
1/34

Side-Channel Protections for CSIDH

Francisco Rodŕıguez-Henŕıquez.

Joint work with:
Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier

Chi-Doḿınguez, Luca De Feo and Benjamin Smith

October 9, 2019

2/34

Timeline of CSIDH
1996

Before CSIDH (ordinary curves):CRS scheme

• Couveignes first unpublished ideas;

2/34

Timeline of CSIDH
2006

Before CSIDH (ordinary curves):CRS scheme

• Rostovtsev and Stolbunov [Rostovtsev and Stolbunov, 2006];

• Couveignes [Couveignes, 2006];

• Stolbunov [Stolbunov, 2010];

• Childs, Jao and Soukharev [Childs et al., 2010];

• De Feo, Kieffer, and Smith [De Feo et al., 2018];

2/34

Timeline of CSIDH
2006

Before CSIDH (ordinary curves):CRS scheme

• Rostovtsev and Stolbunov [Rostovtsev and Stolbunov, 2006];

• Couveignes [Couveignes, 2006];

• Stolbunov [Stolbunov, 2010];

• Childs, Jao and Soukharev [Childs et al., 2010];

• De Feo, Kieffer, and Smith [De Feo et al., 2018];

2/34

Timeline of CSIDH
2010

Before CSIDH (ordinary curves):CRS scheme

• Rostovtsev and Stolbunov [Rostovtsev and Stolbunov, 2006];

• Couveignes [Couveignes, 2006];

• Stolbunov [Stolbunov, 2010];

• Childs, Jao and Soukharev [Childs et al., 2010];

• De Feo, Kieffer, and Smith [De Feo et al., 2018];

2/34

Timeline of CSIDH
2018

Before CSIDH (ordinary curves):CRS scheme

• Rostovtsev and Stolbunov [Rostovtsev and Stolbunov, 2006];

• Couveignes [Couveignes, 2006];

• Stolbunov [Stolbunov, 2010];

• Childs, Jao and Soukharev [Childs et al., 2010];

• De Feo, Kieffer, and Smith [De Feo et al., 2018];

2/34

Timeline of CSIDH
2018

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes proposed
CSIDH [Castryck et al., 2018];

• August: Meyer and Reith [Meyer and Reith, 2018];

• Constant-time implementations:

• August’18: Jalali et al. [Jalali et al., 2019];
• October’18: Bernstein, Lange, Martindale, and

Panny [Bernstein et al., 2019];
• December’18: Meyer, Campos, and Reith [Meyer et al., 2019];
• April’19: Onuki, Aikawa, Yamazaki, and Takagi [Onuki et al., 2019];
• July’19: Cervantes-Vázquez, Chenu, Chi-Doḿınguez, de Feo, RH

and Smith [Cervantes-Vázquez et al., 2019]
• October’19: Hutchinson, LeGrow, Koziel and

Azarderakhsh [Hutchinson et al., 2019]

2/34

Timeline of CSIDH
2018

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes proposed
CSIDH [Castryck et al., 2018];

• August: Meyer and Reith [Meyer and Reith, 2018];

• Constant-time implementations:

• August’18: Jalali et al. [Jalali et al., 2019];
• October’18: Bernstein, Lange, Martindale, and

Panny [Bernstein et al., 2019];
• December’18: Meyer, Campos, and Reith [Meyer et al., 2019];
• April’19: Onuki, Aikawa, Yamazaki, and Takagi [Onuki et al., 2019];
• July’19: Cervantes-Vázquez, Chenu, Chi-Doḿınguez, de Feo, RH

and Smith [Cervantes-Vázquez et al., 2019]
• October’19: Hutchinson, LeGrow, Koziel and

Azarderakhsh [Hutchinson et al., 2019]

2/34

Timeline of CSIDH
2018

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes proposed
CSIDH [Castryck et al., 2018];

• August: Meyer and Reith [Meyer and Reith, 2018];

• Constant-time implementations:

• August’18: Jalali et al. [Jalali et al., 2019];
• October’18: Bernstein, Lange, Martindale, and

Panny [Bernstein et al., 2019];
• December’18: Meyer, Campos, and Reith [Meyer et al., 2019];
• April’19: Onuki, Aikawa, Yamazaki, and Takagi [Onuki et al., 2019];
• July’19: Cervantes-Vázquez, Chenu, Chi-Doḿınguez, de Feo, RH

and Smith [Cervantes-Vázquez et al., 2019]
• October’19: Hutchinson, LeGrow, Koziel and

Azarderakhsh [Hutchinson et al., 2019]

2/34

Timeline of CSIDH
2018

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes proposed
CSIDH [Castryck et al., 2018];

• August: Meyer and Reith [Meyer and Reith, 2018];

• Constant-time implementations:
• August’18: Jalali et al. [Jalali et al., 2019];

• October’18: Bernstein, Lange, Martindale, and
Panny [Bernstein et al., 2019];

• December’18: Meyer, Campos, and Reith [Meyer et al., 2019];
• April’19: Onuki, Aikawa, Yamazaki, and Takagi [Onuki et al., 2019];
• July’19: Cervantes-Vázquez, Chenu, Chi-Doḿınguez, de Feo, RH

and Smith [Cervantes-Vázquez et al., 2019]
• October’19: Hutchinson, LeGrow, Koziel and

Azarderakhsh [Hutchinson et al., 2019]

2/34

Timeline of CSIDH
2018

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes proposed
CSIDH [Castryck et al., 2018];

• August: Meyer and Reith [Meyer and Reith, 2018];

• Constant-time implementations:
• August’18: Jalali et al. [Jalali et al., 2019];
• October’18: Bernstein, Lange, Martindale, and

Panny [Bernstein et al., 2019];

• December’18: Meyer, Campos, and Reith [Meyer et al., 2019];
• April’19: Onuki, Aikawa, Yamazaki, and Takagi [Onuki et al., 2019];
• July’19: Cervantes-Vázquez, Chenu, Chi-Doḿınguez, de Feo, RH

and Smith [Cervantes-Vázquez et al., 2019]
• October’19: Hutchinson, LeGrow, Koziel and

Azarderakhsh [Hutchinson et al., 2019]

2/34

Timeline of CSIDH
2018

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes proposed
CSIDH [Castryck et al., 2018];

• August: Meyer and Reith [Meyer and Reith, 2018];

• Constant-time implementations:
• August’18: Jalali et al. [Jalali et al., 2019];
• October’18: Bernstein, Lange, Martindale, and

Panny [Bernstein et al., 2019];
• December’18: Meyer, Campos, and Reith [Meyer et al., 2019];

