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Importancia del contexto

Orden del señor Alcalde:
“Desde hoy, el que tenga puercos que los amarre y el que no que
no”
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Intel processors
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Flynn’s Taxonomy

Flynn’s Taxonomy [IEEE TC’72]

Single Instruction Multiple Instruction
Single Data SISD MISD

Multiple Data SIMD MIMD
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Flynn’s Taxonomy

SISD

Single Instruction Multiple Instruction
Single Data SISD MISD

Multiple Data SIMD MIMD

I 1 instruction at a time on 1 item of data at a time

I M. Flynn included pipelined architectures in this category

I Processors Intel < 1996 and AMD < 1998
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Flynn’s Taxonomy

MISD

Single Instruction Multiple Instruction
Single Data SISD MISD

Multiple Data SIMD MIMD

I Executing different instructions on the same data set

I Not common! To detect and mask errors...
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Flynn’s Taxonomy

SIMD

Single Instruction Multiple Instruction
Single Data SISD MISD

Multiple Data SIMD MIMD

I Parallelism : execute the same operation on different data

I First Pentium : Intel Pentium MMX (1996), MMX
Instructions

I First AMD : AMD K6-2 (1998), 3DNow! Instructions
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Flynn’s Taxonomy

MIMD

Single Instruction Multiple Instruction
Single Data SISD MISD

Multiple Data SIMD MIMD

I Parallelism : execute asynchronously different set of
instructions independently on different set of data elements

I Multiprocessor architectures, clusters, etc.
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SSE Instructions

Pablo Picasso: The bull challenge (3/11)
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SSE Instructions

SSE

I SSE : Streaming SIMD Extensions

I The initial targets were multimedia applications as image
processing, audio/video encoding or decoding, HD

I The extended targets : scientific purposes, cryptography, ...
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SSE Instructions

SIMD Instructions

SIMD instructions, (single instruction, multiple data), perform one
logic/arithmetic operation over multiple data
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SSE Instructions

Vector instructions

I Nowadays vector instructions are present in contemporary
desktop processors.
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desktop processors.

I Latest architectures have special register and instruction sets
that are able to perform one single operation over a set of
data. Resulting in a vector-wise processing.
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SSE Instructions

Vector instructions

I Nowadays vector instructions are present in contemporary
desktop processors.

I Latest architectures have special register and instruction sets
that are able to perform one single operation over a set of
data. Resulting in a vector-wise processing.

I Intel’s Sandy Bridge architecture provides sixteen 256-bit
registers, which can store up to four 64-bit integers.
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SSE Instructions

Vector instructions

Some relevant vector instructions:

I Bit-wise XOR, AND, OR. These instructions operate with
256-bit registers performing bit-wise operations.
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SSE Instructions

Vector instructions

Some relevant vector instructions:

I Bit-wise XOR, AND, OR. These instructions operate with
256-bit registers performing bit-wise operations.

I 64-bit shifts. It processes four parallel shifts on each 64-bit
integer allocated in the register.

I 128-bit shifts. Processes two parallel shifts on each 128-bit
data in the register, under the restriction that the shifts can
only be 8-bit multiples.

I Memory alignment. This instruction concatenates two
vector registers and shift them by an 8-bit multiple.

I Carry-less multiplier.
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SSE Instructions

Carry less multiplication

As illustrated in the following example, this operation acts without
generating carries, hence its name.

1 1 0 (6)
× 1 1 1 (7)

1 1 0
1 1 0 0

1 1 0 0 0

1 0 1 0 1 0 (42)

1 1 0 (6)
× 1 1 1 (7)

1 1 0
1 1 0 0

1 1 0 0 0

1 0 0 1 0 (18)
(a) with carry (b) without carry
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SSE Instructions

Carry-less multiplier

I The instruction PCLMULQDQ, included in the AES-NI
instruction set, performs a polynomial multiplication over
F2[x ].
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SSE Instructions

Carry-less multiplier

I The instruction PCLMULQDQ, included in the AES-NI
instruction set, performs a polynomial multiplication over
F2[x ].

I Unlike integer multiplication, this instruction performs
intermediate additions regardless carry bits, hence its name.

I Recent applications of this instruction on binary field
arithmetic have shown dramatic throughput speedups, getting
cutting-edge high speed implementations. For example, in the
computation of the scalar multiplication operation over binary
elliptic curves.
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SSE Instructions

Fields

A field F is a set of elements equipped with two binary operations
(?) y (•), such that,

〈F, ?, 0〉 and 〈F \ {0}, •, 1〉

are abelian groups.
The binary operation • can be distributed over ?, i. e., for all
a, b, c ∈ F, the following identity holds,

a • (b ? c) = (a • b) ? (a • c)
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SSE Instructions

Finite fields

Every prime number p defines a finite field of order p, denoted as,
Fp.

The smallest finite field is 〈F2,⊕,�〉, that contains only two
elements {0, 1} and its binary operations act as the Boolean
operators XOR and AND, respectively.
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SSE Instructions

Field Extensions

Given a positive integer m > 1,the field Fpm is a field extension of
Fp.

It can be shown that Fpm is isomorphic to Fp[x ]/(f (x)), where
f (x) is a monic polynomial of degree m > 1, irreducible over Fp.

We denote by Fp[x ]/(f (x)) the set of equivalence classes of the
polynomials Fp[x ] (mod f (x)).
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F2m Field Artihmetic

Addition

A field element F2m can be represented as a vector of m bits.

