On the $\sqrt{\text{élu's formulae and its applications to CSIDH}}$ and B-SIDH constant-time implementations

Gora Adj, Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez

Ches Rump Session, September.15.2020

Computing degree- ℓ isogenies using Vélu's formulas

• For decades now, Vélu's formulae have been widely used to construct and evaluate degree-ℓ isogenies, using three main blocks,

- ▶ KPS [Sort of a pre-computation building block. Cost: $\approx (3\ell)M$]
- ▶ xISOG [Finds the image curve. Cost: $\approx (\ell)M$]
- xEVAL [Evaluate a point. Cost: $\approx (2\ell)M$]

4 AR & 4 E & 4 E &

Computing degree- ℓ isogenies using $\sqrt{elu's}$ formulas

- Recently, Bernstein, de Feo, Leroux and Smith presented in ANTS'2020 a new approach for computing degree- ℓ isogenies at a reduced cost of just $\tilde{O}(\sqrt{\ell})$ field operations.
- This improvement was obtained by observing that the polynomial product embedded in the isogeny computations could be speedup via a baby-step giant-step method

 The most demanding operations of Îlu requires computing four different resultants of the form Res_Z(f(Z), g(Z)) of two polynomials f, g ∈ F_q[Z].

- The most demanding operations of Îlu requires computing four different resultants of the form Res_Z(f(Z), g(Z)) of two polynomials f, g ∈ F_q[Z].
- Those four resultants are computed using a remainder tree approach supported by carefully tailored Karatsuba polynomial multiplications

- The most demanding operations of Îlu requires computing four different resultants of the form Res_Z(f(Z), g(Z)) of two polynomials f, g ∈ F_q[Z].
- Those four resultants are computed using a remainder tree approach supported by carefully tailored Karatsuba polynomial multiplications
- In practice, the computational cost of computing degree- ℓ isogenies using $\sqrt{\ell}$ (u, is close to $K(\sqrt{\ell})^{\log_2 3}$ field operations, with K a constant.

- The most demanding operations of Îlu requires computing four different resultants of the form Res_Z(f(Z), g(Z)) of two polynomials f, g ∈ F_q[Z].
- Those four resultants are computed using a remainder tree approach supported by carefully tailored Karatsuba polynomial multiplications
- In practice, the computational cost of computing degree- ℓ isogenies using $\sqrt{\ell}$ (u, is close to $K(\sqrt{\ell})^{\log_2 3}$ field operations, with K a constant.
- Îlu is easily parallelizable. A two-core implementation can compute the four resultants in parallel, yielding an expected extra saving of around 35%.

- The most demanding operations of Îlu requires computing four different resultants of the form Res_Z(f(Z), g(Z)) of two polynomials f, g ∈ F_q[Z].
- Those four resultants are computed using a remainder tree approach supported by carefully tailored Karatsuba polynomial multiplications
- In practice, the computational cost of computing degree- ℓ isogenies using $\sqrt{\ell}$ (u, is close to $K(\sqrt{\ell})^{\log_2 3}$ field operations, with K a constant.
- Îlu is easily parallelizable. A two-core implementation can compute the four resultants in parallel, yielding an expected extra saving of around 35%.
- Full details are available at: https://eprint.iacr.org/2020/1109.

Cost model for computing degree- ℓ isogenies using $\sqrt{4}$

This approximation is a lower bound

Skylake Clock cycle timings for several key exchange isogeny-based protocols

Implementation	Protocol Instantiation	Mcycles
SIKE [NIST alternative candidate]	SIKEp434	22
Castryck et al. [Original CSIDH]	CSIDH-512 unprotected	4 × 155
Bernstein <i>et al.</i> [Original Îlu]	CSIDH-512 unprotected	4 × 153
	CSIDH-1024 unprotected	4 × 760
Cervantes-Vázquez et al. [LC'19 CSIDH imp]	CSIDH-512	4 × 238
Chi-Domínguez et al. [CSIDH with strategies]	CSIDH-512	4 × 230
Hutchinson et al. [CSIDH with strategies]	CSIDH-512	4 × 229
	CSIDH-512	4 × 223
This work (estimated)	B-SIDH-p253	119

Table: Skylake Clock cycle timings for a key exchange protocol for different instantiations of the SIDH, CSIDH, and B-SIDH protocols.