• April’19: Onuki, Aikawa, Yamazaki, and Takagi [Onuki et al., 2019];
• July’19: Cervantes-Vázquez, Chenu, Chi-Doḿınguez, de Feo, RH

and Smith [Cervantes-Vázquez et al., 2019]
• October’19: Hutchinson, LeGrow, Koziel and

Azarderakhsh [Hutchinson et al., 2019]

2/34

Timeline of CSIDH
2019

April

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes proposed
CSIDH [Castryck et al., 2018];

• August: Meyer and Reith [Meyer and Reith, 2018];

• Constant-time implementations:
• August’18: Jalali et al. [Jalali et al., 2019];
• October’18: Bernstein, Lange, Martindale, and

Panny [Bernstein et al., 2019];
• December’18: Meyer, Campos, and Reith [Meyer et al., 2019];
• April’19: Onuki, Aikawa, Yamazaki, and Takagi [Onuki et al., 2019];

• July’19: Cervantes-Vázquez, Chenu, Chi-Doḿınguez, de Feo, RH
and Smith [Cervantes-Vázquez et al., 2019]

• October’19: Hutchinson, LeGrow, Koziel and
Azarderakhsh [Hutchinson et al., 2019]

2/34

Timeline of CSIDH
2019

July

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes proposed
CSIDH [Castryck et al., 2018];

• August: Meyer and Reith [Meyer and Reith, 2018];

• Constant-time implementations:
• August’18: Jalali et al. [Jalali et al., 2019];
• October’18: Bernstein, Lange, Martindale, and

Panny [Bernstein et al., 2019];
• December’18: Meyer, Campos, and Reith [Meyer et al., 2019];
• April’19: Onuki, Aikawa, Yamazaki, and Takagi [Onuki et al., 2019];
• July’19: Cervantes-Vázquez, Chenu, Chi-Doḿınguez, de Feo, RH

and Smith [Cervantes-Vázquez et al., 2019]

• October’19: Hutchinson, LeGrow, Koziel and
Azarderakhsh [Hutchinson et al., 2019]

2/34

Timeline of CSIDH
2019

October

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes proposed
CSIDH [Castryck et al., 2018];

• August: Meyer and Reith [Meyer and Reith, 2018];

• Constant-time implementations:
• August’18: Jalali et al. [Jalali et al., 2019];
• October’18: Bernstein, Lange, Martindale, and

Panny [Bernstein et al., 2019];
• December’18: Meyer, Campos, and Reith [Meyer et al., 2019];
• April’19: Onuki, Aikawa, Yamazaki, and Takagi [Onuki et al., 2019];
• July’19: Cervantes-Vázquez, Chenu, Chi-Doḿınguez, de Feo, RH

and Smith [Cervantes-Vázquez et al., 2019]
• October’19: Hutchinson, LeGrow, Koziel and

Azarderakhsh [Hutchinson et al., 2019]

3/34

CSIDH overview

The action a ∗ EA defines a path
on the isogeny graph over Fp, and
is determined by an integer vector
(e1, . . . , en) ∈ J−m,mKn:

1) Nodes are supersingular elliptic
curves over Fp in Montgomery
form;

2) Edges are degree-`i isogenies.

Two types of edges: isogeny
with kernel generated by

2.a) (x , y) ∈ EA[`i , π − 1], or
2.b) (x , iy) ∈ EA[`i , π + 1].

Here, x , y ∈ Fp, π : (X ,Y) 7→
(X p,Y p) is the Frobenius map, i =√
−1 and thus ip = −i .

Figure 1: Isogeny graph over Fp with
p = 4 · (5 · 13 · 61) − 1. Nodes are
supersingular curves and edges marked
with orange, green , and violet inks
denote isogenies of degree 5, 13 and
61, respectively.

3/34

CSIDH overview

The action a ∗ EA defines a path
on the isogeny graph over Fp, and
is determined by an integer vector
(e1, . . . , en) ∈ J−m,mKn:

1) Nodes are supersingular elliptic
curves over Fp in Montgomery
form;

2) Edges are degree-`i isogenies.
Two types of edges: isogeny
with kernel generated by

2.a) (x , y) ∈ EA[`i , π − 1], or
2.b) (x , iy) ∈ EA[`i , π + 1].

Here, x , y ∈ Fp, π : (X ,Y) 7→
(X p,Y p) is the Frobenius map, i =√
−1 and thus ip = −i .

Figure 1: Isogeny graph over Fp with
p = 4 · (5 · 13 · 61) − 1. Nodes are
supersingular curves and edges marked
with orange, green , and violet inks
denote isogenies of degree 5, 13 and
61, respectively.

4/34

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer vector

(−1, 2, 1) ∈ J−2, 2K3:

E0

4/34

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer vector

(−1, 2, 1) ∈ J−2, 2K3:

E0→E0x3A7D

4/34

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer vector

(−1, 2, 1) ∈ J−2, 2K3:

E0→E0x3A7D→E0x2BF7

4/34

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer vector

(−1, 2, 1) ∈ J−2, 2K3:

E0→E0x3A7D→E0x2BF7→E0x1404

4/34

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer vector

(−1, 2, 1) ∈ J−2, 2K3:

E0→E0x3A7D→E0x2BF7→E0x1404→E0x5EB

4/34

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. In general, the

action evaluation is commutative. Secret integer vector (−1, 2, 1) ∈ J−2, 2K3:

E0→E0x7A0→E0x8EC→E0x25B3→E0x5EB

4/34

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer vector

(1,−2,−1) ∈ J−2, 2K3 has inverse (−1, 2, 1) ∈ J−2, 2K3:

E0x5EB→E0x1D50→E0x8EC→E0x56D→E0

4/34

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer vector

(1,−2,−1) ∈ J−2, 2K3 has inverse (−1, 2, 1) ∈ J−2, 2K3:

E0x5EB→E0x1D50→E0x8EC→E0x56D→E0

4/34

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer vector

(1,−2,−1) ∈ J−2, 2K3 has inverse (−1, 2, 1) ∈ J−2, 2K3:

E0x5EB→E0x1D50→E0x8EC→E0x56D→E0

4/34

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer vector

(1,−2,−1) ∈ J−2, 2K3 has inverse (−1, 2, 1) ∈ J−2, 2K3:

E0x5EB→E0x1D50→E0x8EC→E0x56D→E0

5/34

CSIDH overview

CSIDH framework [Castryck et al., 2018].
Parameters:

• Small odd primes numbers `i such that p = 4
∏n

i=1 `i − 1 is a prime
number.
Note: The original CSIDH article [Castryck et al., 2018] defined a
511-bit p with `1, . . . , `n−1 the first 73 odd primes, and `n = 587.