The addition of two field elements, a(x), b(x) ∈ F2m can be
performed just with bit-wise XOR [no carries are generated],

c(x) = a(x) + b(x) =
m−1∑
i=0

(ai ⊕ bi )x
i

This operation directly benefits from the parallel processing of the
XOR operation over a vector of data
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F2m Field Artihmetic

Multiplication

Field multiplication is usually performed in two steps: polynomial
multiplication followed by polynomial reduction

The first phase consists on multiplying two polynomials of degree
m − 1 to obtain a polynomial of degree 2m − 2, where the
arithmetic operations are performed over F2.

The second phase performs modular reduction using f (x), the
irreducible polynomial that generated the field.
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F2m Field Artihmetic

Polynomial multiplication

We use the Karatsuba multiplier at a computational cost of just
O(mlog2 3).

Given the polynomials A y B of degree m − 1, the product
C = A · B of degree 2m − 2 can be computed as,

C = A · B
= (a0 + a1x

m−1
2 )(b0 + b1x

m−1
2 )

= a0b0 + [(a0 + a1)(b0 + b1) + a0b0 + a1b1] x
m−1

2

+a1b1x
m−1

This operation can be recursively repeated until the bit level
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F2m Field Artihmetic

Polynomial multiplication

Using the new carry-less multiplication instruction PCLMULQDQ one
can multiply 64-bit binary polynomials and stop at that level the
recursion
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F2m Field Artihmetic

Field Squaring

Due to the action of the Frobenius map, polynomial squaring of an
element a ∈ F2m is a linear operation over binary fields,

a(x)2 =

[
m−1∑
i=0

aix
i

]2

=
m−1∑
i=0

aix
2i

This can be implemented by interleaving zeroes among the
polynomial coefficients,

~a → (~a)2

(am−1, am−2, . . . , a1, a0) → (am−1, 0, . . . , a2, 0, a1, 0, a0)
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F2m Field Artihmetic

Multi-squaring

Computing a2k , with k a constant, one can pre-compute a table T
that contains 16dm4 e field elements, computed as,

T [j , i0 +2i1 +4i2 +8i3] = (i0x
4j + i1x

4j+1 + i2x
4j+2 + i3x

4j+3)2k (1)

where i0, i1, i2, i3 ∈ {0, 1} and 0 ≤ j < dm4 e.
Finally, the multi-squaring computation can be performed using,

a(x)2k =

dm
4
e−1∑

j=0

T [j , ba/24jcmod 24] (2)
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F2m Field Artihmetic

Field Inversion

I Inversion. The friendliest approach to compute the most
costly binary field operation is using Itoh-Tsujii algorithm.
Given a field element a, we use the following identity to
compute its inverse:

a−1 =
(
a2m−1−1

)2

The term a2m−1−1 is obtained by sequentially computing
intermediate terms of the form:(

a2i−1
)2j

·
(
a2j−1

)
i , j ∈ [0, λ]

where i , j are elements of an addition chain of λ length.
This sequence of powers is done by using multi-squaring
operations.
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Fpm Field Artihmetic

Pablo Picasso: The bull challenge (5/11)
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Fpm Field Artihmetic

Field towering

Fp12

Fp Fp

Fp2 = Fp[u]/(u2 − β)

Fp6 = Fp2 [v ]/(v3 − ξ)

Fp12 = Fp6 [w ]/(w2 − γ)

'
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Fpm Field Artihmetic

Fp Arithmetic

Fp field arithmetic has crucial importance for the performance of
any cryptosystem. The field elements a, b ∈ Fp are integers in the
interval [0, p − 1]

Addition a + b mod p
Multiplication a · b mod p
Multiplicative inversion a−1 mod p
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Fpm Field Artihmetic

Montgomery Multiplier

The problem of performing a division by p is traded with divisions
by r , where r = 2k with k − 1 < |p| < k .

Figure: Montgomery p-Residues
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Fpm Field Artihmetic

Montgomery Multiplier

The montgomery product is defined as,

MontPr(ã, b̃) = ã · b̃ · r−1 mod p

Given its p-residue ã, one can compute a by performing,

MontPr(ã, 1) = ã · 1 · r−1 mod p = a mod p

Where p′ can be obtained from Bezout’s identity as,

r · r−1 − p · p′ = 1,

provided that gcd(r , p) = 1.
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Fpm Field Artihmetic

Montgomery Multiplier

Input: Prime p, p′, r = 2k y ã, b̃ ∈ Fp

Ouput: MontPr(ã, b̃)
1: t ← ã · b̃
2: m← t · p′ mod r
3: u ← (t + m · p)/r
4: if u > p then
5: return u − p
6: else
7: return u
8: end if
9: return u
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Fpm Field Artihmetic

Montgomery Multiplier

Input: Prime p, p′, r = 2k y ã, b̃ ∈ Fp

Ouput: MontPr(ã, b̃)
1: t ← ã · b̃
2: m← t · p′ mod r m ≡ −t · p−1 mod r
3: u ← (t + m · p)/r (t + m · p) ≡ 0 mod r
4: if u > p then
5: return u − p
6: else
7: return u
8: end if
9: return u

“Introduction to Elliptic Curve Cryptography: Implementation Aspects”, ECC 2012 Introduction course. 35/92



Context Field Arithmetic Elliptic curve Arithmetic Elliptic curve defined over prime fields Other tricks

Fpm Field Artihmetic

Montgomery multiplier

Input: Prime p, p′, r = 2k y ã, b̃ ∈ Fp

Ouput: MontPr(ã, b̃)
1: t ← ã · b̃
2: m← t · p′ mod r
3: u ← (t + m · p)/r t + m · p ≡ ã · b̃ mod p
4: if u > p then
5: return u − p
6: else
7: return u
8: end if
9: return u
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Fpm Field Artihmetic

Montgomery multiplier variants: the SOS Separated
Operand Scanning method

Computes first the product t = a · b and then u.

