irreducible polynomial P (x) = x191 +
x9 + 1, all the machinery discussed in this paper has make
no assumption about the specific field targeted and hence,
can be easily adapted to accommodate other designs with
different field sizes.

As a whole, the architecture presents a promising ap-
proach for elliptic curve scalar multiplication which pro-
vides a balance between space and time. In fact, the rapid

growth of FPGA’s technology makes possible to accommo-
date parallel implementations of cryptographic algorithms
like elliptic curve scalar multiplication.

Future work includes further improvements in the design
performance by cutting the critical path in all three layers,
the implementation of other design strategies and compari-
son between them.

References

[1] E. Bach and J. Shallit. Algorithmic number theory, Volume I:
efficient algorithms. Kluwer Academic Publishers, Boston,
MA, 1996.

[2] M. Bednara, M. Daldrup, J. Shokrollahi, J. Teich, and
J. von zur Gathen. Reconfigurable implementation of el-
liptic curve crypto algorithms. In Proc. of The 9th Reconfig-
urable Architectures Workshop (RAW-02), Fort Lauderdale,
Florida, U.S.A., April 2002.

[3] Certicom. Certicom news. ”http://www.certicom.com/”, oc-
tober 2003.

[4] D. V. Chudnovsky and G. V. Chudnovsky. Sequences of
numbers generated by addition in formal groups and new
primality and factorization tests. Advances in Applied Math.,
7:385–434, 1986.

[5] M. Ernst, M. Jung, and F. M. et. al. A reconfigurable system
on chip implementation for elliptic curve cryptography over
GF (2n). Cryptographic Hardware and Embedded Systems
- CHES 2002, 4th International Workshop, Redwood Shores,
CA, USA, August 13-15, 2002, Revised Papers, 2523:381–
399, August 2003.

[6] N. Gura, S. Shantz, and H. E. et. al. An end-to-end sys-
tems approach to elliptic curve cryptography. Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th Inter-
national Workshop, Redwood Shores, CA, USA, August 13-
15, 2002, Revised Papers, 2523:349–365, August 2003.

[7] D. Hankerson, J. Lopez-Hernandez, and A. Menezes. Soft-
ware implementation of elliptic curve cryptography over bi-
nary fields. Cryptographic Hardware and Embedded Sys-
tems - CHES 2000, Second International Workshop, Worces-
ter, MA, USA, August 17-18, 2000, Proceedings, 1965:1–24,
August 2000.

[8] M. A. Hasan, M. Z. Wang, and V. K. Bhargava. A mod-
ified Massey-Omura parallel multiplier for a class of fi-
nite fields. IEEE Transactions on Computers, 42(10):1278–
1280, November 1993.

[9] N. Koblitz. Elliptic curve cryptosystems. Mathematics of
Computation, 48(177):203–209, January 1987.

[10] P. H. Leong and I. K. Leung. A microcoded elliptic curve
processor using fpga technology. IEEE Transactions on
VLSI Systems, 10(5):550–559, October 2002.

[11] J. Lopez and R. Dahab. Fast multiplication on elliptic
curves over GF (2m) without precomputation. Crypto-
graphic Hardware and Embedded Systems, First Interna-
tional Workshop, CHES’99, Worcester, MA, USA, August
12-13, 1999, Proceedings, 1717:316–327, August 1999.

[12] V. Miller. Uses of elliptic curves in cryptography. In H. C.
Williams (editor) Advances in Cryptology — CRYPTO 85

Proceedings Lecture Notes in Computer Science, 218:417–
426, January 1985.

[13] M. Morii, M. Kasahara, and D. L. Whiting. Efficient
bit-serial multiplication and the discrete-time Wiener-Hopf
equation over finite fields. IEEE Transactions on Informa-
tion Theory, 35(6):1177–1183, 1989.

[14] G. Orlando and C. Paar. A high-performance reconfigurable
elliptic curve processor for GF (2m). Cryptographic Hard-
ware and Embedded Systems - CHES 2000, Second Interna-
tional Workshop, Worcester, MA, USA, August 17-18, 2000,
Proceedings, 1965:41–56, August 2000.

[15] G. Orlando and C. Paar. A scalable GF (p) elliptic curve
processor architecture for programmable hardware. Cryp-
tographic Hardware and Embedded Systems - CHES 2001,
Third International Workshop, Paris, France, May 14-16,
2001, Proceedings, 2162:348–363, May 2001.

[16] C. Paar. A new architecture for a paralel finite field multi-
plier with low complexity based on composite fields. IEEE
Transactions on Computers, 45(7):856–861, July 1996.

[17] F. Rodrı́guez-Henrı́quez and Ç. K. Koç. On fully parallel
karatsuba multipliers for GF (2m). In International Con-
ference on Computer Science and Technology (CST 2003),
Cancun, Mexico, May 2003.

[18] A. Satoh and K. Takano. A scalable dual-field elliptic curve
cryptographic processor. IEEE Transactions on Computers,
52(4):449–460, April 2003.

[19] R. Schroeppel, C. Beaver, R. Gonzales, R. Miller, and
T. Draelos. A low-power design for an elliptic curve dig-
ital signature chip. Cryptographic Hardware and Embedded
Systems - CHES 2002, 4th International Workshop, Red-
wood Shores, CA, USA, August 13-15, 2002, Revised Pa-
pers, 2523:366–380, August 2003.

[20] N. Smart. The hessian form of an elliptic curve. Crypto-
graphic Hardware and Embedded Systems - CHES 2001,
Third International Workshop, Paris, France, May 14-16,
2001, Proceedings, 2162:118–125, May 2001.

[21] N. Smart and E. Westwood. Point multiplication on ordi-
nary elliptic curves over fields of characteristic three. Ap-
plicable Algebra in Engineering, Communication and Com-
puting, 13:485–497, 2003.

[22] B. Sunar and Ç. K. Koç. Mastrovito multiplier for all tri-
nomials. IEEE Transactions on Computers, 48(5):522–527,
May 1999.

[23] H. Wu and M. A. Hasan. Low complexity bit-parallel mul-
tipliers for a class of finite fields. IEEE Transactions on
Computers, 47(8):883–887, August 1998.