• A supersingular elliptic curve in Montgomery form
EA/Fp : y 2 = x3 + Ax2 + x with #E(Fp) = p + 1;

General description CSIDH:

The shared secret key is (a · b) ∗ EA.

The security is given by the hardness of
computing a (or b) given the data colored
in red ink.

EA a ∗ EA

b ∗ EA (a · b) ∗ EA

a

b b

a∗E
A

b∗E
A

a

Each `i is required ei times for evaluating the action a ∗ EA (similarly for
b ∗ EA). Formally, this is written as a = le1

1 · · · l
en
n .

5/34

CSIDH overview

CSIDH framework [Castryck et al., 2018].
Public/private keys:

• Alice private key: The set of small integer exponents {e1, e1, . . . , en}, with
ei ∈ [−m,m], Alice public key: a ∗ EA

• Bob private key: The set of small integer exponents {f1, f1, . . . , fn}, with
fi ∈ [−m,m], Bob public key: b ∗ EA

Note: The private key space size is (2m + 1)n. Choosing m = 5 implies,
(2 · 5 + 1)74 ≈ 2256.

General description CSIDH:

The shared secret key is (a · b) ∗ EA.

The security is given by the hardness of
computing a (or b) given the data colored
in red ink.

EA a ∗ EA

b ∗ EA (a · b) ∗ EA

a

b b

a∗E
A

b∗E
A

a

Each `i is required ei times for evaluating the action a ∗ EA (similarly for
b ∗ EA). Formally, this is written as a = le1

1 · · · l
en
n .

6/34

CSIDH overview

CSIDH Hard problem [Castryck et al., 2018]:
Given two supersingular elliptic curves E ,E ′ defined over Fp with the same Fp-
rational endomorphism ring, find an ideal a such that, a ∗ E = E ′.

• Classical security:

• Brute force: The private key space size is
(2m + 1)n = (2 · 5 + 1)74 ≈ 2256.

• Meet-in-the-middle: It has an associated complexity of
O(p1/4) [Adj et al., 2019]

• Quantum security:

• Grover and claw finding: [Idealized] associated time complexity of
O(p1/6)

• Abelian hidden-shift problem: Estimated in 240 quantum operations
on a quantum computer of 240 qubits to compute a single evaluation
of the Kuperberg or Regev oracle with failure probability less than
2−32.[Bernstein et al., 2019]
Note: This claim is currently under dispute.
See [Peikert, 2019, Bonnetain and Schrottenloher, 2018]

6/34

CSIDH overview

CSIDH Hard problem [Castryck et al., 2018]:
Given two supersingular elliptic curves E ,E ′ defined over Fp with the same Fp-
rational endomorphism ring, find an ideal a such that, a ∗ E = E ′.

• Classical security:

• Brute force: The private key space size is
(2m + 1)n = (2 · 5 + 1)74 ≈ 2256.

• Meet-in-the-middle: It has an associated complexity of
O(p1/4) [Adj et al., 2019]

• Quantum security:

• Grover and claw finding: [Idealized] associated time complexity of
O(p1/6)

• Abelian hidden-shift problem: Estimated in 240 quantum operations
on a quantum computer of 240 qubits to compute a single evaluation
of the Kuperberg or Regev oracle with failure probability less than
2−32.[Bernstein et al., 2019]
Note: This claim is currently under dispute.
See [Peikert, 2019, Bonnetain and Schrottenloher, 2018]

7/34

Pros and cons of CSIDH

• Advantages of CSIDH:

• Key sizes: With the goal of providing a security level of λ-bits, CRS,
SIDH, SIKE and CSIDH all choose primes p ≈ 24λ. CSIDH keys are
size n ≈ 4λ, whereas SIDH/SIKE require n′ ≈ 14λ− 24λ bits. This
size is by far the smallest of all post-quantum cryptographic schemes.

• NIKE: The CSIDH group action allows efficient public-key validation.
Hence CSIDH supports a non-interactive (static-static) key
exchange. This is a unique feature among all post-quantum
cryptographic schemes.

• Protocol bandwith: Combining the two features mentioned above,
CSIDH can compute a shared secret exchanging only n ≈ 4λ bits per
party.

7/34

Pros and cons of CSIDH

• Disadvantages of CSIDH:

• Latency: Running on a high-end x64 Intel processor, CSIDH requires
≈ 480M clock cycles to compute a shared secret. For comparison,
SIKE requires ≈ 20M clock cycles.

• Quantum security: Quantum security claims of CSIDH are Currently
under [much] dispute

8/34

CSIDH implementations

• [Castryck et al., 2018]: The original CSIDH. The authors define the curve
and isogeny arithmetic on Montgomery curves;

• [Meyer and Reith, 2018]: Proposed a hybrid CSIDH using isogeny
construction formulas defined on Twisted Edwards curves and then
mapping into Montgomery form;

• [Bernstein et al., 2019]: Evaluated a constant-time implementation of
CSIDH aiming to precisely assess its quantum security. In this work it was
proposed and implemented the usage of SIDH strategies à la SIDH for
CSIDH, (cf. [Bernstein et al., 2019, §8]). The authors also proposed a
primitive version of the SIMBA strategy

• [Meyer et al., 2019], and [Onuki et al., 2019]: Both works kept using a
hybrid CSIDH as in [Meyer and Reith, 2018]. They represent the current
state-of-the-art in constant time implementations of CSIDH

9/34

CSIDH main building blocks

• Elliptic curve arithmetic:

• Point addition and point doubling costs: 4M + 2S + 4A and
4M + 2S + 6A field operations, respectively.

• Scalar multiplication kP cost: ≈ 1.5 log2(k)(4M + 2S + 6A) field
operations.

Implementation note: Point addition costs virtually the same as a point
doubling. Using a PRAC-like Montgomery ladder one can save about 25%
of the cost of a classical Montgomery ladder

• Isogeny arithmetic:

• Evaluation of a degree ` = 2k + 1 isogeny: 4kM + 2S + (2k + 4)A
field operations

• Construction of a degree ` = 2k + 1 isogeny:
≈ (8k − 7)M + (2k + 15)S + (2)A field operations

Implementation note: One isogeny construction costs ≈ 2.6 isogeny
evaluations.

9/34

CSIDH main building blocks

• Elliptic curve arithmetic:

• Point addition and point doubling costs: 4M + 2S + 4A and
4M + 2S + 6A field operations, respectively.

• Scalar multiplication kP cost: ≈ 1.5 log2(k)(4M + 2S + 6A) field
operations.