Input: a = (a0, a1, ..., an−1) and
b = (b0, b1, ..., bn−1)

Ouput: t = a · b with t = (t0, t1, ..., t2n−1)
1: t ← 0
2: for i = 0→ n − 1 do
3: C ← 0
4: for j = 0→ n − 1 do
5: (C , S)← ti+j + aj · bi + C
6: ti+j = S
7: end for
8: ti+n = C
9: return t

10: end for

a3 a2 a1 a0

b3 b2 b1 b0

t03 t02 t01 t00

t13 t12 t11 t10

t23 t22 t21 t20

t33 t32 t31 t30

t7 t6 t5 t4 t3 t2 t1 t0

The complexity of this algorithm is O(n2)
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Fpm Field Artihmetic

Montgomery multiplier variants: the SOS Separated
Operand Scanning method

Input: t = (t0, t1, ..., t2n−1), p = (p0, p1, ..., pn) and p′0, where |p′0| = ω
Ouput: u ← (t+(t · p′ mod r)·p)/r
1: for i = 0→ n − 1 do
2: C ← 0
3: m← ti · p′0 mod 2ω

4: for j = 0→ n − 1 do
5: (C , S)← ti+j + m · pj + C
6: ti+j = S
7: end for
8: ADD(ti+n,C)
9: end for

10: for i = 0→ n − 1 do
11: ui = ti+n

12: end for
13: return u

The number of products of this method is 2n2 + n.
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Fpm Field Artihmetic
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F
p2 Arithmetic

Fp2 Arithmetic

Fp2
∼= Fp[u]/(u2 − β), β ∈ Fp

where β is not a square over Fp. Hence, a field element A ∈ Fp2

can be seen as, A = a0 + a1u, where a0, a1 ∈ Fp.

Adding two elements A,B ∈ Fp2 is given as,

(a0 + a1u) + (b0 + b1u) = (a0 + b0) + (a1 + b1)u,
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F
p2 Arithmetic

Fp2 Arithmetic

The multiplication of two elements A,B ∈ Fp2 is,

(a0 + a1u) · (b0 + b1u) = (a0b0 + a1b1β) + (a0b1 + a1b0)u,

Using karatsuba method one has,

(a0b1 + a1b0) = (a0 + a1) · (b0 + b1)− a0b0 − a1b1.

Field squaring A2 where A ∈ Fp2 , can be done using an identity
borrowed from complex theory,

(a0 + a1u)2 = (a0 − βa1) · (a0 − a1) + (β + 1)a0a1 + 2a0a1u.
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F
p6 Arithmetic

Fp6 Arithmetic

Arithmetic in the sextic extension corresponds to the third layer of
the field towering and can be built as the cubic extension of the
quadratic one as,

Fp6
∼= Fp2 [V ]/(V 3 − ξ), ξ ∈ Fp2

where ξ = u + 1.
An element A ∈ Fp6 can thus be seen as, A = a0 + a1V + a2V

2

where a0, a1, a2 ∈ Fp2 .
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F
p12

Fp12 Arithmetic

Fp12 arithmetic corresponds to the top layer in the field towering
analyzed here. It can be defined as the quadratic extension of the
sextic one as,

Fp12
∼= Fp6 [W ]/(W 2 − γ), γ ∈ Fp6

where γ = V .
Hence, an element a ∈ Fp12 can be seen as a = a0 + a1W where
a0, a1 ∈ Fp6 .
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Summary of arithmetic costs

Field Add Mult Square Inverse

Fp2 ã = 2a m̃ = 3m + 5a + mβ s̃ = 2m + 3a + mβ ĩ = 4m + mβ +
2a + i

Fp6 3ã 6m̃ + 2mξ + 15ã 2m̃ + 3s̃ + 2mξ + 9ã 9m̃+3s̃+4mξ+

5ã + ĩ
Fp12 6ã 18m̃ + 6mξ + 60ã 12m̃ + 4mξ + 45ã 25m̃+9s̃+12mξ

+mγ +2mγ +61ã + ĩ + mγ
a Addition/subtraction over Fp m Multiplication over Fp
ã Addition/subtraction over F

p2 m̃ Multiplication over F
p2 s̃ field squaring F

p2

mβ Multiplication by β mξ Multiplication by ξ mγ Multiplication by γ
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Elliptic curves: basic definitions

I An elliptic curve E over a field F with field characteristic different
than 2 and 3, denoted as E/F, can be defined by the equation,

y2 = x3 + ax + b, where a, b ∈ F.

