
Centro de Investigación y de Estudios Avanzados del
Instituto Politécnico Nacional

Unidad Zacatenco
Departamento de Computación

Curvas eĺıpticas en la criptograf́ıa clásica y post-cuántica

Tesis que presenta

Jesús Javier Chi Domı́nguez

Para obtener el grado de

Doctor en Ciencias en Computación

Director de tesis

Dr. Francisco José Rambó Rodŕıguez Henŕıquez

Ciudad de México Diciembre, 2019

Centro de Investigación y de Estudios Avanzados del
Instituto Politécnico Nacional

Zacatenco Campus
Computer Science Department

Elliptic curves in classical and post-quantum cryptography

Thesis submitted by

Jesús Javier Chi Domı́nguez

as fulfillment of the requirement for

Doctor in Computer Science

Advisor:

Dr. Francisco José Rambó Rodŕıguez Henŕıquez

México City December, 2019

Acknowledgements

I would like to start by thanking the “Consejo Nacional de Ciencia
y Tecnoloǵıa” (CONACyT) for the scholarship they provided me
during the period I was a Ph.D. candidate at Computer Sciences
Department of the Cinvestav - IPN.

I would like to thank my advisor Francisco Rodŕıguez-Henŕıquez for
his guidance and constant support.

I would like to thank Sof́ıa Reza, Erika Ŕıos and Felipa Rosas for
their administrative help.

Additionally, I would like to thank my synodals Guillermo Morales-
Luna, Cuauhtemoc Mancillas, Juan-Carlos Ku-Cauich, Luis-Julian
Domı́nguez-Perez, and Gina Gallegos-Garćıa for their comments about
this thesis.

I would like to finish by thanking my wife Fabiola Hernández, son
Javier Chi-Hernández, dad Javier Chi, mom Teresa Domı́nguez, and
uncle Moisés Domı́nguez.

Resumen

En la actualidad, la criptograf́ıa de curvas eĺıpticas está jugando un
papel muy importante en lo que se refiere a diseños de esquemas
criptográficos, cuya clave de cifrado es relativamente pequeña. No
obstante, ante la inminente llegada de las computadoras cuánticas,
la criptograf́ıa de curvas eĺıpticas se ve impactada negativamente por
la existencia de un algoritmo cuántico (el algoritmo de Shor), el cual
tiene un tiempo de ejecución polinómico.

Debido a esta problemática, la comunidad criptográfica ha sugerido
el uso de la criptograf́ıa basada en isogenias, la cual sigue basándose
en el uso de curvas eĺıpticas pero con la diferencia de que el algo-
ritmo de Shor no peligra su seguridad. Una de las ventajas del uso
de isogenias es que permite claves de cifrado pequeñas, aunque son
costosos (computacionalmente hablando) con respecto a otros esque-
mas criptográficos.

Por su parte, mientras las computadoras cuánticas no cuenten con las
caracteŕısticas necesarias para quebrantar la criptograf́ıa de curvas
eĺıpticas, sigue siendo de interés determinar que tan segura es esta
criptograf́ıa. Por ejemplo, el ataque gGHS es usado en la criptograf́ıa
de curvas eĺıpticas binarias para reducir instancias del Problema del
Logaritmo Discreto en una curva eĺıptica hacia el jacobiano de una
curva hipereĺıptica; se dice que un criptosistema basado en curvas
eĺıpticas es vulnerable ante este ataque si es mucho más sencillo re-
solver esta nueva instancia del Problema del Logaritmo Discreto.

En esta tesis se presenta una implementación en Magma para re-
solver el problema del logaritmo discreto sobre una curva binaria
GLS; construyendo aśı una curva vulnerable ante el ataque gGHS,
junto con la aplicación de algoritmos basados en cálculo de ı́ndices,
para la resolución del Problema del Logaritmo Discreto en el jaco-
biano de una curva hipereĺıptica de género grande; en particular,
fue posible demostrar que el endomorfismo asociado a la curva GLS
permite acelerar el ataque GHS del descenso de Weil. A su vez se
presentan implementaciones eficientes en lenguaje C de i) ataques
clásicos al protocolo SIDH, y ii) el protocolo CSIDH para intercam-
bio de claves; ambos protocolos basados en isogenias.

Abstract

Nowadays, the elliptic curve cryptography is playing an important
role in the design of cryptographic schemes. Nevertheless, the immi-
nent arrival of quantum computers risk the security of elliptic curves
cryptography; that is because Shor’s algorithm allows to break it
with a polynomial running-time.

Due to this problematic, the cryptographic community has suggested
the use of isogenies in cryptography, which is still using elliptic curves
such that Shor’s algorithm doesn’t apply. Additionally, isogeny-
based cryptography allows small keys but it is slow compared with
other cryptographic schemes.

For its part, before quantum computers break elliptic curve cryp-
tography, it is important to determine whether an elliptic curve is
recommended for cryptographic usage. For example, one can use the
gGHS Weil descent attack in order to reduce an instance of the Dis-
crete Logarithm Problem on a binary elliptic curve into the Jacobian
of a hyperelliptic curve of higher genus; in particular, a cryptosystem
based on elliptic curves is called vulnerable against this attack if it
is much easier to solve the new instance of the Discrete Logarithm
Problem.

In this thesis, it is presented a Magma-code implementation for solv-
ing the DLP on a binary GLS curve. For this purpose, a vulnerable
curve against the gGHS Weil descent attack was constructed, and
then an index-calculus based algorithm was used in order to solve
the Discrete Logarithm Problem on the Jacobian of a hyperelliptic
curve of a higher genus; furthermore, it was possible to prove that
the associated GLS endomorphism allows to speedup the GHS Weil
descent attack. Additionally, it is presented efficient C-code imple-
mentations of i) classical attacks to SIDH protocol, and ii) CSIDH
protocol for key-agreement algorithms; both protocols are based on
isogenies.

Contents

Contents vii

List of Figures xi

List of Tables xiii

List of algorithms and program codes xv

1 Introduction 1
1.1 Elliptic curve in classical cryptography 3
1.2 Elliptic curve in post-quantum cryptography 4

1.2.1 Supersingular Isogeny Diffie-Hellman 4
1.2.2 Commutative Supersingular Isogeny Diffie-Hellman 5

1.3 Organization of the thesis . 6

2 Mathematical background 7
2.1 Groups and rings . 7
2.2 Finite fields . 9
2.3 Hyperelliptic curves over finite fields 10

3 Extending the GLS endomorphism to speedup the GHS Weil
descent 15
3.1 The GLS endomorphism . 16
3.2 Extending the GLS endomorphism 16
3.3 Combining the GLS and GHS techniques 18

3.3.1 New endomorphism on the hyperelliptic curve 19
3.3.2 Explicit description of the new endomorphism 20
3.3.3 Speeding-up the Index-Calculus algorithm in JacH (Fq) . 23

3.3.3.1 Solving discrete logarithms on E/F25×31 23
3.3.3.2 Comparison with related work 25

3.4 Root-finding problem related with the gGHS Weil descent attack 26
3.4.1 Efficient root-finding algorithm for linearized polynomials 26
3.4.2 Comparisons and experiments 28
3.4.3 Finding instances of elliptic curves for which the gGHS

Weil descent becomes effective 29

0x7 vii

CONTENTS

4 On the Cost of Computing Isogenies Between Supersingular
Elliptic Curves 31
4.1 Supersingular elliptic curves and isogenies 31
4.2 SIDH protocol . 33
4.3 Meet-in-the-Middle . 34

4.3.1 Basic method . 34
4.3.2 Depth-first search . 35
4.3.3 Implementation report . 36

4.4 Golden collision search . 38
4.4.1 Van Oorschot-Wiener parallel collision search 38
4.4.2 Finding a golden collision 39
4.4.3 The attack . 40
4.4.4 Implementation report . 41

4.5 Comparisons . 42
4.5.1 Meet-in-the-middle . 44
4.5.2 Golden collision search . 45
4.5.3 Mesh sorting . 45
4.5.4 Targetting the 128-bit security level 45
4.5.5 Targetting the 160-bit security level 47
4.5.6 Targetting the 192-bit security level 47
4.5.7 Resistance to quantum attacks 47
4.5.8 SIDH performance . 49

5 Stronger and Faster Side-Channel Protections for CSIDH 51
5.1 CSIDH protocol . 51

5.1.1 The class group action . 52
5.1.2 The CSIDH algorithm . 52
5.1.3 The Meyer–Campos–Reith constant-time algorithm . . . 53
5.1.4 The Onuki–Aikawa–Yamazaki–Takagi constant-time algo-

rithm . 54
5.2 Repairing constant-time versions 56

5.2.1 Projective Elligator . 56
5.2.2 Fixing a leaking branch in Onuki–Aikawa–Yamazaki–Takagi 57

5.3 Optimizing constant-time implementations 58
5.3.1 Isogeny and point arithmetic on twisted Edwards curves . 58

5.3.1.1 Montgomery curves 58
5.3.1.2 Twisted Edwards curves 59

5.3.2 Addition chains for a faster scalar multiplication 61
5.4 Removing dummy operations for fault-attack resistance 61
5.5 Derandomized CSIDH algorithms 63
5.6 Experimental results . 65

6 Concluding remarks 69
6.1 List of implemented codes . 70
6.2 List of publications . 71
6.3 Forthcoming research . 72

viii 0x8

CONTENTS

Appendix 73
A.1 Elliptic curve instances . 73
A.2 Hyperelliptic curve instances . 74
A.3 Testing the solution . 74

Bibliography 75

0x9 ix

CONTENTS

x 0xA

List of Figures

3.1 Endomorphism diagram . 18
3.2 Endomorphism diagram for H/Fq 20

4.1 Meet-in-the-middle attack for degree-2 isogeny trees. 35
4.2 VW method: detecting a collision (x, x′). 38
4.3 VW method: finding a collision (x, x′). 39

0xB xi

List of Tables

1.1 Quantum computers advances in industry. 2

3.1 CPU days required in the Index-Calculus based algorithm with
smoothness bound equals 4: solving the DLP on a hyperelliptic
genus-32 curve H/F25 . The 2nd, 3rd, and 4th column show the
timing estimations of using the Enge-Gaudry algorithm with i)
the strategy and optimal parameters from [33], ii) an optimized
version that incorporates large prime variations, and the sieve-
based version of Vollmer’s algorithm, respectively. 25