Implementation note: Point addition costs virtually the same as a point
doubling. Using a PRAC-like Montgomery ladder one can save about 25%
of the cost of a classical Montgomery ladder

• Isogeny arithmetic:

• Evaluation of a degree ` = 2k + 1 isogeny: 4kM + 2S + (2k + 4)A
field operations

• Construction of a degree ` = 2k + 1 isogeny:
≈ (8k − 7)M + (2k + 15)S + (2)A field operations

Implementation note: One isogeny construction costs ≈ 2.6 isogeny
evaluations.

10/34

Original CSIDH [Castryck et al., 2018]

Algorithm 1 Original CSIDH

Require: A ∈ Fp such that EA : y2 = x3 +Ax2 + x is supersingular, and an integer exponent vector
(e1, . . . , en)

Ensure: B such that EB : y2 = x3 + Bx2 + x is l
e1
1 ∗ · · · ∗ l

en
n ∗ EA, B ← A

1: while some ei 6= 0 do
2: Sample a random x ∈ Fp

3: s ← +1 if x3 + Bx2 + x is square in Fp , else s ← −1
4: S ← {i | ei 6= 0, sign(ei) = s}
5: if S 6= ∅ then
6: k ←

∏
i∈S `i

7: Q ← [(p + 1)/k]P, where P is the projective point with x-coordinate x .
8: for i ∈ S do
9: R ← [k/`i]Q // Point to be used as kernel generator

10: if R 6=∞ then
11: (EB , φ)← QuotientIsogeny(EB ,R)
12: Q ← φ(Q)
13: (k, ei)← (k/`i , ei − s)
14: end if
15: end for
16: end if
17: end while
18: return B

11/34

Original CSIDH algorithm
[Castryck et al., 2018]: Security problems

• Variable time: The private key determines the running time of the
algorithm.

• The worst case running time occurs for the private key: (5, 5, . . . , 5)
• No computation occurs for the private key: (0, 0, . . . , 0)
• The private key, (5,−5, 5, . . . ,−5, 5) is processed 50% faster than

the private key, (5, 5, . . . , 5)

• Power analysis: The attacker can determine which private key elements
share the same sign

Note: The CSIDH algorithm [Castryck et al., 2018] implicitly uses a two-point
strategy

12/34

Constant-time CSIDH algorithm
by [Meyer et al., 2019]

• Strategies towards a constant-time implementation of CSIDH

• To move the range of the exponents from [−5, 5] to [0, 10]. This
allows to use only one point through the isogeny computations

• To compute and evaluate exactly 10 isogenies per `i prime, using
dummy isogenies if required

• Efficiency improvements

• To use the Elligator 2 map to sample the points to be used in the
main computation

• To split isogeny computations into multiple batches (SIMBA
approach)
Note: it’s useful to think the SIMBA approach as one form of a strategy à la SIDH.

• To use customized bounds mi for each one of the seventy-four ei
exponents

12/34

Constant-time CSIDH algorithm
by [Meyer et al., 2019]

• Strategies towards a constant-time implementation of CSIDH

• To move the range of the exponents from [−5, 5] to [0, 10]. This
allows to use only one point through the isogeny computations

• To compute and evaluate exactly 10 isogenies per `i prime, using
dummy isogenies if required

• Efficiency improvements

• To use the Elligator 2 map to sample the points to be used in the
main computation

• To split isogeny computations into multiple batches (SIMBA
approach)
Note: it’s useful to think the SIMBA approach as one form of a strategy à la SIDH.

• To use customized bounds mi for each one of the seventy-four ei
exponents

13/34

[Simplified] CSIDH algorithm
by [Meyer et al., 2019]

Note: An improved version of this algorithm spends ≈ 48.5% and ≈ 51.5% computing scalar
multiplications and isogeny-related operations, respectively.

14/34

Constant-time CSIDH algorithm
by [Onuki et al., 2019]

• Efficiency improvements

• To use two points to evaluate the action of an ideal, one in
ker(π − 1) (i.e., in E(Fp)) and one in ker(π + 1) (i.e., in E(Fp2) with
x-coordinate in Fp).

• To move back the range of the exponents from [0, 10] to [−5, 5].
• To construct and evaluate exactly 5 and 10 isogenies per `i prime,

respectively (using dummy isogenies if required).

Implementation note: This CSIDH algorithm spends ≈ 55% and ≈ 45%
computing scalar multiplications and isogeny-related operations,
respectively.

15/34

CSIDH algorithm by [Onuki et al., 2019]
Algorithm 3 The Onuki–Aikawa–Yamazaki–Takagi CSIDH algorithm

Require: A supersingular curve EA : y2 = x3 + Ax2 + x over Fp , and an integer exponent vector (e1, . . . , en)

Ensure: EB : y2 = x3 + Bx2 + x such that EB = l
e1
1
∗ · · · ∗ l

en
n ∗ EA .

1: (e′1, . . . , e
′
n) ← (mi − |e1|, . . . ,mi − |en|),

2: EB ← EA
3: while some ei 6= 0 or e′i 6= 0 do

4: S ← {i | ei 6= 0 or e′i 6= 0}

5: k ←
∏

i∈S `i
6: (T−, T+) ← Elligator(EB , u) // T− ∈ EB [π − 1] and T+ ∈ EB [π + 1]

7: (P0, P1) ←
(

[(p + 1)/k]T+, [(p + 1)/k]T−
)

8: for i ∈ S do
9: s ← sign(ei) // Ideal lsi to be used

10: Q ← [k/`i]P 1−s
2

// Secret kernel point generator

11: P 1+s
2

← [`i]P 1+s
2

// Secret point to be multiplied

12: if Q 6= ∞ then

13: if ei 6= 0 then

14: (EB , ϕ) ← QuotientIsogeny(EB , Q)

15: (P0, P1) ←
(
ϕ(P0), ϕ(P1)

)
16: ei ← ei − s.

17: else
18: EB ← EB ; P 1−s

2

← [`i]P 1−s
2

; e′i ← e′i − 1 // Dummies

19: end if
20: end if
21: k ← k/`i
22: end for
23: end while
24: return B

16/34

Contributions
of [Cervantes-Vázquez et al., 2019] to be

discussed in the rest of this talk

1) A fully Twisted Edwards version of CSIDH;

2) Proposal of an efficient projective Elligator. Elligator is a procedure that
maps strings to points in an elliptic curve. In the context of CSIDH an
affine form of Elligator was proposed by [Meyer et al., 2019];

3) The usage of Shortest Differential Addition Chains (SDACs) in the CSIDH
algorithm, which are cheaper than Classical Montgomery Ladders.