I O is the the point at infinity

“Introduction to Elliptic Curve Cryptography: Implementation Aspects”, ECC 2012 Introduction course. 45/92



Context Field Arithmetic Elliptic curve Arithmetic Elliptic curve defined over prime fields Other tricks

Elliptic curves: basic definitions

I Given an elliptic curve E/F and a finite field F′ such that F ⊆ F′,
the set of the elliptic curve rational points F′-rational points are
defined as,

E (F′) = {(x , y) | x , y ∈ F′, y2 − x3 − ax − b = 0} ∪ {O}

I E (F′) is an Abelian group usually written in additive notation,
where O acts as the identity element.
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Group law

An elliptic curve point if represented with two coordinates (x , y) is
said to be in Affine coordinates. The group law of a point in such
representation requires the use of inversion of elements in a finite
field, which tends to be expensive.

Let P1 = (x1, y1), and P2 = (x2, y2), with P1,P2 6=∞. We define
P1 + P2 = P3 as follows:

Point addition
m = y2−y1

x2−x1
x3 = m2 − x1 − x2 y3 = m(x1 − x3)− y1

Point doubling (P1 = P2)

m =
3x2

1 +a
2y1

x3 = m2 − 2x1 y3 = m(x1 − x3)− y1
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Elliptic curve scalar multiplication

This operation finds the k-th scalar multiple of a point P ∈ E ,
denoted by kP. It consists in adding k times P with itself, i.e.,

kP = P + P + ...+ P︸ ︷︷ ︸
k times

Fact: This operation can be easily computed using the binary
method at a cost of mD + m

2 A, where |k | = m.
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Elliptic curves: basic definitions

I Let #E (Fq) be the order of E (Fq), i.e. , the cardinality of the
Fq-rational points in the elliptic curve E/Fq.

#E (Fp) = q + 1− t, where t is the Frobenius trace of E over Fq

I Let P be a point in E (Fq), the order of P is defined as the smallest
positive integer r , such that,

P + P + .....+ P = rP = O

I Fact: the order r of a point P ∈ E (Fq) always divides #E (Fq).
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Fq-rational points in the elliptic curve E/Fq.

#E (Fp) = q + 1− t, where t is the Frobenius trace of E over Fq
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Elliptic curves: basic definitions

I Let #E (Fq) be the order of E (Fq), i.e. , the cardinality of the
Fq-rational points in the elliptic curve E/Fq.

#E (Fp) = q + 1− t, where t is the Frobenius trace of E over Fq

I Let P be a point in E (Fq), the order of P is defined as the smallest
positive integer r , such that,

P + P + .....+ P = rP = O

I Fact: the order r of a point P ∈ E (Fq) always divides #E (Fq).
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Elliptic curves: basic definitions

I Given an elliptic curve E/Fp, the set of Fq-rational points of torsion
r , denoted as E (Fpn)[r ], is defined as,

E (Fpn)[r ] = {P ∈ E (Fpn)|rP = O}.
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Elliptic curves: basic definitions

Embedding degree

Let E/Fp be an elliptic curve such that #E (Fp) = h · r , where h ∈ Z+.
and let k be a positive integer, we say that k is the embedding degree of
E/Fp with respect to p and r , if k is the smallest positive integer such
that,

r |pk − 1.
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Elliptic curves: basic definitions

Twist of an elliptic curve

Given an elliptic curve E/Fp with embedding degree k. If the
group E (Fp) contains a subgroup of prime order r , there exists a
twist curve E ′ of E , defined over the field Fq, with q = pk/d and
d ∈ Z, such that E y E ′ are isomorphic over Fpk , i.e,

φ : E ′(Fpk/d )→ E (Fpk ),
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Elliptic curve families

Pablo Picasso: The bull challenge (7/11)
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Elliptic curve families

Elliptic curve families: The Barreto-Naehrig curves

I The embedding degree of a BN curve is k = 12, always with a
prime order r , i.e., #E (Fp) = r .

“Introduction to Elliptic Curve Cryptography: Implementation Aspects”, ECC 2012 Introduction course. 54/92



Context Field Arithmetic Elliptic curve Arithmetic Elliptic curve defined over prime fields Other tricks

Elliptic curve families

Elliptic curve families: The Barreto-Naehrig curves

I The embedding degree of a BN curve is k = 12, always with a
prime order r , i.e., #E (Fp) = r .

I Moreover, the field characteristic, group order and Frobenius trace
are parameterized as,

“Introduction to Elliptic Curve Cryptography: Implementation Aspects”, ECC 2012 Introduction course. 54/92



Context Field Arithmetic Elliptic curve Arithmetic Elliptic curve defined over prime fields Other tricks

Elliptic curve families

Elliptic curve families: The Barreto-Naehrig curves

I The embedding degree of a BN curve is k = 12, always with a
prime order r , i.e., #E (Fp) = r .

I Moreover, the field characteristic, group order and Frobenius trace
are parameterized as,

p(z) = 36z4 + 36z3 + 24z2 + 6z + 1

r(z) = 36z4 + 36z3 + 18z2 + 6z + 1

t(z) = 6z2 + 1
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Elliptic curve families

Elliptic curve families: The Barreto-Naehrig curves

I The embedding degree of a BN curve is k = 12, always with a
prime order r , i.e., #E (Fp) = r .

I Moreover, the field characteristic, group order and Frobenius trace
are parameterized as,

p(z) = 36z4 + 36z3 + 24z2 + 6z + 1

r(z) = 36z4 + 36z3 + 18z2 + 6z + 1

t(z) = 6z2 + 1

I If for a given z ∈ Z p = p(z) y r = r(z) are prime numbers, then
the BN equation is defined as, E/Fp : y2 = x3 + b.
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Elliptic curve families

Elliptic curve families: The Barreto-Naehrig curves

I The embedding degree of a BN curve is k = 12, always with a
prime order r , i.e., #E (Fp) = r .

