On the $\sqrt{ }$ élu's formulae and its applications to CSIDH and B-SIDH constant-time implementations

Gora Adj, Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez

Universitat de Lleida

Ches Rump Session, September.15.2020

Computing degree- ℓ isogenies using Vélu's formulas

- For decades now, Vélu's formulae have been widely used to construct and evaluate degree- ℓ isogenies, using three main blocks,
- KPS [Sort of a pre-computation building block. Cost: $\approx(3 \ell) \mathrm{M}]$
- xISOG [Finds the image curve. Cost: $\approx(\ell) \mathrm{M}]$
- xEVAL [Evaluate a point. Cost: $\approx(2 \ell) \mathrm{M}$]

Computing degree- ℓ isogenies using $\sqrt{ }$ élu's formulas

- Recently, Bernstein, de Feo, Leroux and Smith presented in ANTS'2020 a new approach for computing degree- ℓ isogenies at a reduced cost of just $\tilde{O}(\sqrt{\ell})$ field operations.
- This improvement was obtained by observing that the polynomial product embedded in the isogeny computations could be speedup via a baby-step giant-step method

Our implementation of $\sqrt{ }$ élu

- The most demanding operations of $\sqrt{ }$ élu requires computing four different resultants of the form $\operatorname{Res}_{z}(f(Z), g(Z))$ of two polynomials $f, g \in \mathbb{F}_{q}[Z]$.

Our implementation of $\sqrt{ }$ élu

- The most demanding operations of $\sqrt{ }$ élu requires computing four different resultants of the form $\operatorname{Res}_{z}(f(Z), g(Z))$ of two polynomials $f, g \in \mathbb{F}_{q}[Z]$.
- Those four resultants are computed using a remainder tree approach supported by carefully tailored Karatsuba polynomial multiplications

Our implementation of $\sqrt{ }$ élu

- The most demanding operations of $\sqrt{ }$ élu requires computing four different resultants of the form $\operatorname{Res}_{z}(f(Z), g(Z))$ of two polynomials $f, g \in \mathbb{F}_{q}[Z]$.
- Those four resultants are computed using a remainder tree approach supported by carefully tailored Karatsuba polynomial multiplications
- In practice, the computational cost of computing degree- ℓ isogenies using $\sqrt{ }$ élu, is close to $K(\sqrt{\ell})^{\log _{2} 3}$ field operations, with K a constant.

Our implementation of $\sqrt{ }$ élu

- The most demanding operations of $\sqrt{ }$ élu requires computing four different resultants of the form $\operatorname{Res}_{Z}(f(Z), g(Z))$ of two polynomials $f, g \in \mathbb{F}_{q}[Z]$.
- Those four resultants are computed using a remainder tree approach supported by carefully tailored Karatsuba polynomial multiplications
- In practice, the computational cost of computing degree- ℓ isogenies using $\sqrt{ }$ élu, is close to $K(\sqrt{\ell})^{\log _{2} 3}$ field operations, with K a constant.
- Vélu is easily parallelizable. A two-core implementation can compute the four resultants in parallel, yielding an expected extra saving of around 35%.

Our implementation of $\sqrt{ }$ élu

- The most demanding operations of $\sqrt{ }$ élu requires computing four different resultants of the form $\operatorname{Res}_{Z}(f(Z), g(Z))$ of two polynomials $f, g \in \mathbb{F}_{q}[Z]$.
- Those four resultants are computed using a remainder tree approach supported by carefully tailored Karatsuba polynomial multiplications
- In practice, the computational cost of computing degree- ℓ isogenies using $\sqrt{ }$ élu, is close to $K(\sqrt{\ell})^{\log _{2} 3}$ field operations, with K a constant.
- Vélu is easily parallelizable. A two-core implementation can compute the four resultants in parallel, yielding an expected extra saving of around 35%.
- Full details are available at: https://eprint.iacr.org/2020/1109.

Cost model for computing degree- ℓ isogenies using $\sqrt{ }$ élu

Computing a degree- ℓ isogeny. Let $b=\frac{\sqrt{\ell-1}}{2}$.

$$
\begin{aligned}
& \text { Expected } \operatorname{Cost}(b)=4\left(9 b^{\log _{2}(3)}\left(1-2\left(\frac{2}{3}\right)^{\log _{2}(b)+1}\right)+2 b \log _{2}(b)\right) \\
& +3\left(\left(1-\frac{1}{3^{\log _{2}(b)+1}}\right) b^{\log _{2}(3)}\right)+37 b+3 \log _{2}(b)+16 \\
& \approx 39 \cdot b^{\log _{2}(3)}
\end{aligned}
$$

Skylake Clock cycle timings for several key exchange isogeny-based protocols

Implementation	Protocol Instantiation	Mcycles
SIKE [NIST alternative candidate]	SIKEp434	22
Castryck et al. [Original CSIDH]	CSIDH-512 unprotected	4×155
Bernstein et al. [Original Vélu]	CSIDH-512 unprotected	4×153
CSIDH-1024 unprotected	4×760	
Cervantes-Vázquez et al. [LC'19 CSIDH imp]	CSIDH-512	4×238
Chi-Domínguez et al. [CSIDH with strategies]	CSIDH-512	4×230
Hutchinson et al. [CSIDH with strategies]	CSIDH-512	4×229
This work (estimated)	CSIDH-512	4×223

Table: Skylake Clock cycle timings for a key exchange protocol for different instantiations of the SIDH, CSIDH, and B-SIDH protocols.