4) A stronger constant-time CSIDH algorithm without dummy operations.

17/34

A security issue regarding random point
selection

In practice, one uses Elligator, which is an algorithm to efficiently sample
points on a curve and its twist. However, elligator requires a random ele-
ment u ∈

q
2, p−1

2

y
and also the inverse of (u2 − 1).

• Aiming to avoid a costly inversion by u2 − 1, Meyer, Campos and
Reith, and Onuki et al. followed [Bernstein et al., 2019] and
precomputed a set of ten pairs (u, (u2 − 1)−1);

• No randomness for u: But then, Elligator’s output only depends on
the A-coefficient of the current secret curve, which itself depends on
the secret key.

• Running time of the algorithm varies and it is necessarily correlated
to A and thus to the secret key.

17/34

A security issue regarding random point
selection

In practice, one uses Elligator, which is an algorithm to efficiently sample
points on a curve and its twist. However, elligator requires a random ele-
ment u ∈

q
2, p−1

2

y
and also the inverse of (u2 − 1).

• Aiming to avoid a costly inversion by u2 − 1, Meyer, Campos and
Reith, and Onuki et al. followed [Bernstein et al., 2019] and
precomputed a set of ten pairs (u, (u2 − 1)−1);

• No randomness for u: But then, Elligator’s output only depends on
the A-coefficient of the current secret curve, which itself depends on
the secret key.

• Running time of the algorithm varies and it is necessarily correlated
to A and thus to the secret key.

18/34

A security issue regarding random point
selection

To avoid field inversions, we write V = (A : u2 − 1), and we determine
whether V is the abscissa of a projective point on EA. Plugging V into
the homogeneous equation

EA : Y 2Z 2 = X 3Z + AX 2Z 2 + XZ 3

gives
Y 2(u2 − 1)2 =

(
(A2u2 + (u2 − 1)2

)
A(u2 − 1).

We can test the existence of a solution for Y by computing the Legendre
symbol of the right hand side: if it is a square, the points with projective
XZ -coordinates

T+ = (A : u2 − 1), T− = (−Au2 : u2 − 1)

are in EA[π − 1] and EA[π + 1] respectively, otherwise their roles are
swapped.

Consequently, u can be randomly chosen from
q

2, p−1
2

y
, and

elligator’s output only depends on randomness.

18/34

A security issue regarding random point
selection

To avoid field inversions, we write V = (A : u2 − 1), and we determine
whether V is the abscissa of a projective point on EA. Plugging V into
the homogeneous equation

EA : Y 2Z 2 = X 3Z + AX 2Z 2 + XZ 3

gives
Y 2(u2 − 1)2 =

(
(A2u2 + (u2 − 1)2

)
A(u2 − 1).

We can test the existence of a solution for Y by computing the Legendre
symbol of the right hand side: if it is a square, the points with projective
XZ -coordinates

T+ = (A : u2 − 1), T− = (−Au2 : u2 − 1)

are in EA[π − 1] and EA[π + 1] respectively, otherwise their roles are
swapped. Consequently, u can be randomly chosen from

q
2, p−1

2

y
, and

elligator’s output only depends on randomness.

19/34

Twisted Edwards or Montgomery curves?

From [Bernstein et al., 2008], we see that the Twisted Edwards curve

Ea,d : ax2 + y2 = 1 + dx2y2

is equivalent to the Montgomery curve

E(A:C) : y2 = x3 + (A/C)x2 + x

with constants

A24p := A + 2C = a , A24m := A− 2C = d , C24 := 4C = a− d .

In particular,

ψ : (X : Z) 7−→ (Y : T) = (X − Z : X + Z)

ψ maps Montgomery XZ-coordinate points into Twisted Edwards YT-
coordinate points, and

ψ−1 : (Y : T) 7−→ (X : Z) = (T + Y : T − Y).

20/34

Twisted Edwards or Montgomery curves?

Using previous formulas, one can re-write the following Montgomery XZ-projective
formulas in terms of Twisted Edwards YT-coordinates:

• Montgomery XZ-coordinates doubling

• Montgomery XZ-coordinates differential addition

• Montgomery XZ-coordinates degree-(2k + 1) isogeny evaluation.

Let 〈P〉
be the kernel of the isogeny, and . Then

In particular, the computational costs of doubling and differential addition in YT-coordinates are
4M + 2S + 4A, and 4M + 2S + 6A (same as for XZ-coordinates).

Additionally, degree-(2k + 1) isogeny evaluation in XZ -coordinates costs 4kM + 2S + 6kA, whereas
our YT -coordinate formula costs 4kM + 2S + (2k + 4)A, thus saving 4k − 4 field additions.

20/34

Twisted Edwards or Montgomery curves?

Using previous formulas, one can re-write the following Montgomery XZ-projective
formulas in terms of Twisted Edwards YT-coordinates:

• Montgomery XZ-coordinates doubling

X[2]P = C24(XP + ZP)2(XP − ZP)2,

Z[2]P =
(
(XP + ZP)2 − (XP − ZP)2)·(
C24(XP − ZP)2 + A24p((XP + ZP)2 − (XP − ZP)2)

)
• Montgomery XZ-coordinates differential addition

• Montgomery XZ-coordinates degree-(2k + 1) isogeny evaluation.

Let 〈P〉
be the kernel of the isogeny, and . Then

In particular, the computational costs of doubling and differential addition in YT-coordinates are
4M + 2S + 4A, and 4M + 2S + 6A (same as for XZ-coordinates).

Additionally, degree-(2k + 1) isogeny evaluation in XZ -coordinates costs 4kM + 2S + 6kA, whereas
our YT -coordinate formula costs 4kM + 2S + (2k + 4)A, thus saving 4k − 4 field additions.

20/34

Twisted Edwards or Montgomery curves?

Using previous formulas, one can re-write the following Montgomery XZ-projective
formulas in terms of Twisted Edwards YT-coordinates:

• Montgomery XZ-coordinates doubling

X[2]P = (a− d)TP
2YP

2,

Z[2]P =
(
TP

2 − YP
2) · ((a− d)YP

2 + a(TP
2 − YP

2)
)

• Montgomery XZ-coordinates differential addition

• Montgomery XZ-coordinates degree-(2k + 1) isogeny evaluation.

Let 〈P〉
be the kernel of the isogeny, and . Then

In particular, the computational costs of doubling and differential addition in YT-coordinates are
4M + 2S + 4A, and 4M + 2S + 6A (same as for XZ-coordinates).