I Moreover, the field characteristic, group order and Frobenius trace
are parameterized as,

p(z) = 36z4 + 36z3 + 24z2 + 6z + 1

r(z) = 36z4 + 36z3 + 18z2 + 6z + 1

t(z) = 6z2 + 1

I If for a given z ∈ Z p = p(z) y r = r(z) are prime numbers, then
the BN equation is defined as, E/Fp : y2 = x3 + b.

I E/Fp is isomorphic to the sextic degree twist curve denoted as
E ′/Fp2 .
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Elliptic curve families

Discrete logarithm problem

Let P = (x , y) be a point in E (Fp) of order r .

Then denote by < P > the group generated by P. In other words,

< P >= {O,P,P + P,P + P + P, . . .}

Let Q ∈< P >. Given Q, find n such that Q = [n]P. This is
known as the Elliptic Curve Discrete Logarithm Problem
(ECDLP).

Known attacks affect some anomalous curves, P with a small
prime order and some weak combinations of parameters.
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Elliptic curve families

Discrete logarithm problem II

Similarly, let α ∈ F∗
pk

and k ∈ Z, k > 0. Define αe = α · α . . . α, e
times. Then, the order of the element α is the smallest n such
that αn = 1.

Denote by < α > the group generated by α. In other words,

< α >= {1, α, α · α, α · α · α, . . .}

Let β ∈< α >. Given β, the problem of finding s modulo |α| such
that β = αs . is known as the The Finite Field Discrete
Logarithm Problem (DLP).

The most efficient methods for the finite field case are based on
Index Calculus. The most efficient methods in elliptic curves are
based on the Pollard’s Rho attack.
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Elliptic curve families

Point multiplication on EC w/ efficient endomorphisms

Paper:Faster Point Multiplication on Elliptic Curves by Gallant,
Lambert and Vanstone.

The scalar-point multiplication is the additive analogue of the
exponentiation operation αk in a general (multiplicatively-written)
finite group.

In other words, we can apply the same concepts in groups defined
with different operations, and referring the operation simply as
exponentiation in a group.
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Elliptic curve families

Speeding up

Generic methods to speed up the exponentiation in any finite
Abelian group includes,

I Precomputation

I Addition chains whenever the scalar is known

I Windowing techniques

I Simultaneous multiple exponentiation techniques.

Replacing the binary representation of the scalar into one with
fewer non-zero terms.
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Elliptic curve families

Speeding up II

Elliptic curve specific methods:

I A field defined with a (pseudo-)Mersenne prime.

I Field construction using small irreducible polynomials

I Point representation with fast arithmetic

I EC with special properties.
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Elliptic curve families

Jacobian Coordinate System

A point can be represented in projective coordinates as (X ,Y ,Z ),
where (X ,Y ,Z ) = (x/zc , y/zd). If c = 2, d = 3, the coordinates
are called Jacobian coordinates.

The traditional form of the curve is:

E : y2 = x3 + ax + b

In a projective coordinate system, the equation changes. In the
case of the Jacobian coordinates, the equation of the curve is now:

E : Y 2 = X 3 + axZ 4 + bZ 6.

The group law becomes...
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Elliptic curve families

Jacobian Coordinate System II

Point doubling:

X3 = (3(X12))2 − 8X1Y 12

Y 3 = 3(X12)(4X1Y 12 − X3)− 8(Y 12)2

Z3 = 2Y 1Z1

Point addition:

X3 = (2(Y 2Z13 − Y 1Z23))2 − (X2Z12 − X1Z22)(2(X2Z12 − X1Z22))2 −2X1Z22(2(X2Z12 − X1Z22))2

Y 3 = 2(Y 2Z13 − Y 1Z23)(X1Z22(X2Z12 − X1Z22)2 − X3)− 2Y 1Z234(X2Z12 − X1Z22)3

Z3 = (2Z1Z2)(X2Z12 − X1Z22)

... we better have a look at the “Explicit-Formulas Database”.
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Elliptic curve families

w -NAF representation

A non-adjacent form (NAF) of a positive integer k is an
expression: k =

∑l−1
i=0 ki2

i , where ki ∈ 0,±1, kl−1 6= 0, and no two
consecutive digits ki are nonzero. The length of the NAF is l.

Let w ≥ 2 be a positive integer. A width-w NAF of a positive
integer k is also an expression k =

∑l−1
i=0 ki2

i , but where each
nonzero coefficient ki is odd, |ki | < 2w−1, kl−1 6= 0, and at most
one of any w consecutive digits is nonzero. The length of the
width-w NAF is l .
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Elliptic curve families

w -NAF representation

Express k =
∑l−1

i=0 ki2
i , where each coefficient ki different than

zero is odd, 2ω−1 ≤ ki ≤ 2ω−1, kl−1 6= 0

Ejemplo

Given k = 1122334455, the binary representation of k and the ω-NAF representations
of k for 2 ≤ ω ≤ 6 are:

(k)2 = 1 0 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1
NAF2(k) = 1 0 0 0 1 0 1̄ 0 0 1̄ 0 1 0 1̄ 0 1̄ 0 0 0 1̄ 0 0 1̄ 0 0 0 0 1̄ 0 0 1̄
NAF3(k) = 1 0 0 0 0 0 3 0 0 1̄ 0 0 1 0 0 3 0 0 0 1̄ 0 0 1̄ 0 0 0 0 1̄ 0 0 1̄
NAF4(k) = 1 0 0 0 0 1 0 0 0 7 0 0 0 0 5 0 0 0 7 0 0 0 7 0 0 0 1̄ 0 0 0 7
NAF5(k) = 1 0 0 0 0 1̄5 0 0 0 0 9̄ 0 0 0 0 0 11 0 0 0 0 0 0 9̄ 0 0 0 0 0 0 0 9̄
NAF6(k) = 1 0 0 0 0 0 0 0 0 23 0 0 0 0 0 11 0 0 0 0 0 0 9̄ 0 0 0 0 0 0 0 9̄
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Elliptic curve families

Double and add algorithm

Algorithm 1 Double-and-add scalar-point multiplication

Input: Positive integer k in base 2 representation, P ∈ E (Fpm)
Ouput: kP

1: Q ←∞
2: for i = l − 1 downto 0 do
3: Q ← [2]Q
4: if ki = 1 then
5: Q ← Q + P
6: end if
7: end for
8: return Q
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Applying the algorithm

Algorithm 2 w -NAF multiplication

Input: Window width w , positive integer k , P ∈ E (Fpm)
Ouput: kP

1: Compute the w -NAF expansion of k
2: Compute Pi = iP for i ∈ {1, 3, 5, . . . 2w−1 − 1}
3: Q ←∞
4: for i = l − 1 downto 0 do
5: Q ← [2]Q
6: if ki 6= 0 then
7: if ki > 0 then
8: Q ← Q + Pki

9: else
10: Q ← Q − Pki

11: end if
12: end if
13: end for
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Elliptic curve families

The Comb method

For k ∈ Z+, let t = |k| and d = dt/ωe, where ω is the window size. The
comb method works as follows,

1 Represent k in its [signed] binary form, such that |k| = ωd

2 Divide the scalar k in ω-bit words, each of size d :

k = Kω−1 ‖ . . . ‖ K 1 ‖ K 0

3 Write the K j words as a matrix,



K0

.

.

.

Kω
′

.

.

.

Kω−1


=



K0
d−1 . . . K0

0

.

.

.

.

.

.

Kω
′

d−1 . . . Kω
′

0

.

.

.

.

.

.

Kω−1
d−1

. . . Kω−1
0


=



kd−1 . . . k0

.

.

.

.

.

.
k(ω′+1)d−1 . . . kω′d

.

.

.

.

.

.
kωd−1 . . . k(ω−1)d



4 Process sequentially each column of the scalar
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Elliptic curve families

Comb’s method

Input: Window size ω, positive integer k , P ∈ E (Fq)
Ouput: kP

1: Precompute Calculate [aω−1, . . . , a2, a1, a0]P for all bit combi-
nations (aω−1, . . . , a2, a1, a0) of size ω

2: By padding k on the left with zeroes, write k =
Kω−1 ‖ . . . ‖ K 1 ‖ K 0, where K j is a word of length d .

Represent each K j
i as the i-th bit of the word K j

3: Q ← O
4: for i = (d − 1)→ 0 do
5: Q ← 2Q
6: Q ← Q + [Kω−1

i , . . . ,K 1
i ,K

0
i ]P

7: end for
8: return Q
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Elliptic curve families

Variants of the Comb method

I Combs method are only useful in the context when the point
P is known in advance [such as in ECDSA key generation and
signature primitives]
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Elliptic curve families

Variants of the Comb method

I Combs method are only useful in the context when the point
P is known in advance [such as in ECDSA key generation and
signature primitives]

I It is possible to generalize the Comb method using two or
more precomputed tables as discussed by Hankerson, Menezes
and Vanstone in their famous book
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Elliptic curve families

Variants of the Comb method

I Combs method are only useful in the context when the point
P is known in advance [such as in ECDSA key generation and
signature primitives]

I It is possible to generalize the Comb method using two or
more precomputed tables as discussed by Hankerson, Menezes
and Vanstone in their famous book

I Lim and Lee gave more flexible methods for performing the
comb algorithm
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Elliptic curve families

Variants of the Comb method

I Combs method are only useful in the context when the point
P is known in advance [such as in ECDSA key generation and
signature primitives]

I It is possible to generalize the Comb method using two or
more precomputed tables as discussed by Hankerson, Menezes
and Vanstone in their famous book

I Lim and Lee gave more flexible methods for performing the
comb algorithm

I In eprint 2012/309, Hamburg presented a signed multi-comb
algorithm that nicely allows the saving of half of the
precomputed points. Hamburg’s representation writes the
scalar in a signed binary representation where the bits can
only get the values of ±1
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Elliptic curve specific methods

Pablo Picasso: The bull challenge (8/11)
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Elliptic curve specific methods

Endomorphisms

Let E be an elliptic curve defined over the finite field Fq with the
point at infinity denoted by O.

An endomorphism of E is a map φ : E → E such that φ(O) = O
and φ(P) = (g(P), h(P)), for all P in the curve and where g , h are
rational functions with coefficients in Fq. The characteristic
polynomial of an endomorphism φ is the monic polynomial f (X ) of
least degree in Z[X ] such that f (φ) = 0.
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Elliptic curve specific methods

Examples

Example 1. The pth power map φ : E → E defined by
(x , y) 7→ (xp, yp) and O 7→ O is an endomorphism defined over
Fp, called the Frobenius endomorphism.