3.2 CPU seconds required for finding all the qd roots of hσ(x) in Fq` .
The Magma algorithms used were the Schonhage, Berlekamp,
and von zur Gathen-Kaltofen-Shoup algorithms; which were in-
voked as Roots(hσ(x): Al:=“Schonhage”, IsSquarefree:=true),
Factorization(hσ(x)), and Factorization(hσ(x) : Al := “GKS”),
respectively. 28

3.3 CPU seconds required for finding all the qd roots hσ(x) in Fq` . . 29

4.1 Meet-in-the-middle attacks for finding a 2eA -isogeny between two
supersingular elliptic curves over Fp2 with p = 2eA · 3eB · d − 1.
For each p, 25 randomly generated CSSI instances were solved
and the average of the results are reported. The ‘expected time’
and ‘measured time’ columns give the expected number and the
actual number of degree-2eA/2 isogeny computations for MITM-
basic. The space is measured in bytes. 37

4.2 Observed number c1w of collisions and number c2w of distinct
collisions per version v of the MD5-based random function fn,v :
{0, 1}n → {0, 1}n. The numbers are averages for 20 function
versions when w ≤ 28 and 10 function versions when w ≥ 29. . . 41

0xD xiii

LIST OF TABLES

4.3 Van Oorschot-Wiener golden collision search for finding a 2eA -
isogeny between two supersingular elliptic curves over Fp2 with
p = 2eA · 3eB · d − 1. For each p, the listed number of CSSI in-
stances were solved and the median and average of the results
are reported. The #fn’s column indicates the number of ran-
dom functions fn that were tested before the golden collision
was found. The expected and measured times list the number of
degree-2eA/2 isogeny computations. 43

4.4 Observed number c1w of collisions and number c2w of distinct
collisions per CSSI-based random function fn. The numbers are
averages for 25 function versions (except for (e, w) ∈ {(80, 212),
(80, 214), (80, 216)} for which 5 function versions were used). . . 44

4.5 Time complexity estimates of CSSI attacks for p ≈ 2512 and
p ≈ 2448, and ` = 2. All numbers are expressed in their base-2
logarithms. The unit of time is a 2e/2-isogeny computation. . . . 46

4.6 Time complexity estimates of CSSI attacks for p ≈ 2536 and
p ≈ 2614, and ` = 2. All numbers are expressed in their base-2
logarithms. The unit of time is a 2e/2-isogeny computation. . . . 47

4.7 Performance of the SIDH protocol. All timings are reported in
106 clock cycles, measured on an Intel Core i7-6700 support-
ing a Skylake micro-architecture. The “CLN + enhancements”
columns are for our implementation that incorporates improved
formulas for degree-2 and degree-3 isogenies from [46] and Mont-
gomery ladders from [50] into the CLN library. 49

5.1 Field operation counts for constant-time CSIDH. Counts are given
in millions of operations, averaged over 1024 random experiments.
The counts for a possible repaired version of [82] are estimates,
and hence displayed in italics. The performance ratio uses [78] as
a baseline, considers only multiplication and squaring operations,
and assumes M = S. 67

5.2 Clock cycle counts for constant-time CSIDH implementations,
averaged over 1024 experiments. The ratio is computed using [78]
as baseline implementation. 67

xiv 0xE

List of algorithms and
program codes

3.1 Root-finding algorithm for linearized polynomials. 28

4.1 The “random” function gn . 42

5.1 The original CSIDH class group action algorithm for supersingu-
lar curves over FP where p = 4

∏n
i=1 `i − 1. The choice of ideals

li = (`i, π − 1), where π is the element of Q(
√
−p) is mapped

to the p-th power Frobenius endomorphism on each curve in the
isogeny class, is a system parameter. This algorithm constructs
exactly |ei| isogenies for each ideal li. 54

5.2 The Onuki–Aikawa–Yamazaki–Takagi CSIDH algorithm for su-
persingular curves over FP, where p = 4

∏n
i=1 `i − 1. The ideals

li = (`i, π − 1), where π maps to the p-th power Frobenius en-
domorphism on each curve, and the exponent bound vector (m1,
. . . ,mn), are system parameters. This algorithm computes ex-
actly mi isogenies for each `i. 55

5.3 Constant-time projective Elligator 57
5.4 An idealized dummy-free constant-time evaluation of the CSIDH

group action. 62
5.5 Dummy-free randomized constant-time CSIDH class group action

for supersingular curves over FP, where p = 4
∏n
i=1 `i − 1. The

ideals li = (`i, π− 1), where π maps to the p-th power Frobenius
endomorphism on each curve, and the vector (m1, . . . ,mn) of ex-
ponent bounds, are system parameters. This algorithm computes
exactly mi isogenies for each ideal li. 64

1 EC instance.mag . 73
2 HEC instance.mag . 74
3 checking dlog.mag . 74

0xF xv

Chapter 1

Introduction

Pure mathematics is, in its way, the poetry of logical ideas.

Albert Einstein

Cryptography is the practice and study of techniques for secure communica-
tion in the presence of third parties called adversaries. In a basic communication
scheme, party A (Alice) wants to send a message to party B (Bob), so that an
adversary E (Eve) cannot understand the message.

The current cryptography can be divided into symmetric-key (same secret
key for encryption and decryption), and public-key (a public and private keys for
encryption and decryption, respectively 1) cryptography. The main advantage of
symmetric encryption over public-key encryption is that it is fast and efficient for
large amounts of data; the disadvantage is the key management necessary to use
it, the symmetric ecnryption. Nevertheless, the nature of public-key encryption
allows to perform a key exchange in order to obtaining a shared secret-key. A
key exchange algorithm can develop it in three different modes: i) static-static
mode (Alice and Bob store their private and public keys), ii) static-dynamic
mode (Alice and Bob only store their private keys), and iii) ephemeral-static
mode (one party will generate a new private and public key every time). The
resulting shared secret with static-static and static-dynamic modes will be the
same every time but with ephemeral-static mode, new shared secret-key will be
generated every time.

In 1976, Whitfield Diffie and Martin Hellman published the first key-exchange
protocol [1] that provides the capability for Alice and Bob to agree upon a shared
secret between them. Two years later, Adleman, Shamir, and Rivest bring the
first public-key cryptosystem, whose security is based on the hardness of fac-
toring large integer numbers [2]. In 1985, Miller [3] and Koblitz [4] proposed
to use elliptic curves in public-key cryptosystems, which both base their secu-
rity on the hardness of computing discrete logarithms over elliptic curves. The

1 The keys are generated in such a way that it is impossible to derive the private key from
the public key.

0x1 1

1 INTRODUCTION

main advantage of using elliptic curve cryptography is that requires smaller keys
compared to the aforementioned; for example, in order to achieve 128-bits of
security, the RSA, Diffie-Hellman, and Elliptic Curve cryptosystems require a
key of 3072, 3072, and 256 bits, respectively.

Quantum computing: In a classical computer the quintessential information
particle, the bit, can only exist in two states, 0 or 1; but this is no the case in
a quantum computer, which benefits from the ability of subatomic particles
to exist in more than one state simultaneously. To be more precise, quantum
bits (qubits) can store much more information because they make direct use
of quantum mechanical properties, such as superposition and entanglement.
Essentially, while bits can only be 0 or a 1, qubits can assume any superposition
of these values. In other words, computational operations can be performed at a
much higher speed and with much less power consumption. Certainly, quantum
computing is today in its infancy but the global giants such as Intel 1, Google 2,
IBM 3, Rigetti 4 and Microsoft 5, are investing heavily in the development of
quantum computers (see Table 1.1).

Company USTC China Rigetti Intel IBM Q Google
Number of qubits 10 16 49 50 72

Table 1.1: Quantum computers advances in industry.

In 1996, Grover gave a quantum algorithm that finds an input to a function
that produces a particular output value, using just O(

√
N) evaluations of the

function, where N is the size of the function’s domain [5] (the analogous prob-
lem in classical computation cannot be solved in fewer than O(N)). In 1997,
Shor provided a polynomial-time quantum algorithm [6] for factoring integer
numbers and computing discrete logarithms. These results and the advances on
quantum computer development risk the security of the current public-key cryp-
tography. Therefore, assuming that with a few more years of evolution, quan-
tum computers will reach the point where public-key cryptography can be easily
broken. Due to this, the post-quantum cryptography emerges like a solution by
proposing the use of classical cryptosystems that are secure against classical and
quantum attacks. In 2017, the National Institute of Standards and Technology
(NIST) of the U.S. initiated a process to solicit, evaluate, and standardize one
or more quantum-resistant public-key cryptographic algorithms. The following
year, the NIST released its list of first round algorithms as potential standards
(69 candidates), and in 2019 this number was reduced for its 2nd-round into
26. However, these 26 candidates base their security on computationally hard
problems in lattices, codes, hash function, multivariate polynomials, and isoge-

1 https://www.intel.com/content/www/us/en/research/quantum-computing.html
2 https://ai.google/research/teams/applied-science/quantum-ai/
3 https://www.research.ibm.com/ibm-q/
4 https://www.rigetti.com/qpu
5 https://www.microsoft.com/en-us/quantum/

2 0x2

https://www.intel.com/content/www/us/en/research/quantum-computing.html
https://ai.google/research/teams/applied-science/quantum-ai/
https://www.rigetti.com/qpu

1 INTRODUCTION

nies. One important fact, is that all of them are ephemeral-static key exchange.
The last candidate, isogeny-based cryptography, is in some way, a generalization
of the current elliptic curve but basing its security on the hardness of finding
“special functions” between two elliptic curves. The main advantage of using
isogenies is the smaller keys in comparison with its contenders but the disad-
vantage is that it is slower.

1.1 Elliptic curve in classical cryptography

Let q = 2n. The set of affine points (x, y) ∈ Fq` × Fq` of a binary elliptic curve
given by the Weierstrass equation

E/Fq` : y2 + xy = x3 + ax2 + b, (1.1)

together with a point at infinity denoted by O, form an abelian group denoted
by E(Fq`). The order of this group is written as #E(Fq`) = c · r. By a careful
selection of the constants a, b, the cofactor c is chosen to be a small integer
number, whereas r is a large prime. The group law of E(Fq`) is defined by the
group point addition operation. Let 〈P〉 be a prime order-r subgroup in E(Fq`),
and let k be a positive integer such that k ∈ [1, r − 1]. The elliptic curve scalar
multiplication operation computes the multiple Q = kP, which corresponds to
the point resulting of adding P to itself k − 1 times.