Additionally, degree-(2k + 1) isogeny evaluation in XZ -coordinates costs 4kM + 2S + 6kA, whereas
our YT -coordinate formula costs 4kM + 2S + (2k + 4)A, thus saving 4k − 4 field additions.

20/34

Twisted Edwards or Montgomery curves?

Using previous formulas, one can re-write the following Montgomery XZ-projective
formulas in terms of Twisted Edwards YT-coordinates:

• Montgomery XZ-coordinates doubling

• Montgomery XZ-coordinates differential addition

XP+Q = ZP−Q

(
(XP − ZP)(XQ + ZQ) + (ZP + ZP)(XQ − ZQ)

)2

ZP+Q = XP−Q

(
(XP − ZP)(XQ + ZQ)− (ZP + ZP)(XQ − ZQ)

)2

• Montgomery XZ-coordinates degree-(2k + 1) isogeny evaluation.

Let 〈P〉
be the kernel of the isogeny, and . Then

In particular, the computational costs of doubling and differential addition in YT-coordinates are
4M + 2S + 4A, and 4M + 2S + 6A (same as for XZ-coordinates).

Additionally, degree-(2k + 1) isogeny evaluation in XZ -coordinates costs 4kM + 2S + 6kA, whereas
our YT -coordinate formula costs 4kM + 2S + (2k + 4)A, thus saving 4k − 4 field additions.

20/34

Twisted Edwards or Montgomery curves?

Using previous formulas, one can re-write the following Montgomery XZ-projective
formulas in terms of Twisted Edwards YT-coordinates:

• Montgomery XZ-coordinates doubling

• Montgomery XZ-coordinates differential addition

XP+Q = (TP−Q − YP−Q)
(
YPTQ + TPYQ

)2

ZP+Q = (TP−Q + YP−Q)
(
YPTQ − TPYQ

)2

• Montgomery XZ-coordinates degree-(2k + 1) isogeny evaluation.

Let 〈P〉
be the kernel of the isogeny, and . Then

In particular, the computational costs of doubling and differential addition in YT-coordinates are
4M + 2S + 4A, and 4M + 2S + 6A (same as for XZ-coordinates).

Additionally, degree-(2k + 1) isogeny evaluation in XZ -coordinates costs 4kM + 2S + 6kA, whereas
our YT -coordinate formula costs 4kM + 2S + (2k + 4)A, thus saving 4k − 4 field additions.

20/34

Twisted Edwards or Montgomery curves?

Using previous formulas, one can re-write the following Montgomery XZ-projective
formulas in terms of Twisted Edwards YT-coordinates:

• Montgomery XZ-coordinates doubling

• Montgomery XZ-coordinates differential addition

• Montgomery XZ-coordinates degree-(2k + 1) isogeny evaluation. Let 〈P〉
be the kernel of the isogeny, and (Xi : Zi) = (x([i]P) : 1) . Then

X ′ = XP

(k∏
i=1

(
(X − Z)(Xi + Zi) + (X + Z)(Xi − Zi)

))2

Z ′ = ZP

(k∏
i=1

(
(X − Z)(Xi + Zi)− (X + Z)(Xi − Zi)

))2

In particular, the computational costs of doubling and differential addition in YT-coordinates are
4M + 2S + 4A, and 4M + 2S + 6A (same as for XZ-coordinates).

Additionally, degree-(2k + 1) isogeny evaluation in XZ -coordinates costs 4kM + 2S + 6kA, whereas
our YT -coordinate formula costs 4kM + 2S + (2k + 4)A, thus saving 4k − 4 field additions.

20/34

Twisted Edwards or Montgomery curves?

Using previous formulas, one can re-write the following Montgomery XZ-projective
formulas in terms of Twisted Edwards YT-coordinates:

• Montgomery XZ-coordinates doubling

• Montgomery XZ-coordinates differential addition

• Montgomery XZ-coordinates degree-(2k + 1) isogeny evaluation. Let 〈P〉
be the kernel of the isogeny, and (Yi : Ti) = (y([i]P) : 1). Then

X ′ = (TP + YP)
(k∏

i=1

(
YTi + TYi

))2

Z ′ = (TP − YP)
(k∏

i=1

(
YTi − TYi

))2

In particular, the computational costs of doubling and differential addition in YT-coordinates are
4M + 2S + 4A, and 4M + 2S + 6A (same as for XZ-coordinates).

Additionally, degree-(2k + 1) isogeny evaluation in XZ -coordinates costs 4kM + 2S + 6kA, whereas
our YT -coordinate formula costs 4kM + 2S + (2k + 4)A, thus saving 4k − 4 field additions.

20/34

Outline

Addition chains for a faster scalar multiplication

21/34

Classical Montgomery ladders
y(P), y([2]P)

y([3]P), y([4]P)

y([7]P), y([8]P)

y([15]P), y([16]P)

y([31]P), y([32]P)

y([63]P), y([64]P)

y([127]P), y([128]P)

Example: given y(P), y([127]P) can be com-
puted with 13 differential point operations.

• Compute y([`]P) requires 2× dlog2 `e − 1
differential point operations.

21/34

Classical Montgomery ladders
y(P), y([2]P)

y([3]P), y([4]P)

y([7]P), y([8]P)

y([15]P), y([16]P)

y([31]P), y([32]P)

y([63]P), y([64]P)

y([127]P), y([128]P)

Example: given y(P), y([127]P) can be com-
puted with 13 differential point operations.

• Compute y([`]P) requires 2× dlog2 `e − 1
differential point operations.

22/34

Shortest differential addition chains
(SDACs)

y(P), y([2]P)

y([3]P) y([5]P)

y([8]P) y([13]P)

y([18]P) y([31]P)

y([44]P) y([57]P)

y([70]P)

y([127]P)

Example: given y(P), y([127]P) can be com-
puted with 11 differential point operations.

• Compute y([`]P) requires ≈ 1.5× dlog2 `e
differential point operations,

• SDACs yields a saving of ≈ 25% compared
with the cost of the classical Montgomery
ladder,

• SDACs are not constant-time,

• But each scalar ` is public thus it’s okay to
use SDACs!

22/34

Shortest differential addition chains
(SDACs)

y(P), y([2]P)

y([3]P) y([5]P)

y([8]P) y([13]P)

y([18]P) y([31]P)

y([44]P) y([57]P)

y([70]P)

y([127]P)

Example: given y(P), y([127]P) can be com-
puted with 11 differential point operations.

• Compute y([`]P) requires ≈ 1.5× dlog2 `e
differential point operations,

• SDACs yields a saving of ≈ 25% compared
with the cost of the classical Montgomery
ladder,

• SDACs are not constant-time,

• But each scalar ` is public thus it’s okay to
use SDACs!