This endomorphism is usually denoted as π, and is normally quite
fast as it can be efficiently computed
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Elliptic curve specific methods

Examples II

Example 3. Let p ≡ 1 (mod 4) be a prime, and consider the
following elliptic curve

E1 : y2 = x3 + ax .

defined over Fp. Let α ∈ Fp. Then, the map φ : E1 → E1 defined
by (x , y) 7→ (−x , αy) and O 7→ O is an endomorphism defined
over Fp.

If P ∈ E (Fp) is a point of prime order r , then φ acts on 〈P〉 as a
multiplication map [λ], in essence: φ(Q) = λQ, ∀A ∈ 〈P〉, with
λ2 ≡ −1 (mod r)
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Elliptic curve specific methods

Examples III

Example 3. Let p ≡ 1 (mod 3) be a prime, and consider the
following elliptic curve

E2 : y2 = x3 + b.

defined over Fp. Let β ∈ Fp. Then, the map φ : E2 → E2 defined
by (x , y) 7→ (βx , y) and O 7→ O is an endomorphism defined over
Fp.

If P ∈ E (Fp) is a point of prime order r , then φ acts on 〈P〉 as a
multiplication map [λ], in essence: φ(Q) = λQ, ∀A ∈ 〈P〉, with
λ2 + λ ≡ −1 (mod r)
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Elliptic curve specific methods

GLV Method

I In 2001 Gallant, Lambert and Vanstone presented a method
that allows to speedup the scalar multiplication kP in
E (Fp)[r ] by taking advantage of certain properties of some
elliptic curve families. In short, the method will work
whenever given a point P one can get a non-trivial multiple of
it in an efficient manner
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Elliptic curve specific methods

GLV Method

I This will work provided that there exists an endomorphism ψ
that can be efficiently computed over E/Fp such that
ψ(P) = λP, where λ ∈ Zr .
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Elliptic curve specific methods

GLV Method
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where β ∈ Fp is an element of order three and it can be easily
checked that λ satisfies, λ2 + λ ≡ −1 (mod r).
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ψ(P) = λP, where λ ∈ Zr .

I In the case of BN curves (an in general, all elliptic curves with
j-invariant zero), ψ : E1 → E1 defined as, (x , y)→ (βx , y),
where β ∈ Fp is an element of order three and it can be easily
checked that λ satisfies, λ2 + λ ≡ −1 (mod r).

I hence, it is possible to speedup the computation of kP by
writing k ≡ k0 + k1λ (mod r) with |ki | <

√
r followed by a

simultaneous multiplication k0P + k1ψ(P)
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GLV Method

Input: Positive integer k, P ∈ E(Fp), endomorphism ψ over E(Fp).
Ouput: kP
1: Q ← ψ(P) (= λP)
2: Decompose k as, k = u + vλ where |u| = |v | = l
3: [using egcd or lattice methods]
4: Obtain the w -NAF representation of u and v
5: R ← O
6: for i = l − 1→ 0 do
7: R ← 2R
8: if ui 6= 0 then
9: R ← R + P

10: end if
11: if vi 6= 0 then
12: R ← R + Q
13: end if
14: end for
15: return R
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Introduction

Galbraith and Scott, and Galbraith, Linn and Scott in showed a
technique for generalizing the GLV method for higher powers of the
endomorphism for the groups G2 and GT [to be defined next!].

To get an m-dimensional expansion

n ≡ n0 + n1λ+ · · ·+ nm−1λ
m−1 (mod r)

of [n]P, one must decompose n with powers of λ sufficiently
different and modulo r .

The method then solves a closest vector problem in a lattice using
Babai’s rounding off method. A reduced lattice basis, however,
must be precomputed in order to get an efficient implementation.

“Introduction to Elliptic Curve Cryptography: Implementation Aspects”, ECC 2012 Introduction course. 77/92



Context Field Arithmetic Elliptic curve Arithmetic Elliptic curve defined over prime fields Other tricks

GLS method

Decomposition

For a pairing friendly elliptic curve family, it is possible to get a
“natural” m-dimensional expansion with m = ϕ(k), where ϕ(k) is
the Euler totient function on k , the embedding degree of the
family.

The modular lattice basis is defined as, by:

L =

{
x ∈ Zm :

m−1∑
i=0

xiλ
i ≡ 0 (mod r)

}

where λ = T = t − 1. This m-dimensional modular lattice L will
be used to construct a m×m matrix. Then, one can fill the matrix
with any linear combination of λ : Li ,j ≡ 0 (mod r).
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Summary of the GLS Method [EuroCrypt’09]

The GLS method can be seen as a version of the GLV method,
where the endomorphism ψ = φ−1πpφ de E ′ such that
ψ : E ′(Fpk/d )→ E ′(Fpk/d ), where πp is the Frobenius operator
defined as,

πp : E (Fpk )→ E (Fpk ) : (X ,Y ) 7→ (X p,Y p) ∈ E (Fpk )

In the case of BN curves one has that the following identity holds,
ψ4−ψ2 + 1 = 0, which can be seen as a scalar multiplication by p.
Since p ≡ t − 1 (mod r) and |t − 1| ≈ 1

