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Computing degree-` isogenies using Vélu’s formulas

KPS(≈ 3`) xISOG(≈ `)

xEVAL(≈ 2`)

point P
of order `

Point Q 6∈ 〈P 〉

Constants of
domain curve
E Constants of

co-domain curve E′

φ(Q), image of
point Q over E′

For decades now, Vélu’s formulae have been widely used to construct and
evaluate degree-` isogenies, using three main blocks,

I KPS [Sort of a pre-computation building block. Cost: ≈ (3`)M]
I xISOG [Finds the image curve. Cost: ≈ (`)M]
I xEVAL [Evaluate a point. Cost: ≈ (2`)M]
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Computing degree-` isogenies using
√

élu’s formulas

Recently, Bernstein, de Feo, Leroux and Smith presented in ANTS’2020 a
new approach for computing degree-` isogenies at a reduced cost of just
Õ(
√
`) field operations.

This improvement was obtained by observing that the polynomial product
embedded in the isogeny computations could be speedup via a baby-step
giant-step method
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Our implementation of
√

élu

The most demanding operations of
√

élu requires computing four different
resultants of the form ResZ (f (Z ), g(Z )) of two polynomials f , g ∈ Fq[Z ].

Those four resultants are computed using a remainder tree approach
supported by carefully tailored Karatsuba polynomial multiplications

In practice, the computational cost of computing degree-` isogenies using√
élu, is close to K (

√
`)log2 3 field operations, with K a constant.

√
élu is easily parallelizable. A two-core implementation can compute the

four resultants in parallel, yielding an expected extra saving of around 35%.

Full details are available at: https://eprint.iacr.org/2020/1109.
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élu requires computing four different
resultants of the form ResZ (f (Z ), g(Z )) of two polynomials f , g ∈ Fq[Z ].

Those four resultants are computed using a remainder tree approach
supported by carefully tailored Karatsuba polynomial multiplications

In practice, the computational cost of computing degree-` isogenies using√
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élu is easily parallelizable. A two-core implementation can compute the

four resultants in parallel, yielding an expected extra saving of around 35%.

Full details are available at: https://eprint.iacr.org/2020/1109.
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Cost model for computing degree-` isogenies using
√

élu
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Computing a degree-` isogeny. Let b =
√
`−1
2

.

Expected Cost(b) = 4

(
9blog2(3)

(
1− 2

(
2

3

)log2(b)+1
)

+ 2b log2(b)

)

+ 3

((
1−

1

3log2(b)+1

)
blog2(3)

)
+ 37b + 3 log2(b) + 16

≈ 39 · blog2(3)

This approximation is a lower bound
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Skylake Clock cycle timings for several key exchange
isogeny-based protocols

Implementation Protocol Instantiation Mcycles

SIKE [NIST alternative candidate] SIKEp434 22

Castryck et al. [Original CSIDH] CSIDH-512 unprotected 4 × 155

Bernstein et al. [Original
√

élu]
CSIDH-512 unprotected 4 × 153

CSIDH-1024 unprotected 4 × 760

Cervantes-Vázquez et al. [LC’19 CSIDH imp] CSIDH-512 4 × 238

Chi-Doḿınguez et al. [CSIDH with strategies] CSIDH-512 4 × 230

Hutchinson et al. [CSIDH with strategies] CSIDH-512 4 × 229

This work (estimated)
CSIDH-512 4 × 223

B-SIDH-p253 119

Table: Skylake Clock cycle timings for a key exchange protocol for different
instantiations of the SIDH, CSIDH, and B-SIDH protocols.
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