22/34

Shortest differential addition chains
(SDACs)

y(P), y([2]P)

y([3]P) y([5]P)

y([8]P) y([13]P)

y([18]P) y([31]P)

y([44]P) y([57]P)

y([70]P)

y([127]P)

Example: given y(P), y([127]P) can be com-
puted with 11 differential point operations.

• Compute y([`]P) requires ≈ 1.5× dlog2 `e
differential point operations,

• SDACs yields a saving of ≈ 25% compared
with the cost of the classical Montgomery
ladder,

• SDACs are not constant-time,

• But each scalar ` is public thus it’s okay to
use SDACs!

22/34

Shortest differential addition chains
(SDACs)

y(P), y([2]P)

y([3]P) y([5]P)

y([8]P) y([13]P)

y([18]P) y([31]P)

y([44]P) y([57]P)

y([70]P)

y([127]P)

Example: given y(P), y([127]P) can be com-
puted with 11 differential point operations.

• Compute y([`]P) requires ≈ 1.5× dlog2 `e
differential point operations,

• SDACs yields a saving of ≈ 25% compared
with the cost of the classical Montgomery
ladder,

• SDACs are not constant-time,

• But each scalar ` is public thus it’s okay to
use SDACs!

23/34

Constant-time CSIDH algorithm
[Meyer et al., 2019, Onuki et al., 2019]

In both the original CSIDH and the Onuki et al. variants ei ∈ J−mi ,miK,
while in Meyer-Campos-Reith variant ei ∈ J0,miK. Notice that in constant-time
implementations of CSIDH, the exponents ei are implicitly interpreted as

|ei | = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ 0 + 0 + · · ·︸ ︷︷ ︸
mi−ei times

,

Then these procedures start constructing isogenies with kernel generated by
P ∈ EA[`i , π − sign(ei)] (for ei iterations), followed by dummy isogeny
computations (for mi − ei iterations).

24/34

CSIDH with dummy operations

To mitigate power consumption analysis attacks, the constant-time al-
gorithms proposed in [Meyer et al., 2019] and [Onuki et al., 2019] always
compute the maximal amount of isogenies allowed by the exponent, using
dummy isogeny computations if needed.

This countermeasure is susceptible of fault attacks.

25/34

Removing dummy operations

For our new approach, the exponents ei are uniformly sampled from sets

S(mi) = {e | e = mi mod 2 and |e| ≤ mi},

i.e., centered intervals containing only even or only odd integers.

Consequently, the exponents ei can implicitly interpreted as

|ei | = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ (1− 1)− (1− 1) + (1− 1)− · · ·︸ ︷︷ ︸
mi−ei times

,

and then our approach starts by constructing isogenies with kernel gener-
ated by P ∈ EA[`i , π− sign(ei)] for ei iterations, then alternates between
isogenies with kernel generated by P ∈ EA[`i , π− 1] and P ∈ EA[`i , π+ 1]
for (mi − ei) iterations.

25/34

Removing dummy operations

For our new approach, the exponents ei are uniformly sampled from sets

S(mi) = {e | e = mi mod 2 and |e| ≤ mi},

i.e., centered intervals containing only even or only odd integers.
Consequently, the exponents ei can implicitly interpreted as

|ei | = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ (1− 1)− (1− 1) + (1− 1)− · · ·︸ ︷︷ ︸
mi−ei times

,

and then our approach starts by constructing isogenies with kernel gener-
ated by P ∈ EA[`i , π− sign(ei)] for ei iterations, then alternates between
isogenies with kernel generated by P ∈ EA[`i , π− 1] and P ∈ EA[`i , π+ 1]
for (mi − ei) iterations.

26/34

A dummy-free CSIDH algorithm
Require: A supersingular curve EA over Fp , and an exponent vector (e1, . . . , en) with each

ei ∈ [−mi ,mi] and ei ≡ mi (mod 2).

Ensure: EB = l
e1
1
∗ · · · ∗ l

en
n ∗ EA .

1: (t1, . . . , tn) ←
(

sign(e1)+1
2

, . . . ,
sign(en)+1

2

)
2: (z1, . . . , zn) ← (m1, . . . ,mn)

3: EB ← EA
4: while some zi 6= 0 do

5: u ← Random
({

2, . . . ,
p−1

2

})
6: (T1, T0) ← Elligator(EB , u) // T1 ∈ EB [π − 1] and T0 ∈ EB [π + 1]

7: (T0, T1) ← ([4]T0, [4]T1) // Now T0, T1 ∈ EB
[∏

i `i
]

8: for i ∈ {1, . . . , n} do

9: if zi 6= 0 then

10: (G0, G1) ← (T0, T1)

11: for j ∈ {i + 1, . . . , n} do

12: (G0, G1) ← ([`j]G0, [`j]G1)

13: end for
14: if G0 6= ∞ and G1 6= ∞ then

15: cswap(G0, G1, ti) // Secret kernel point generator: G0

16: cswap(T0, T1, ti) // Secret point to be multiplied: T1

17: (EB , φ) ← QuotientIsogeny(EB , G0)

18: (T0, T1) ←
(
φ(T0), φ(T1)

)
19: T1 ← [`i]T1

20: cswap(T0, T1, ti)

21: b ← isequal(ei , 0)

22: ei ← ei + (−1)ti

23: ti ← ti ⊕ b

24: zi ← zi − 1

25: else if G0 6= ∞ then

26: T0 ← [`i]T0

27: else if G1 6= ∞ then

28: T1 ← [`i]T1

29: end if
30: end if
31: end for
32: end while
33: return B

27/34

Derandomized CSIDH algorithms

• The CSIDH algorithms described here depend on the availability of
high-quality randomness for their security.

• If the attacker knows the output of the PRNG, or if the quality of the
PRNG output is less than ideal, this may degrade the security of all
algorithms.

27/34

Derandomized CSIDH algorithms

• Hence, we suggest modifying CSIDH by restricting to exponents of the
private key sampled from

• {−1, 0, 1}, or
• {−1, 1} (if fault-injection attacks are a concern);

• One can then precompute two points of order (p + 1)/4 on the starting
public curve, one in EA[π − 1] and the other in EA[π + 1].

• However, for achieving a 128 bits security level, the prime p goes from
511 bits to almost 1500 (slower but much stronger quantum security).