Galbraith-Lin-Scott (GLS) elliptic curves were introduced in [7]. GLS curves
are cryptographically interesting because they come equipped with a two di-
mensional endomorphism Ψ. Constructively, one can take advantage of this
feature by applying the Gallant-Lambert-Vanstone (GLV) approach presented
in [25], where the elliptic curve scalar multiplication Q = kP splits into two
half-sized scalar multiplications such that,

Q = kP = k1P + k2ψ(P).

The authors of [8] reported a family of binary GLS curves defined over the
quadratic field Fq2 that happened to have an almost-prime group order of the
form #Ea,b(Fq2) = c · r, with c = 2 and where r is a (2n − 1)-bit prime num-
ber. The software and hardware implementations of constant-time variable-
base-point elliptic curve scalar multiplication using binary GLS curves rank
among the fastest at the 128-bit security level [9, 10, 11, 12].

Previous work: The Weil descent technique was introduced by Gerhard Frey
in 1998 as a means of transferring a Discrete Logarithm Problem (DLP) on
an elliptic curve E defined over the field Fq` , into another discrete logarithm
problem, this time defined on the Jacobian of a genus-g curve H that lies in the
field Fq [13]. This transfer becomes useful if the DLP on the Jacobian of the
curve H/Fq shows lesser computational cost than the DLP on E/Fq` , a situation
that usually happens if the genus g of H is not too large, nor too small (i.e.,
g ≥ ` and g ≈ `).

0x3 3

1 INTRODUCTION

Frey’s initial construction was further refined by Galbraith, and Smart in
[14]. A few years later, Gaudry, Hess and Smart gave an efficient version of the
Weil descent technique applied to curves defined over binary extension fields [26].
After that, Galbraith, Hess, and Smart extended the GHS Weil descent method
by applying the GHS attack on elliptic curves isogenous to the one where the
DLP was originally targeted. This was done in the hope that the GHS attack
could possibly be more effective on any of those isogenous elliptic curves [27].
Furthermore, in 2003 Hess generalized the GHS Weil descent attack by allowing
the possibility that C/Fq could end up being non-hyperelliptic [28, 29]; addition-
ally, Hess showed that the genus of the curve C/Fq can be completely determined

by finding the roots of polynomials of the form, ĥ(x) =
∑d
i=0 hi · xq

i ∈ Fp[x].
In 2001, Menezes and Qu showed that the GHS Weil descent attack cannot

be efficiently applied to characteristic-two fields with prime extensions n that
lie in the cryptographically-interesting range n ∈ {160, . . . , 600} [15]. Moreover,
Jacobson, Menezes, and Stein studied the GHS Weil descent attack on elliptic
curves defined over Fq31 with q = 25 [33]. This was followed by an analysis of
Maurer, Menezes, and Teske, where the authors investigated the feasibility of the
GHS Weil descent attack on elliptic curves defined over binary extension fields
with composite extensions n within the interval n ∈ {100, . . . , 600} [16]. In 2009,
Hankerson, Karabina and Menezes showed that the Galbraith-Lin-Scott (GLS)
binary elliptic curves defined over F22` are secure against the (generalized)GHS
Weil descent attack when ` ∈ {80, . . . , 256} \ {127} is a prime number [8].

Chi and Oliveira presented an efficient algorithm to determine if a given GLS
elliptic curve is vulnerable against the GHS Weil descent attack [31]. Finally,
Velichka et al. presented an explicit computation of a discrete logarithm problem
on a hyperelliptic genus-31 curve H/F25 that corresponds with the image of the
Weil descent attack of an elliptic curve E/F25×31 [32].

1.2 Elliptic curve in post-quantum cryptogra-
phy

Isogeny-based cryptography was introduced by Couveignes [17], who defined
a key exchange protocol similar to Diffie–Hellman based on the action of an
ideal class group on a set of ordinary elliptic curves. Couveignes’ protocol was
independently rediscovered by Rostovtsev and Stolbunov [18, 19], who were the
first to recognize its potential as a post-quantum candidate.

1.2.1 Supersingular Isogeny Diffie-Hellman

The Supersingular Isogeny Diffie-Hellman (SIDH) key agreement scheme was
proposed by Jao and De Feo [54] (see also [49]). It is one of 26 candidates
being considered by the U.S. government’s National Institute of Standards and
Technology (NIST) for inclusion in a forthcoming standard for quantum-safe
cryptography [53]. The security of SIDH is based on the difficulty of the Com-
putational Supersingular Isogeny (CSSI) problem, which was first defined by

4 0x4

1 INTRODUCTION

Charles, Goren and Lauter [44] in their paper that introduced an isogeny-based
hash function. The CSSI problem is also the basis for the security of isogeny-
based signature schemes [51, 70] and an undeniable signature scheme [55].

Let p be a prime, let ` be a small prime (e.g., ` ∈ {2, 3}), and let E and
E′ be two supersingular elliptic curves defined over Fp2 for which a (separable)
degree-`e isogeny φ : E→ E′ defined over Fp2 exists. The CSSI problem is that
of constructing such an isogeny. In [49], the CSSI problem is assessed as having
a complexity of O(p1/4) and O(p1/6) against classical and quantum attacks [66],
respectively.

1.2.2 Commutative Supersingular Isogeny Diffie-Hellman

Recent efforts to make Isogeny-based cryptosystem practical have put it back
at the forefront of research in post-quantum cryptography [96]. A major break-
through was achieved by Castryck, Lange, Martindale, Panny, and Renes with
CSIDH [73], a reinterpretation of Couveignes’ system using supersingular curves
defined over a prime field. On the positive side, CSIDH has smaller public keys,
is based on a better understood security assumption, and supports an easy
key validation procedure, making it better suited than SIDH for CCA-secure
encryption, static-dynamic and static-static key exchange.

The first implementation of CSIDH completed a key exchange in less than 0.1
seconds, and its performance has been further improved by Meyer and Reith [77].
However, both [73] and [77] recognized the difficulty of implementing CSIDH
with constant-time algorithms, that is, algorithms whose running time, sequence
of operations, and memory access patterns do not depend on secret data. The
implementations of [73] and [77] are thus vulnerable to simple timing attacks.

The first attempt at implementing CSIDH in constant-time was realized by
Bernstein, Lange, Martindale, and Panny [81], but their goal was to obtain
a fully deterministic reversible circuit implementing the class group action, to
be used in quantum cryptanalyses. The distinct problem of efficient CSIDH
implementation with side-channel protection was first tackled by Jalali, Azarde-
rakhsh, Mozaffari Kermani, and Jao [79], and independently by Meyer, Campos,
and Reith [78], whose work was improved by Onuki, Aikawa, Yamazaki, and
Takagi [82].

The approach of Jalali et al. is similar to that of [81], in that they achieve
a stronger notion of constant time (running time independent from all inputs),
at the cost of allowing the algorithm to fail with a small probability. In order
to make the failure probability sufficiently low, they introduce a large number
of useless operations, which make the performance significantly worse than the
original CSIDH algorithm. This poor performance and possibility of failure
reduces the interest of this implementation; we will not analyze it further here.

Meyer et al. take a different path: the running time of their algorithm is in-
dependent of the secret key, but not of the output of an internal random number
generator. They claim a speed only 3.10 times slower than the unpro-tected al-
gorithm in [77]. Onuki et al. introduced new improvements, claiming a speed-up

0x5 5

1 INTRODUCTION

of 27.35% over Meyer et al., i.e., a net slow-down factor of 2.25 compared to [77].

1.3 Organization of the thesis

The mathematical background required is given in chapter 2, which is composed
by §2.1, §2.2, and §2.3 that present the mathematical definitions related with
groups and rings, finite fields, and genus-g hyperelliptic curves, respectively.

Chapter 3 is centered on the implications of the gGHS Weil descent tech-
nique applied to binary GLS curves, and it is structured as follows. In §3.1, a
brief description of the generalized GLS binary curves and their corresponding
endomorphisms are given. A concrete formulation of the GLS endomorphism
induced in the Weil restriction is presented in §3.2. This is followed in §3.3 by
a concrete definition of the GLS endomorphism on JacH(Fq), which is the main
result of this chapter. §3.3 also includes a detailed discussion of the DLP com-
putation on JacH(Fq) by means of a standard index-calculus procedure, and it
is shown that the GLS endomorphism provides a factor n acceleration in this
DLP computation. Additionally, comparisons of our results with related work
are drawn in §3.3, and an efficient root-finding algorithm for linearized polyno-
mials (required in the gGHS weil descent technique) is given in §3.4.

Chapter 4 is focused on the classical security of SIDH protocol, which is
organized as follows. The CSSI problem and Vélu’s formulas for constructing
isogenies are presented in §4.1. This is followed in §4.2 by a simple descrip-
tion of SIDH protocol. In §4.3 and §4.4, we report on our implementation of
the meet-in-the-middle and golden collision search methods for solving CSSI.
Our implementations confirm that the heuristic analysis of these CSSI attacks
accurately predicts their performance in practice. Our cost models and cost
comparisons are presented in §4.5.

Chapter 5 is oriented in an efficient a more secure constant-time C-code im-
plementation of CSIDH protocol. This chapter is ordered as follows. In §5.1.2
we briefly recall ideas, algorithms and parameters from CSIDH [73]. In §5.2 we
highlight a shortcoming in [78] and [82] and propose a way to fix it. In §5.3 we
introduce new optimizations compatible with all previous versions of CSIDH.
In §5.4 we introduce a new algorithm for evaluating the CSIDH group action
that is resistant against timing and some simple power analysis attacks, while
providing protection against some fault injections. Finally, in §5.5 we discuss a
more costly variant of CSIDH with stronger security guarantees.

Finally, the concluding remarks, Magma and C codes implementations, and
publications are presented and summarized in Chapter 6.

6 0x6

Chapter 2

Mathematical background

Everyone knows what a curve is, until he has studied enough math-
ematics to become confused through the countless number of possible
exceptions.

Felix Klein

Algebraic structures like groups, rings, finite fields, and homomorphisms
are the bases required for understanding how elliptic curves plays in the cryp-
tographic world. Therefore, let’s focus by first in describing these algebraic
structures.

2.1 Groups and rings

A group (G, ?), usually written just by G, is determined by a set G 6= ∅ and a
binary operation ? : G× G→ G that satisfies the following properties:

1. Closure. ∀a, b ∈ G, a ? b ∈ G.

2. Associativity. ∀a, b, c ∈ G, (a ? b) ? c = a ? (b ? c).

3. Neutral element. ∃!e ∈ G : ∀a ∈ G, e ? a = a ? e = a.

4. Inverse element. ∀a ∈ G, ∃a ∈ G : a ? a = a ? a = e.

Groups for which the commutativity equation a ? b = b ? a always holds are
called abelian groups.