4 |r |, the scalar k can be
decomposed as k ≡ k0 + k1λ+ k2λ

2 + k3λ
3 (mod r), para

λ = t − 1.
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GLS Method [EuroCrypt’09]

Input: A positive integer k, Q ∈ E(Fp2 ), endomorphism ψ = φ−1πpφ over E(Fp2 ).
Ouput: kQ
1: R0 ← Q, R1 ← ψ(Q), R2 ← ψ2(Q), R3 ← ψ3(Q)
2: Decompose k = k0 + k1λ+ k2λ

2 + k3λ
3 where |ki | = l

3: Represent ki =
∑l−1

j=0 kij2
j

4: R ← O
5: for i = l − 1→ 0 do
6: R ← 2R
7: if k0i 6= 0 then
8: R ← R + R0

9: if k1i 6= 0 then
10: R ← R + R1

11: if k2i 6= 0 then
12: R ← R + R2

13: if k3i 6= 0 then
14: R ← R + R3

15: end for
16: return R
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Definition of a pairing

Here, we define a pairing as a map: G2 × G1 → GT .

These groups are finite and cyclic. G1 and G2 are additively-
written and both of them are of prime order r , G1 ⊆ E (Fp), and
G2 ⊆ E (Fpd ).

GT , is multiplicatively-written and of order r , GT ⊆ µr or just F∗
pk

Properties:

I Bilinearity

I Non-degeneracy

I Efficiently computable
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Scalar-point multiplication and exponentiation in pairings

The most important property of a pairing is the bilinearity, denoted
as:

e([a]Q, [b]P) = e([b]Q, [a]P) = e(Q, [ab]P) = e(Q,P)ab

where Q ∈ G2, P ∈ G1, and the result is in GT .

A multiplication in G2 is much more expensive than in G1, it is
wise to place such operation in the smaller group.

It is also know that an exponentiation in GT is cheaper than a
pairing computation, some protocol designers try to exploit this
too.
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Security in pairings (1/3)

I A pairing-based cryptosystem is considered secure if the discrete log
problem is computationally intractable:

I In the subgroup F∗pk , finding the solution to g x = h ∈ F∗pk

I In the group E [r ], given xP y Q, find the integer x such that
xP = Q ∈ E [r ].

I hence, the security guarantees of a pairing are measured with
respect to log2(r) y log2(pk).

I the ratio between this two parameters is captured by k · ρ, where
ρ = log2(p)/log2(r).
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Security in pairings (2/3)

I In the following it is shown an estimation of the required embedding
degree for different lengths in bits of p and r , whic are required to
obtain the level of security achieved by the pairing

Security r bitlength pk bitlength embedding degree
level k
(bits) log2(r) log2(pk) ρ ≈ 1 ρ ≈ 2

80 160 960 - 1280 6 - 8 3 - 4
112 224 2200 - 3600 10 - 16 5 - 8
128 256 3000 - 5000 12 - 20 6 - 10
192 384 8000 - 10000 20 - 26 10 - 13
256 512 14000 - 18000 28 - 36 14 - 18
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Optimal ate pairing

Given the elliptic curve E/Fp with embedding degree k and order
#E (Fp) = p + 1− t, where t is the Frobenius trace of E over Fp.
given the points P ∈ E (Fp)[r ] and Q ∈ E (Fp2)[r ], the optimal ate
pairing â is defined as,

â(Q,P) = ft−1,Q(P)(pk−1)/r

where ft−1,Q can be recursively computed using the doubling and
add method for computing lines:

fa+1,R = fa,R · `aR,R and f2a,R = f 2
a,R · `aR,aR
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pairing â is defined as,
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Miller’s loop

Input: r = (rl−1, . . . , r1, r0)2, Q,P ∈ E (F̄p) such that P 6= Q
Ouput: fr ,Q(P)

1: T ← Q, f ← 1
2: for i = l − 2→ 0 do
3: f ← f 2 · `T ,T (P), T ← 2T
4: if ri = 1 then
5: f ← f · `T ,Q(P), T ← T + Q
6: end if
7: end for
8: return f
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Final Exponentiation

One can represent (pk − 1)/r as the product of two exponents,

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

where Φk(p) is the k-th cyclotomic polynomial evaluated in p.In the case of
BN curves where k = 12 one has,

p12 − 1

r
= (p6 − 1) · (p2 + 1) · p

4 − p2 + 1

r
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Pairing algorithm/Multipairing

Basic Miller loop + final exponentiation

Input: P ∈ G1, Q ∈ G2

Ouput: f ∈ GT

f ← 1, T ← P, i ← bLog2(r)c − 1
while i ≥ 0 do
f ← f 2 ·LT ,T (Q)
T ← 2T
if si [i + 1] = 1 then
f ← f · LT ,P(Q)
T ← T + P

end if
i ← i − 1

end while
f (pk−1)/r

return f
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GLS on GT

In the case of this method, the efficiently computable
endomorphism is the Frobenius endomorphism, this is because:

p ≡ t − 1 mod r

Hence,

ek = ek0 · ek
p
1 · ek

p2

2 · · · ek
pm−1

1

where e ∈ GT , k ∈ Zr , m is the degree of the decomposition, and
the exponentiation to the p is done using the Frobenius
endomorphism.

We can use the same method for decomposing the exponent, and
applying the corresponding endomorphism.
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Thank you for your attention

Questions?
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