Note: This approach could be of interest for simulating quantum attacks where
strict constant time behavior is desirable [Bernstein et al., 2019]

28/34

Running-time: field operations

Table 1: Field operation counts for constant-time CSIDH. Counts are given in
millions of operations, averaged over 1024 random experiments. The
performance ratio uses [Meyer et al., 2019] as a baseline, considers only
multiplication and squaring operations, and assumes M = S .

Implementation CSIDH Algorithm M S A Ratio
Castryck et al. [Castryck et al., 2018] unprotected, unmodified 0.252 0.130 0.348 0.26

Meyer–Campos–Reith [Meyer et al., 2019] unmodified 1.054 0.410 1.053 1.00
Onuki et al. [Onuki et al., 2019] unmodified 0.733 0.244 0.681 0.67

This work
MCR-style 0.901 0.309 0.965 0.83

OAYT-style 0.657 0.210 0.691 0.59
No-dummy 1.319 0.423 1.389 1.19

29/34

Running-time: measured clock cycles

Table 2: Clock cycle counts for constant-time CSIDH implementations,
averaged over 1024 experiments. The ratio is computed
using [Meyer et al., 2019] as baseline implementation.

Implementation CSIDH algorithm Mcycles Ratio
Castryck et al. [Castryck et al., 2018] unprotected, unmodified 155 0.39

Meyer–Campos–Reith [Meyer et al., 2019] unmodified 395 1.00

This work
MCR-style 337 0.85

OAYT-style 239 0.61
No-dummy 481 1.22

30/34

[Some] Open questions

1) Should we enlarge the CSIDH prime to improve its quantum security?

2) Using the framework by [Adj et al., 2019] for classical attacks should
we shrink the CSIDH prime from 512-bits to something around 430
bits? [on-going work with A. Menezes and the Cinvestav crypto group]

3) What is the probability of failure due to Elligator output points that
are not full torsion points? How the different algorithmic tricks so far
proposed affect this probability?

4) Can strategies à la SIDH be applied more effectively?
• Check again [Hutchinson et al., 2019]
• Look for optimizations using heuristics and/or deep learning

approaches

30/34

Thank you for your attention

I look forward to your comments and questions.
e-mail: francisco@cs.cinvestav.mx

Our software library is freely available from

https://github.com/JJChiDguez/csidh .

https://github.com/JJChiDguez/csidh

29/34

References I

I Adj, G., Cervantes-Vázquez, D., Chi-Doḿınguez, J., Menezes, A., and
Rodŕıguez-Henŕıquez, F. (2019).

On the cost of computing isogenies between supersingular elliptic curves.

In Cid, C. and Jr., M. J. J., editors, Selected Areas in Cryptography - SAC
2018 - 25th International Conference, Calgary, AB, Canada, August 15-17,
2018, Revised Selected Papers, volume 11349 of Lecture Notes in Computer
Science, pages 322–343. Springer.

I Bernstein, D. J., Birkner, P., Joye, M., Lange, T., and Peters, C. (2008).

Twisted Edwards curves.

In Vaudenay, S., editor, Progress in Cryptology - AFRICACRYPT 2008,
volume 5023 of Lecture Notes in Computer Science, pages 389–405.
Springer.

30/34

References II

I Bernstein, D. J., Lange, T., Martindale, C., and Panny, L. (2019).

Quantum circuits for the CSIDH: optimizing quantum evaluation of
isogenies.

In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II, pages 409–441.

I Bonnetain, X. and Schrottenloher, A. (2018).

Submerging csidh.

Cryptology ePrint Archive, Report 2018/537.

https://eprint.iacr.org/2018/537.

I Castryck, W., Lange, T., Martindale, C., Panny, L., and Renes, J. (2018).

CSIDH: an efficient post-quantum commutative group action.

In Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part
III, pages 395–427.

https://eprint.iacr.org/2018/537

31/34

References III

I Cervantes-Vázquez, D., Chenu, M., Chi-Doḿınguez, J., Feo, L. D.,
Rodŕıguez-Henŕıquez, F., and Smith, B. (2019).

Stronger and faster side-channel protections for CSIDH.

In Progress in Cryptology - LATINCRYPT 2019 - 6th International
Conference on Cryptology and Information Security in Latin America,
Santiago de Chile, Chile, October 2-4, 2019, Proceedings, pages 173–193.

I Childs, A. M., Jao, D., and Soukharev, V. (2010).

Constructing elliptic curve isogenies in quantum subexponential time.

CoRR, abs/1012.4019.

I Couveignes, J. M. (2006).

Hard homogeneous spaces.

Cryptology ePrint Archive, Report 2006/291.

32/34

References IV

I De Feo, L., Kieffer, J., and Smith, B. (2018).

Towards practical key exchange from ordinary isogeny graphs.

In Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part
III, pages 365–394.

I Hutchinson, A., LeGrow, J., Koziel, B., and Azarderakhsh, R. (2019).

Further optimizations of csidh: A systematic approach to efficient strategies,
permutations, and bound vectors.

Cryptology ePrint Archive, Report 2019/1121.

https://eprint.iacr.org/2019/1121.

I Jalali, A., Azarderakhsh, R., Kermani, M. M., and Jao, D. (2019).

Towards optimized and constant-time CSIDH on embedded devices.

In Constructive Side-Channel Analysis and Secure Design, pages 215–231.
Springer International Publishing.

https://eprint.iacr.org/2019/1121

33/34

References V

I Meyer, M., Campos, F., and Reith, S. (2019).

On lions and elligators: An efficient constant-time implementation of
CSIDH.

In Post-Quantum Cryptography - 10th International Workshop, PQCrypto
2019.

I Meyer, M. and Reith, S. (2018).

A faster way to the CSIDH.

In Progress in Cryptology - INDOCRYPT 2018 - 19th International
Conference on Cryptology in India, New Delhi, India, December 9-12, 2018,
Proceedings, pages 137–152.

I Onuki, H., Aikawa, Y., Yamazaki, T., and Takagi, T. (2019).

A faster constant-time algorithm of CSIDH keeping two torsion points.

To appear in IWSEC 2019 – The 14th International Workshop on Security.

34/34

References VI

I Peikert, C. (2019).

He gives c-sieves on the csidh.

Cryptology ePrint Archive, Report 2019/725.

https://eprint.iacr.org/2019/725.

I Rostovtsev, A. and Stolbunov, A. (2006).

Public-key cryptosystem based on isogenies.

Cryptology ePrint Archive, Report 2006/145.

I Stolbunov, A. (2010).

Constructing public-key cryptographic schemes based on class group action
on a set of isogenous elliptic curves.

Advances in Mathematics of Communication, 4(2).

https://eprint.iacr.org/2019/725

	Addition chains for a faster scalar multiplication