Definition 2.1.1. Let G := (G, ?) be a group. The order of the group G is
defined as the size of the set G. The order of an element g ∈ G is defined as the
smallest positive integer r (if it exists) such that

?r(g) := g ? . . . ? g︸ ︷︷ ︸
r times

= e.

0x7 7

2 MATHEMATICAL BACKGROUND

Remark 2.1.1. Let G be a group and r ∈ Z. Now, let g ∈ G and g ∈ G the
inverse of g. Then, operation ?r(g) is extended as follows:

?r(g) :=

 ?r(g) if r > 0,
?−r(g) if r < 0,
e otherwise.

A subgroup H of G, denoted by H ≤ G, is a subset H ⊆ G such that (H, ?)
is also a group. In addition, given subset S = {s1, . . . , sn} ⊆ G with n ≥ 1
elements, the subgroup generated by S is defined as follows

〈s1, . . . , sn〉 :=
{(
?i1 (s1)

)
?
(
?i2 (s2)

)
? · · · ?

(
?in (sn)

)
: si ∈ S, ij ∈ Z

}
.

A group G is called cyclic if it is generated by only one element, i.e., G = 〈s〉
for some s ∈ G.

Theorem 2.1.1. (Lagrange’s theorem) Let G be a group of finite order, and
H ≤ G. Then, the order of H divides the order of G.

Some special maps play an important role in group theory by allowing to
connect different groups and “preserving” their binary operations. To be more
precise, given two groups (G1, ?) and (G2, ∗), a map f : G1 → G2 is a group
homomorphism if

∀g1, g2 ∈ G1 : f(g1 ? g2) = f(g1) ∗ f(g2).

There are two important subgroups induced by f , the image and the kernel
of f , which are defined as the Im f := {f(g1) ∈ G2 : g1 ∈ G1} ≤ G2 and
ker f := {g1 ∈ G1 : f(g1) = e1} ≤ G1, respectively. The homomorphisms are
clasified by five different cases:

• Monomorphisms: injective maps,

• Epimorphisms: surjective maps,

• Isomorphisms: bijective maps,

• Endomorphisms: if G1 is equal to G2, and

• Automorphism: endomorphisms that are isomorphisms.

Remark 2.1.2. Two groups G1 and G2 are called to be isomorphic, and denoted
by G1

∼= G2, if there is an group isomorphism from G1 to G2.

Likewise, a ring cosists of a non-empty set R with two binary operations +
(addition) and · (multiplication) such that

1. (R,+) is an abelian group.

2. The binary operation · : R×R→ R satisfies the following three properties

(a) Closure. ∀a, b ∈ R, a · b ∈ R.

8 0x8

2 MATHEMATICAL BACKGROUND

(b) Associativity. ∀a, b, c ∈ R, (a · b) · c = a · (b · c).
(c) Neutral element. ∃!1 ∈ R : ∀a ∈ G, 1 · a = a · 1 = a.

3. Multiplication is distributive concerning addition:

(a) ∀a, b, c ∈ R, a · (b+ c) = (a · b) + (a · c).
(b) ∀a, b, c ∈ R, (b+ c) · a = (b · a) + (c · a).

Similarly as in groups, if the commutativity equation a · b = b · a always
holds then the ring R is called commutative, and a subset S ⊆ R is a subring
of R, denoted by S ≤ R, if S is also a ring. On the other hand, R is called a
field if (R \ {0}, ·) is an abelian group. Consequently, given a field F, the set of
polynomials in the variable x (i.e., finite linear combinations of monomials xi)
with coefficients in F is denoted by F[x] and it forms a commutative ring.

2.2 Finite fields

Given a, b ∈ Z with a 6= 0, there is a unique pair of integers q, r ∈ Z such
that b = q · a + r with r ∈ J0, n − 1K; if r = 0 then a is called a factor of b
(consequently, b is called a multiple of a), and we say that a divides b and it is
denoted by a | b. The greatest common divisor and least common multiple of a
and b are denoted by gcd(a, b) and lcm(a, b), respectively.

Definition 2.2.1. Let p ∈ Z. Then, p is a prime number (or irreducible in Z)
if the only factors of p are the 1 and itself. Otherwise, p is called a composite
number.

Definition 2.2.2. Let n ∈ N. Then, a, b ∈ Z are congruent modulo n, denoted
by a ≡ b mod n, if and only if n|(a− b). In particular, for all m ∈ Z we have
that m ≡ rm mod n where m = qm ·n+rm with rm ∈ J0, n−1K. Therefore, the
modular addition and multiplication are defined by the next two congruences

(a+ b) ≡ (ra + rb) mod n ≡ rra+b mod n, and

(a · b) ≡ (ra · rb) mod n ≡ rra·b mod n.

Theorem 2.2.1. Let n ∈ N. Then Zn := {0, 1, . . . , n − 1}, joined with the
modular addition and multiplication, forms an commutative ring. Moreover,
if a ∈ Zn satisfies gcd(a, n) = 1, then there is a−1 ∈ Zn such that a · a−1

mod n ≡ a−1 · a mod n ≡ 1 mod n. As a consequence, for any prime number
p, Zp is a field and it is denoted by Fp.

Clearly, all the definitions and properties in Z can be easily extended into
any polynomial ring Fp[u], where p is a prime number. Consequently, given an
irreducible degree-n polynomial a(u) ∈ Fp[u], the set

Fpn := Fp[u]/〈a(u)〉 := {c(u) ∈ Fp[u] : deg c(u) < n},

0x9 9

2 MATHEMATICAL BACKGROUND

joined with the modular addition and multiplication with modulus a(u), forms a
finite field of size pn. Furthermore, let q := pn and b(v) ∈ Fq[v] be an irreducible
degree-` polynomial, then

Fq` := Fq[v]/〈b(v)〉 := {c(v) ∈ Fq[x] : deg c(v) < `}

is a field with q` elements. In addition, Fq` is called a degree-` extension field
of Fq, and it can be viewed as a Fq-vector space of dimension `.

Definition 2.2.3. Given a finite field Fq` with q` elements. The algebraic

closure of Fq` , denoted by Fq` , is defined as the field extension which satisfies:

1. Algrebraic extension: ∀r ∈ Fq` , ∃h(x) ∈ Fq` [x] : h(r) = 0.

2. Algebraically closed: the only irreducible polynomials in Fq` [x] are
those of degree one.

In particular,

Fq` =
⋃
i>1

Fqi .

2.3 Hyperelliptic curves over finite fields

Let p, ` and n be three positive integer numbers such that p is a prime number.
Let Fq be the finite field with q = pn elements and Fq` be a degree-` extension
field of Fq. A genus-g hyperelliptic curve H/Fq` defined over Fq` is given as

H/Fq` : y2 + h(x) · y = f(x), (2.1)

where f, h ∈ Fq` [x] satisfy deg f = 2g+1 and deg h ≤ g. The set of (Fq`)-rational
points of H/Fq` is defined as

H
(
Fq`
)

=
{

(x, y) ∈ Fq` × Fq` : y2 + h(x) · y = f(x)
}
∪ {O}. (2.2)

Here, O denotes the point at infinity. The negative of any point P = (x, y) ∈
H(Fq`) \ {O} is defined as P = (x,−y − h(x)). In particular, H/Fq` is called
an elliptic curve if g = 1, and it has group law that is given by the secant and
tangent rules. However, such rules are not longer well defined when g > 1.

For the case g > 1, one usually works with the jacobian of H/Fq` , which
is denoted by JacH(Fq`) and it is defined in terms of the group of divisors of
H/Fq` . Overall, a divisor D is a finite formal sum of points on the curve, i.e.,
D =

∑
Pi∈H(F

q`
) ci(Pi) where for almost all point Pi ∈ H(Fq`), its corresponding

coefficient ci is equal to zero. The degree of a divisor D is defined as degD =∑
ci. In addition, one can define a divisor to any rational function on H/Fq` ,

which is called principal. Using the divisors terminology, the jacobian of a
curve C on Fq can be defined as, JacH(Fq`) = Div0

H(Fq`)/PrinH(Fq`) where

Div0
H(Fq`) and PrinH(Fq`) denote the group of degree zero and principal divisors

on H/Fq` , respectively.

10 0xA

2 MATHEMATICAL BACKGROUND

Often, it results more convenient to describe the jacobian JacH(Fq`) by
means of the set of pair of polynomials u, v ∈ Fq` [x] that satisfy the follow-
ing three properties (known as Mumford’s representation),

1) deg v < deg u ≤ g,
2) u is a monic polynomial, and

3) u|(v2 + vh− f).

The divisor determined by the pair (u, v) is denote as div(u, v). The group
law for operating two pairs (ui, vi), (uj , vj) can be computed using Cantor’s
algorithm [21].

Remark 2.3.1. The jacobian of any elliptic curve E/Fq` is isomorphic to its
group of rational points, i.e., JacE(Fq`) ∼= E(Fq`).

Notice that Mumford’s representation allows to define the notions of divisor’s
irreducibility and smoothness: i) div(u, v) is irreducible if u is irreducible, and
ii) div(u, v) is s-smooth if u is s-smooth. An important and useful fact is that
if u =

∏
i ui then div(u, v) =

∑
i div(ui, v mod ui). Let us consider a point

P = (xP, yP) ∈ H(Fq`). Then, its corresponding divisor (P) is equal to div
(
x −

xP, yP
)
. Consequently, any divisor div(u, v) ∈ JacH(Fq`) can be written as∑

i ci · div
(
x − xPi , yPi

)
, where (xPi , yPi) ∈ H(Fq`), u =

∏
i (x− xPi)

ci , and
v(xPi) = yPi .

Theorem 2.3.1. Let p, ` and n be three positive integer numbers such that
p is a prime number. Let Fq be the finite field with q = pn elements and Fq`
be a degree-` extension field of Fq. And let E/Fq` be an elliptic curve. Then,

#E(Fq`) = q` + 1− t where | t |≤ 2
√
q`. The value t is known as the Frobenius

trace. Additionally, an elliptic curve is called supersingular if p | t; otherwise,
is called ordinary.

Definition 2.3.1. Let p, ` and n be three positive integer numbers such that p
is a prime number. Let Fq be the finite field with q = pn elements and Fq` be
a degree-` extension field of Fq. Let E/F and E′/F be two elliptic curves. An
isogeny from E to E′ is a non-constant rational map φ : E → E′ that it is also
a group homomorphism over Fq` . In particular, φ(x, y) 7→ (φ1(x, y), φ2(x, y))
where φi(x, y) is a quotient of polynomials with coefficients over Fq` . Moreover,
if such isogeny exists then, E and E′ are called to be isogenous over Fq` .

Theorem 2.3.2. (Tate’s theorem) Two elliptic curves E/Fq` and E′/Fq` are
isogenous over Fq` if and only if #E(Fq`) = #E′(Fq`). That is, supersingularity
(and ordinarity) is preserved under isogeny maps.

The Discrete Logarithm Problem (DLP) on JacH(Fq`) is defined as fol-
lows: given two divisors D ∈ JacH(Fq`) and D′ ∈ 〈D〉 of prime order r, find
λ ∈ {0, . . . , r − 1} such that D′ = λD. The most efficient method for solving
the DLP on JacH(Fq`) relies on an index-calculus approach that consists of the

0xB 11

2 MATHEMATICAL BACKGROUND

following steps. First, let us fix s as the smoothness bound to be used in the at-
tack. Second, let Fs be the set of irreducible divisors div(u, v) ∈ JacH(Fq) with
deg u ≤ s, and ε a small integer. Then, one needs to generate #Fs + ε relations
of the form, αiD + βiD

′ =
∑#Fs
j=1 mi,jDj , in order to construct three matrices

α = (αi)
T, β = (βi)

T and M = (mi,j), whose coefficients belong to Zr. Once
that this task is completed, one proceeds finding an element γ of the kernel of
MT so that γTM = 0. Consequently, γ satisfies

(
γTα

)
D +

(
γTβ

)
D′ = 0. In

the case that γTβ = 0, one needs to repeat the whole procedure; otherwise, the

discrete logarithm of D′ with respect to D is given as, λ = −γ
Tα
γTβ

.

Clearly, the two main steps of the index-calculus approach are, i) The search
for s-smooth divisors and; ii) The computation of a concrete kernel’s element.
This task is handled as a linear algebra problem. Regarding the first task,
one can approximate the cost of the s-smooth divisors search as follows (for
more details see [33]). Let As′ be the number of irreducible divisors div(u, v) ∈
JacH(Fq) with deg u = s′, then

As′ ≈
1

2

 1

s′

∑
d|s′

µ

(
s′

d

)
qd

 , (2.3)

where µ denotes the Möbius function, i.e., for every positive integer n we have

µ(n) =

 (−1)
k if n is square free and has

k different prime factors,
0 if n is not square free.

(2.4)

Consequently, #Fs ≈
∑s
i=1Ai. On the other hand, the number of s-smooth

divisors div(u, v) ∈ JacH(Fq) with deg u ≤ g is given as

M(g, s) =

g∑
i=1

[xi] s∏
s′=1

(
1 + xs

′

1− xs′

)As′ , (2.5)

where [.] denotes the coefficient operator. However, when As′ is known, M(g, s)
can be computed by finding the first (g + 1) terms of the Taylor expansion of∏s
s′=1

(
1+xs

′

1−xs′

)As′
around x = 0, and adding the coefficients of x, x2, . . . , xg.

Thus, the expected number of random-walk iterations before a t-smooth divisor
is encountered is

E(s) =
#JacH(Fq)
M(g, s)

≈ qg

M(g, s)
. (2.6)

In addition, the expected number of random-walk iterations before
(
#Fs + ε

)
relations are generated is

T (s) = (#Fs + ε)E(s). (2.7)

12 0xC

2 MATHEMATICAL BACKGROUND

With respect to the linear algebra task, the running time of the Lanczo’s

algorithm employed by magma can be approximated by, L(s) ≈ d ·
(
#Fs + ε

)2
,

where d denotes the per-row density of the matrix M. In fact, it can be shown
that d ≤ g.

Now, the most efficient choice for solving the DLP on a higher genus hyper-
elliptic curve is the Enge-Gaudry algorithm [23, 24], which has a sub-exponential
running-time complexity of

L(
q`
)g [1

2
,
√

2 + o(1)

]
= exp

(√
2 + o(1)

)√
log
(
q`
)g√

log log
(
q`
)g
.

Remark 2.3.2. For general small genus g ≥ 3 curves, the algorithm of Gaudry,
Thomé and Diem is the most efficient choice [22]. On the other hand, for genus-
2 hyperelliptic curves, the most efficient approach is the Pollard’s rho algorithm
with an exponential running-time complexity of√

π ·
(
q`
)g

2
.

0xD 13

2 MATHEMATICAL BACKGROUND

14 0xE

Chapter 3

Extending the GLS
endomorphism to speedup
the GHS Weil descent

The definition of a good mathematical problem is the mathematics it
generates rather than the problem itself.

Andrew Wiles

Let q = 2n, and let E/Fq` be a generalized Galbraith-Lin-Scott (GLS)
binary curve, with ` ≥ 2, (`, n) = 1. In this chapter it is shown that the
GLS endomorphism on E/Fq` induces an efficient endomorphism on the jaco-
bian JacH(Fq) of a genus-g hyperelliptic curve H/Fq : y2 + h(x) · y = f(x),
where H/Fq corresponds to the image of the GHS Weil descent attack applied
on E/Fq` . This endomorphism is defined as,

div(u, v) 7→ div

(
δdeg u
1 · (σu)

(
x
δ1

)
, δ3 (σv)

(
x
δ1

)
+ δ4 (σ(h mod u))

(
x
δ1

))
, for

some elements δ1, δ3, and δ4 ∈ Fq. Here the homomorphism σ(·), operates over

the coefficients of its input polynomial by applying the mapping σ: x 7→ x2` .
We show that the above endomorphism yields a factor n speedup when using
standard index-calculus procedures for solving the Discrete Logarithm Problem
(DLP) on JacH(Fq). Our analysis is backed up by the explicit computation of a
discrete logarithm defined on a prime order subgroup of a GLS elliptic curve over
the field F25·31 . Indeed, a Magma implementation of a standard index-calculus
procedure finds the aforementioned discrete logarithm in about 1, 035 CPU days.
This computational cost is significantly less expensive than a comparable dis-
crete logarithm computation reported in [32] (cf. Table 3.1). Remarkably, we
managed to produce a faster discrete logarithm attack than the one reported
in [32], in spite of the fact that we relied on a non-optimized implementation
based on the computer algebra system Magma [30].

0xF 15

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

3.1 The GLS endomorphism

Let ` and n be two positive integer number such that (`, n) = 1. Let Fq be the
finite field with q = 2n elements and Fq` be a degree-` extension field of Fq. Let
E/Fq` be an elliptic curve defined over Fq` and given by Equation (3.1) such
that a ∈ Fq ⊂ Fq` and b ∈ F2` ⊂ Fq` .

E/Fq` : y2 + x · y = x3 + a · x2 + b, a ∈ Fq` , and b ∈
(
Fq`
)×
. (3.1)

The j-invariant of E/Fq` is j(E) = 1/b. Now, for each integer i we let Ei/Fq` be
the elliptic curve defined over Fq` as,

Ei/Fq` : y2 + xy = x3 +
(
a2i
)
x2 +

(
b2
i
)
. (3.2)

The curves E = E0,E1, . . . ,En·`−1,En·` = E are connected by a cycle of 2-power
Frobenius maps π : Ei/Fq` → Ei+1/Fq` (that is, π(x, y) =

(
x2, y2

)
). Abusing

notation, we will write πk for the composition of any k successive Frobenius maps
π. Since b is in F2` , the curve E`/Fq` is isomorphic to E/Fq` ; the isomorphism
is

φ : E`/Fq` −→ E/Fq`
(x, y) 7−→ (x, y + δx) ,

(3.3)

where δ2 + δ = a + a2` . Moreover, if n · ` is odd then δ ∈ Fq` \ F2` , so the

isomorphism φ is defined over Fq` , and in particular δ =
∑n·`−1

2
j=0

(
a+ a2`

)22j

.

By composing the 2`-power Frobenius π` : E → E` with the isomorphism
φ : E` → E, we obtain a generalized Galbraith–Lin–Scott (GLS) endomorphism
of E, defined by

ψ := φ ◦ π` : (x, y) 7−→
(
x2` , y2` + δx2`

)
∈ End(E).

The endomorphism ψ is defined over Fq` and satisfies ψn = 1 or ψn = −1.
Endomorphisms such as ψ are cryptographically interesting because they can
be used to accelerate scalar multiplication on E, by applying the technique of
Gallant, Lambert, and Vanstone (for more details, see [25]).

In the sequel, we will show that these endomorphisms can also be used to
improve the efficiency of the Gaudry–Hess–Smart Weil descent attack on weak
curves of this kind.

3.2 Extending the GLS endomorphism

From now on, we fix an element w of Fq` such that w + w2 + · · · + w2`−1

= 1
and

Fq` = Fq(w) =
〈
w,w2, w4, . . . , w2`−1

〉
Fq

;

16 0x10

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

that is, {w,w2, w4, . . . , w2`−1} is a normal basis for Fq` over Fq. Let

Ai/Fq := W
F
q`

Fq (Ei)

be the Weil restriction of Ei/Fq` to Fq. Recall that Ai is an `-dimensional abelian
variety over Fq, and that there is an isomorphism between the groups Ai(Fq)
and Ei(Fq`).1 The different isogenies and endomorphisms of Ei correspond to
isogenies and endomorphisms of Ai.

We will use the following explicit affine model for Ai. Consider the polyno-
mial ring R = Fq[x0, x1, . . . , x`−1, y0, . . . , y`−1], and set

X =

`−1∑
j=0

xjw
2j and Y =

`−1∑
j=0

yjw
2j (3.4)

in R ⊗ Fq` . By expanding the defining equation of Ei into the variables X and

Y , there exist W0, . . . ,W`−1 in R such that Y 2 + XY − (X3 − (a2i)X2 − b) =∑
j=0Wjw

2j in R⊗Fq` . The affine scheme Spec(R/(W0, . . . ,W`−1)) is then Fq-
isomorphic to an open affine subset of Ai. By construction, we have a bijection
of sets

ι : Ei(Fq`) −→ Ai(Fq)
(x, y) 7−→ (x0, . . . , xn−1, y0, . . . , yn−1),

(3.5)

where x =
∑`−1
j=0 xjw

2j and y =
∑`−1
j=0 yjw

2j . In fact, ι is an isomorphism of
groups.

We want now to make the isogenies and endomorphisms of Ai that corre-
spond with π, φ, and ψ completely explicit with respect to this affine model of
Ai. To this end, observe first that ifX =

∑`−1
j=0 xjw

2j , thenX2 =
∑`−1
j=0 x

2
jw

2j+1

,
so the 2-powering Frobenius isogeny π : Ei → Ei+1 corresponds to an isogeny
Π : Ai → Ai+1 which squares and cyclically permutes the coordinates:

Π : (x0, . . . , x`−1, y0, . . . , y`−1) 7−→ (x2
`−1, x

2
0, . . . , x

2
`−2, y

2
`−1, y

2
0 , . . . , y

2
`−2).

(3.6)
Let us recall that since a of Equation (3.1) is in Fq, so is δ. Now, the

isomorphism φ : E` → E maps (X,Y) to (X,Y + δX), and so corresponds to an
isomorphism Φ : A` → A defined on our affine model above by

Φ : (x0, . . . , x`−1, y0, . . . , y`−1) 7−→ (x0, . . . , x`−1, y0 + δx0, . . . , y`−1 + δx`−1) .

As with the elliptic curves Ei, composing Π` : A→ A` with Φ : A` → A yields
an endomorphism Ψ of A, defined (over Fq) by

Ψ : (x0, . . . , x`−1, y0, . . . , y`−1) 7−→
(
x2`

0 , . . . , x
2`

`−1, y
2`

0 + δx2`

0 , . . . , y
2`

`−1 + δx2`

`−1

)
.

Clearly on groups of points we have Π = ι ◦π ◦ ι−1, Φ = ι ◦φ ◦ ι−1, and Ψ =
ι ◦ψ ◦ ι−1. The relationships between all of these various maps are summarized
in Figure 3.1.

1 More generally, for any algebra K over Fq , there is an isomorphism between Ei(Fq`⊗FqK)

and Ai(K); in fact, Ai is the group scheme realizing the functor K 7→ Ei(Fq` ⊗Fq K).

0x11 17

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

E/Fq` E`/Fq` E/Fq`

A/Fq A`/Fq A/Fq

π`

ι

ψ

φ

ι

Π`

Ψ

Φ

ι

Figure 3.1: Endomorphism diagram

We note that if G is a cyclic subgroup of E(Fq`) of order r, and ψ acts on
G as multiplication by some eigenvalue λ (mod r), then Ψ must act on ι(G) as
multiplication by exactly the same eigenvalue λ.

3.3 Combining the GLS and GHS techniques

Firstly, the genus-g algebraic curve C/Fq (not necessary hyperelliptic) that the
generalized GHS (gGHS) Weil descent technique computes can be obtained
by constructing the Weil restriction A/Fq of E/Fq` , intersecting A/Fq with
(` − 1)-dimensional hyperplanes to obtain a subvariety A′/Fq of A/Fq, and
finding an irreducible component C/Fq of A′/Fq (for more details see [26, 27,
28, 29]). Therefore, let us intersect A/Fq with the hyperplanes x0 = x1 = · · · =
x`−1 = x ∈ Fq. However, assuming a ∈ Fq and b ∈ F2` , and using the linear

independence property of a normal basis {w,w2, w4, . . . , w2`−1} we can obtain
a subvariety A′/Fq of A/Fq, which is determined by equation (3.7).

A′/Fq :

x3 + a · x2 + x · y0 + y2
`−1 + b0 = 0

x3 + a · x2 + x · y1 + y2
0 + b1 = 0

...
x3 + a · x2 + x · y`−2 + y2

`−3 + b`−2 = 0
x3 + a · x2 + x · y`−1 + y2

`−2 + b`−1 = 0

(3.7)

where b =
∑`−1
i=0 biw

2i and each bi belongs to F2. Thus, if A′`/Fq denotes the
variety determined by equation (3.8), then the action of the endomorphism Φ
on A′`/Fq sends points into the variety A′/Fq.

18 0x12

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

A′`/Fq :

x3 + a2` · x2 + x · y0 + y2
`−1 + b0 = 0

x3 + a2` · x2 + x · y1 + y2
0 + b1 = 0

...

x3 + a2` · x2 + x · y`−2 + y2
`−3 + b`−2 = 0

x3 + a2` · x2 + x · y`−1 + y2
`−2 + b`−1 = 0

(3.8)

3.3.1 New endomorphism on the hyperelliptic curve

Let H/Fq : y2 + h(x) · y = f(x) be the genus-g hyperelliptic curve that is an
irreducible component of A′/Fq. Let us write

h(x) =

g∑
i=0

hi · xi and f(x) =

2g+1∑
i=0

fi · xi.

Then, the corresponding hyperelliptic irreducible component H`/Fq of A′`/Fq is
determined by equation (3.9).

H`/Fq : y2 + (σh)(x) · y = (σf)(x) (3.9)

where (σh)(x) =
∑g
i=0 σ(hi) · xi, (σf)(x) =

∑2g+1
i=0 σ(fi) · xi, and σ(x) = x2`

for all x ∈ Fq. Therefore, Π` : H/Fq → H`/Fq and Φ: H`/Fq → H/Fq are
determined as follows:

Π` : (x, y) 7−→
(
x2` , y2`

)
and Φ: (x, y) 7−→

(
δ1 · x+ δ2, δ3 · y + t(x)

)
,

for some δ1, δ2, δ3 ∈ Fq and t(x) ∈ Fq[x] with deg t(x) ≤ g and δ1 6= 0 1.
Consequently, Ψ = Φ ◦Π` induces the following endomorphism:

Ψ? : JacH
(
Fq
)
−→ JacH

(
Fq
)∑

j

cj (Pj) 7−→
∑
j

cj (Ψ(Pj)) .

Therefore, one can check that the divisor div(u, v) =
∑
j cj · div(x+ xPj , yPj) is

mapped to
∑
j cj · div(x+xΨ(P)j , yΨ(P)j), and therefore irreducible factors (over

Fq[x]) of u are mapped to irreducible factors of the same degree, i.e., Ψ? sends
smooth divisors to smooth divisors.

Now, because the curve H/Fq has genus g ≥ `, its Jacobian JacH is g-
dimensional. By the universal property of the Jacobian,2 The `-dimensional A

1 Any isomorphism between two hyperelliptic curves over finite fields is of the form of Φ
(for more details see section 10.2 of [20]).

2 Universal property: let κ : H → Ã be a morphism, where Ã is an abelian variety. Let
P0 ∈ H(Fq) be such that κ(P0) = 0, and consider the map κ̃ : H → JacH given by

P 7→
(
P
)
−

(
P0

)
. Then there is a unique homomorphism ψ : JacH → Ã of abelian

varieties such that κ = ψ ◦ κ̃ (for more details see section 10.5 of [20]).

0x13 19

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

is a quotient (and so an isogeny factor) of JacH. Hence, we have JacH ∼= A×B

for some (g − `)-dimensional abelian variety B. The situation is illustrated by
the diagram in Figure 3.2.

JacH JacH

H A×B A×B

Ψ?

Ψ
Ψ

Figure 3.2: Endomorphism diagram for H/Fq

As we noted above, if G is a cyclic subgroup of E(F2`·n) fixed by ψ and ψ acts
on G as multiplication by an eigenvalue λ, then Ψ acts on ι(G) as multiplication
by λ. As a consequence, we have (Ψ?)

n
= 1 or (Ψ?)

n
= −1, and (because of the

nature of Φ on A′`/Fq) we have that t(x) = δ4(σh)(δ5 · x) for some δ4, δ5 ∈ Fq.
Moreover, the morphism Ψn : H/Fq → H/Fq must fix its x-coordinate, and

xΨn(P) = δ
(
∑n−1
k=0 2k·`)

1 · x(2n·`)
P +

n−1∑
i=0

δ
(
∑i−1
k=0 2k·`)

1 · δ(2i·`)
2 .

However, recall that (`, n) = 1 and q = 2n. Then, δ
(
∑n−1
k=0 2k·`)

1 = (δ1)
2n−1

=

(δ1)
q−1

= 1, x2n·`

P = xq
`

P = xP, and xΨn(P) = xP +
∑n−1
i=0 δ

(
∑i−1
k=0 2k·`)

1 · δ(2i·`)
2 .

Therefore,
∑n−1
i=0 δ

(
∑i−1
k=0 2k·`)

1 · δ(2i·`)
2 = 0. In particular, considering the nature

of Φ on A′`/Fq, it must follow that δ2 = 0.

3.3.2 Explicit description of the new endomorphism

Recall that i) for any point P = (xP, yP) ∈ H(Fq) its corresponding divisor (P) is
equal to div

(
x+xP, yP

)
, and ii) any divisor div(u, v) ∈ JacH(Fq`) can be written

as
∑
i ci · div

(
x + xPi , yPi

)
, where (xPi , yPi) ∈ H(Fq`), u =

∏
i (x+ xPi)

ci , and
v(xPi) = yPi .

Therefore, i) and ii) imply that the divisor Ψ?
(
(P)
)

=
(
Ψ(P)

)
is equal to

div
(
x+

(
δ1x

2`

P

)
, δ3y

2`

P + δ4(σh)
(
δ5δ1x

2`

P

))
, and any divisor div(u, v) ∈ JacH(Fq)

satisfies div(u, v) =
∑deg u
i=0 div(x+xi, v(ui)) =

∑deg u
i=0

((
xi, v(xi)

))
, where x0, . . . ,

20 0x14

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

xdeg u ∈ Fq are the roots of u. In addition,

Ψ?
(
div(u, v)

)
= Ψ?

(
deg u∑
i=0

((
xi, v(xi)

)))
=

deg u∑
i=0

Ψ?
((
xi, v(xi)

))

=

deg u∑
i=0

div
(
x+

(
δ1xi

2`
)
, δ3
(
v(xi)

)2`
+ δ4(σh)

(
δ5δ1xi

2`
))
.

=

deg u∑
i=0

div

(
δ1

(x
δ1

+ xi
2`
)
, δ3(σv)

(
x2`

i

)
+ δ4(σh)

(
δ5δ1xi

2`
))
.

Let us recall now that our goal is to find the two polynomials u∗, v∗ ∈ Fq[x] such

that Ψ?
(
div(u, v)

)
= div(u∗, v∗), u∗

(
δ1xi

2`
)

= 0, and v∗
(
δ1xi

2`
)

= δ3
(
v(xi)

)2`
+

δ4(σh)
(
δ5δ1xi

2`
))

.

In particular, u∗(x) := δdeg u
1 · (σu)

(
x
δ1

)
=
∏deg u
i=0

(
x+δ1 ·xi2

`
)

, and v∗(x) :=

δ3(σv)
(
x
δ1

)
+ δ4

(σ
h
)
(δ5x). Moreover, because u∗ and v∗ must satisfy deg v∗ <

deg u∗ ≤ g and u∗ |
(
(v∗)

2
+ (v∗ · h) + f

)
, one can set v∗(x) := δ3(σv)

(
x
δ1

)
+(

δ4
(σ
h
)
(δ5x)

)
mod u∗(x).

Additionally, the endomorphism Ψ∗ must be well-defined in the sense that
v∗ should be the same if we reduce h modulus u from the beginning. This
observation implies that the following equation must be satisfied,(

δ4
(σ
h
)
(δ5x)

)
mod u∗(x) =

(
δ4
(σ

(h mod u)
)
(δ5x)

)
mod u∗(x). (3.10)

Now, let us write u =
∑
i uix

i, v =
∑
i vix

i, h =
∑
i hix

i, (h mod u) =∑
i h
′
ix
i, and

(
δ4
(σ
h
)
(δ5x)

)
mod u∗(x) =

∑
i h
∗
i x
i. Then, u∗ = δdeg u

1

∑
i
ui

2`

δi1
xi,

δ3(σv)
(
x
δ1

)
= δ3

∑
i
vi

2`

δi1
xi, and δ4

(σ
(h mod u)

)
(δ5x) = δ4

∑
i

(
h′i
)2`(

δ5
)i
xi. In

particular, equation (3.10) holds for any divisor div(u, v) ∈ JacH(Fq). Let us
analyze the cases deg u = g and deg u ≤ g separately.

The case when deg u = g

Assuming that deg u = g, one can write,

h′i = chi + hg · ui, and

h∗i = δ4 ·
(
hi

2` · δi5 +
(
hg

2` · δg5
)
· δg−i1

)
.

(3.11)

Considering equations (3.10) and (3.11), for each i = 0, . . . , (g − 1) we have

δ4 · (hi + hg · ui)2` · δi5 = δ4 ·
(
hi

2` · δi5 +
(
hg

2` · δg5
)
· δg−i1

)
. (3.12)

0x15 21

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

It follows that equation (3.12) is satisfied iff, δi5 = δg5 ·δ
g−i
1 , for each i = 0, . . . , (g−

1). Moreover, δ5 = 1
δ1

and

Ψ?
(
div(u, v)

)
= div

(
δdeg u
1 · (σu)

(x
δ1

)
, δ3(σv)

(x
δ1

)
+ δ4

(σ
(h mod u)

)(x

δ1

))
.

(3.13)

General case when deg u ≤ g

Let us consider again the general case when deg u ≤ g. Let us assume div(u, v)
is a divisor of maximal prime order r (i.e, r is the largest prime factor of
#JacH(Fq)). Therefore, we know that Ψ∗ acts on 〈div(u, v)〉 as multiplication
by an eigenvalue λ, i.e., Ψ∗(div(u, v)) = λ · div(u, v). Thus, we can compute the
divisor div(u′, v′) := λ ·div(u, v) by using Cantor’s algorithm. As a consequence,
we have that div(u∗, v∗) := Ψ∗(div(u, v)) must be equal to div(u′, v′).

Now, let us write u′ =
∑
i u
′
ix
i and v′ =

∑
i v
′
ix
i. Then u∗ = u′ and v∗ = v′

imply that δ̃1 = 1
δ1
, δ3, δ4 ∈ Fq must belong to the varieties V1 and V3,4, which

are given by equations (3.14) and (3.15), respectively.

V1/Fq :

(
u0

)2`
=
(
δ̃1
)deg u · u′0(

u1

)2` · δ̃1 =
(
δ̃1
)deg u · u′1(

u2

)2` · (δ̃1)2 =
(
δ̃1
)deg u · u′2

...(
udeg u−1

)2` · (δ̃1)deg u−1
=
(
δ̃1
)deg u · u′deg u−1

(3.14)

and

V3,4/Fq :

δ3 ·
(
v0

)2`
+ δ4 ·

(
h′0
)2`

= v′0

δ3 ·
(
v1

)2` · δ̃1 + δ4 ·
(
h′1
)2` · δ̃1 = v′1

δ3 ·
(
v2

)2` · (δ̃1)2 + δ4 ·
(
h′2
)2` · (δ̃1)2 = v′2

...

δ3 ·
(
vdeg v

)2` · (δ̃1)deg v
+ δ4 ·

(
h′deg v

)2` · (δ̃1)deg v
= v′deg v

(3.15)

It is important to note that the variety V1/Fq only depends on the parameter

δ̃1, and it is determined by (deg u) polynomial equations of degree at most

deg u. In particular, the (deg u)-th equation of V1 implies δ̃1 =
(udeg u−1)2

`

u′degu −1
, if

udeg u−1 6= 0. Otherwise, using the i-th and j-th equations of V1 with j < i,

implies δ̃1
i−j

=
(uj)

2` ·u′i
(ui)

2` ·u′j
, when ui·uj 6= 0. On the other hand, the variety V3,4/Fq

only depends on the parameters δ3 and δ4, and it is determined by (deg v + 1)

22 0x16

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

linear equations. Then, V3,4(Fq) consists of a unique point (δ3, δ4) ∈ Fq × Fq.
Moreover, combining the i-th and j-th equations of V3,4 with i 6= j,

δ3 =
v′i · (δ1)

i
+ δ4 · (h′i)

2`

(vi)
2`

, and (3.16)

δ4 =
v′i · (δ1)

i · (vj)2`
+ v′j · (δ1)

j · (vi)2`

(h′i)
2` · (vj)2`

+ (h′j)
2` · (vi)2`

(3.17)

where the denominators of equation (3.16) and (3.17) are different than zero.

3.3.3 Speeding-up the Index-Calculus algorithm in JacH (Fq)
Given two divisors D ∈ JacH (Fq) and D′ ∈ 〈D〉 of order r, a positive integer s,
and a small positive integer ε. Recall that the main steps of an index-calculus-
based algorithm are:

1. To set s as the smoothness bound, and Fs as the set of irreducible divisors
div(u, v) ∈ JacH(Fq) with deg u ≤ s.

2. To generate #Fs + ε relations of the form, αiD + βiD
′ =

∑#Fs
j=1 mi,jDj ,

in order to construct the three matrices α = (αi)
T, β = (βi)

T and M =
(mi,j), whose coefficients belongs to Zr.

3. To find an element γ of the kernel of MT so that γTM = 0.

4. If β · −→γ 6= 0 then compute the discrete logarithm: γ = −α·
−→γ

β·−→γ . Otherwise,

go back to step 2.

The Index-Calculus procedure just described requires to find a number #Fs + ε
of s-smooth divisors. Nevertheless, once that an s-smooth divisor is found, the
explicit endomorphism described in the previous section allows us to find at once,
n− 1 linearly independent extra divisors that are also s-smooth. Furthermore,
we can do even better by exploiting the endomorphism Ψ? to reduce the size of
the factor base Fs from #Fs to #Fs

n .

Remark 3.3.1. Since λ 6= ∓1 and λn ± 1 ≡ 0 mod r, it implies that the
divisors D, λ · D, . . . , [λn−2]D, and [λn−1]D are linearly dependent. Therefore,
the vector γ of Step 4 of the above procedure, could possibly annihilate α and β,
i.e., it may happen that γ ·α ≡ 0 and γ · β ≡ 0. Thus, it seems more prudent to
use only (n− 1) related divisors, namely, D, λ · D, . . . , [λn−3]D, and [λn−2]D.

3.3.3.1 Solving discrete logarithms on E/F25×31 .

In order to illustrate the implications of the previous analysis, we solved the DLP
on an weak GLS binary curve. More precisely, let q and ` be given as, q = 2n

0x17 23

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

with n = 5, and ` = 31. Then, let us define the fields, Fq = F2[u]/〈u5 + u2 + 1〉
and Fq` = Fq[v]/〈v31 + v3 + 1〉. Let E/Fq` be an elliptic curve given as,

E/Fq` : y2 + x · y = x3 + x2 +
(
v18 + v17 + v12 + v8 + v5 + v4 + 1

)
.

Using Magma, it can be easily verified that, #E
(
Fq`
)

= c · r, where c =
0x12E7FB306F6 and r = 0x6C530B0FAF0022649878E620CAE2D is a 115-bit
prime. Next, we randomly selected an order-r point P = (XP, YP) by using the

Random() function of Magma, and we set P′ = [c] (πx, πy) where πx = v355

v133 +(v+
u+ 1) and πy is one of the roots of π3

x+π2
x+
(
v18 +v17 +v12 +v8 +v5 +v4 + 1

)
.

Our goal was to find λ ∈ {1, . . . , r} such that P′ = λ ·P. The discrete logarithm
problem on this weak elliptic curve is described by the Magma code given in
Appendix A.1. Now, using the function WeilDescent() of Magma, we reduced
the problem into a hyperelliptic genus-32 curve H/Fq defined over Fq and given
by the following equation

H/Fq : y2 +
(
u7x32 + u12x16 + u30x8 + u28x2 + u7x

)
· y =

u4x65 + u14x64 + u14x33 + u19x17 + u16x8 + u15x5 + u25x4 + u4x3 + u24x.

Hence, the points P and P′ are mapped to D and D′, respectively. The new DLP
instance this time defined on the jacobian H/Fq, is described by the Magma
code given in Appendix A.2. Additionally, the endomorphism Ψ∗ : JacH(Fq)→
JacH(Fq), is given by the relation,

Ψ? : div(u, v) 7→ div

((
u21
)deg u · (σu)

(x

u21

)
,
(
u14
)
· (σv)

(x

u21

))
.

Using this setting, we implemented a parallel version of the Enge-Gaudry
algorithm using the computer algebra system Magma [30]. Our magma-code
implementetion was done as follows: the i-th thread had the task of building its
own local factor base of size #Fs

n·(number of threads) + ε,

Fi,s =

{
max

{
(Ψ∗)

i(div(u, v)
)

: i = 0, . . . , n− 1
}

: div(u, v) is an irreducible

divisor with deg u ≤ s

}
;

that is, each thread was working without communication between the other
threads. After all the threads have finished their tasks, our magma-code imple-
mentation proceed by merging and constructing the matrices to be used in the
Linear algebra step. As a consequence, we successfully accelerated the relation
step of the Enge-Gaudry algorithm by using the endomorphism Ψ∗ as discussed
in §3.3. Moreover, the factor base was dynamically built as in [31], and the
smoothness bound used was s = 4. As a result, we solved the DLP in JacH(F25)

24 0x18

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

in 1034.596 CPU days and we found γ = 0x618877C96DE350E8C7980393356E3 1.
Our Magma-code implementation of our procedures is available at

https://github.com/JJChiDguez/combining GLS with GHS.

3.3.3.2 Comparison with related work

In [32], Velichka et al. reported the solution of this same discrete logarithm
instance using a factor base size of 136533. Velichka et al. gave timing estimates
for computing the discrete logarithm problem based on the Enge-Gaudry algo-
rithm using optimal parameters derived from [33]. In addition, they gave the
timings obtained from their sieve-based version of Vollmer’s algorithm 2. Table
3.1 compare the timings obtained from our experiments with the ones reported
in [32]. As expected from our analysis, in our work we were able to reduce the
factor base to 27271 ≈ 136533

5 . Due to the more advanced micro-architecture,
the speedup achieved by our approach is higher than expected.

Notice that the endomorphism Ψ∗ : JacH(Fq) → JacH(Fq) can also be used
in the sieve-based version of Vollmer’s algorithm [32]. Extrapolating the timing
costs given in Table 3.1 we would expect 344.164 and 0.569 CPU days for the
computational costs of the divisor search and linear algebra steps, respectively.

This work
Velichka et al. work [32]

JMS EG
Estimate

Opt. EG
Estimate

Sieving
method

4-smooth divisors
search (CPU days)

1034.572 8492.67 6338.01 1720.818

Linear algebra step
(CPU days)

0.024 2.470 2.800 14.244

Total 1034.597 8495.650 6340.810 1735.063

Speedup: 8.212 6.129 1.677

Table 3.1: CPU days required in the Index-Calculus based algorithm with
smoothness bound equals 4: solving the DLP on a hyperelliptic genus-32 curve
H/F25 . The 2nd, 3rd, and 4th column show the timing estimations of using
the Enge-Gaudry algorithm with i) the strategy and optimal parameters from
[33], ii) an optimized version that incorporates large prime variations, and the
sieve-based version of Vollmer’s algorithm, respectively.

1 The linear algebra step was solved with one core of an Intel Xeon E5 2.60GHz machine
by using the function ModularSolution() that Magma has implemented. In addition,
we used 96 cores of 16 Intel Core i7 machines (3.20GHz, 3.40GHz, and 3.47GHz) and 32
cores of two Intel Xeon E5 2.60GHz machines for finding 4-smooth divisors.

2 The authors used 152 dual Intel P4 Xeon machines (2.4GHz, and 2.8GHz) with 512 kb
cache and 2 GB of RAM. On the top of that, they used the GNU Multi-Precision C
library version 4.2.2, Automatically Tuned Linear Algebra Software (ATLAS) version
3.7.31 ([2]), linbox version 1.1.3 to perform linear algebra, and the GCC version 3.4.4.

0x19 25

https://github.com/JJChiDguez/combining_GLS_with_GHS

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

3.4 Root-finding problem related with the gGHS
Weil descent attack

Recall, in the introduction we mentioned that the genus of the image curve C/Fq
of the gGHS Weil descent technique can be completely determined by finding
the roots of polynomials of the form ĥ(x) =

∑d
i=0 hi · xq

i ∈ Fp[x]. Thus, let’s
procced by given an efficient root-finding algorithm for these kind of polynomi-
als, and then ilustrate how our proposed algorithm can be combined with the
gGHS Weil descent.

Let p be a prime integer number, and n ≥ 1 be an integer number. Let
Fq be the finite field with q = pn elements. Now, for any degree-d polynomial

h(x) =
∑d
i=0 hi · xi ∈ Fq[x], let us define hσ(x) =

∑d
i=0 hi · x(qi), which is a

degree-
(
qd
)

polynomial with coefficients in Fq. The polynomial hσ(x) is called
linearized. Now, let us focus on the case when the univariate polynomial h(x) =∏
i(x − xi)

∏
j f̂j(x) is the product of different linear and irreducible degree-t

polynomials in Fq[x]. In particular, let’s assume x - h(x). Let Fq` be a degree-`
extension field of Fq where ` is defined as,

` =

{
pt − 1 if (x− xi), f̂j(x) ∈ Fp[x],
qt − 1 otherwise.

(3.18)

It follows that h(x) | (x` − 1). Since (x` − 1)
σ
(x) = xq

` − x, has all its roots in
Fq` , hσ(x) splits into linear factors over Fq` .

3.4.1 Efficient root-finding algorithm for linearized poly-
nomials

Almost all of the most popular factoring and root-finding algorithms over finite
fields are based on Berlekamp [34, 35] and Cantor-Zassenhaus [36] procedures.

In particular, those algorithms require Õ
((
qd
)3

+ log(q`) ·
(
qd
)2)

and Õ
((
qd
)2 ·

log(q`)
)

field operations for computing all the roots of hσ(x), respectively (for

more details, see [37]).1 In addition, the Successive Resultant Algorithm (SRA)
computes all the roots of hσ(x) at a cost of Õ

(
q · ` ·

(
qd
)

+ `2 ·
(
qd
))

field
operations [38, 40, 39]. Notice that computing the roots of hσ(x) becomes
costly when deg

(
hσ(x)

)
= qd is a large integer number.

Let us denote by Vhσ the set of roots of hσ(x) over Fq` , and let f`(x) ∈ Fq[x]
be an irreducible degree-` polynomial. Let us write Fq` ∼= Fq[η]/〈f`(η)〉; then,
Theorem 3.4.1, and Lemma 14 hold.

Theorem 3.4.1. Vhσ forms a Fq-vector space of dimension d. In addition,
there is an efficient way of computing a basis β of Vhσ over Fq` .

1 Õ
(
g(n)

)
means O

(
g(n) ·

(
log g(n)

)k)
for some integer k.

26 0x1A

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

Proof. Let γ1, γ2 ∈ Vhσ and c ∈ Fq. Then, hσ (c · γ1 + γ2) = c·hσ(γ1)+hσ(γ2) =
c · 0 + 0 = 0. That is, Vhσ forms a Fq-vector space. Clearly, hσ(x) has exactly
qd zeroes. Therefore | Vhσ |= qd, and any basis β of Vhσ (over Fq`) must have
d elements, i.e., Vhσ has dimension d. Furthermore, any γ ∈ Fq` can be writing

as γ =
∑`−1
i=0 γi · ηi, where each γi ∈ Fq and,

hσ(γ) =

d∑
i=0

hi · γq
i

=

d∑
i=0

hi ·

`−1∑
j=0

γj · ηj
qi

=

d∑
i=0

hi ·

`−1∑
j=0

γj ·
(
ηj
)qi

=

`−1∑
j=0

γj ·

(
d∑
i=0

hi ·
(
ηj
)qi)

=

`−1∑
j=0

γj · hσ
(
ηj
)
.

(3.19)

Notice hσ
(
ηj
)

=
∑`−1
k=0

(
ck,j · ηk

)
with each ck,j ∈ Fq. Moreover, hσ(γ) = 0 iff

−→γ · Chσ =
−→
0 , where −→γ = (γ0, . . . , γ`−1) ∈ (Fq)`, and Chσ = (ck,j) ∈ (Fq)`×`

is the matrix with coefficients ck,j ∈ Fq. That is, Vhσ is isomorphic to the
kernel (null-space) of the matrix Chσ seen as an Fq-vector space. In addition,

the task of finding a basis β ∈
(
Fq`
)d

of Vhσ can be reduced to the problem of
computing a basis of the kernel of Chσ . However, notice that the rows of Chσ

are determined by the evaluations hσ(ηj), and each evaluation can be done by
means of Horner’s rule with d · n raised to the p-th power and at most (d − 1)
additions in Fq` . Thus, Chσ can be computed with d · (` − 1) · n raised to the
p-th power, (`− 1) multiplications, and at most (`− 1)(d− 1) additions in Fq` .
Gaussian elimination can be used in order to compute a basis of the kernel of
Chσ by transforming the matrix

[
Chσ Id`×`

]
into its row echelon form,[

A B
0d×` K

]
.

Now, the rows of the matrix K, form a basis of ker Chσ . Moreover, the row ech-
elon form computation of

[
Chσ Id`×`

]
requires at most 2`3 multiplications

in Fq. Once the basis K has been obtained, the next step is writing each row
−→
k := (k0, . . . , kd−1) of K as b :=

∑`−1
i=0 ki · ηi. Thus, the cost of computing a

basis β ∈
(
Fq`
)d

of Vhσ is at most d ·(`−1) ·n raised to the p-th power, 1 (3`−1)
multiplications, and (`− 1)(2d− 1) additions in Fq` . Algorithm 3.1 implements
the above procedure.

Lemma 3.4.1. All the roots in Fq` of hσ(x) can be computed at a cost of at

most
(

3`−1+ d·(`−1)·n·log2(p)
2

)
multiplications,

(
d · (`−1) ·n · log2(p)

)
squarings

and
[
(`− 1)(2d− 1) + qd

]
additions in Fq` 2.

1 One single exponentiation to the p-th power requires log2(p) squaring and
log2(p)

2
multi-

plication operations.
2 The computation of all the linear combinations of 〈b1, . . . , bd〉 requires qd additions in

Fq` .

0x1B 27

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

Algorithm 3.1: Root-finding algorithm for linearized polynomials.

Input: q = pn, `, a degree-d h(x) ∈ Fq[x], and Fq` = Fq[η]/〈f`(η)〉
Output: Vhσ = 〈b0, . . . , bd−1〉Fq

1 Chσ ← 0`×` ∈ (Fq)`×` ;
2 for j := 0 to `− 1 do

3 (Cj,0, . . . , Cj,`−1)← the coefficients of hσ(ηj) :=
∑`−1
i=0 Cj,i · ηj

4

[
A B

0s×` K

]
← the echelon form of

[
Chσ Id`×`

]
;

5 for j := 0 to d− 1 do

6 bj ←
∑`−1
i=0 Kj,i · ηi ;

7 return Vhσ ← 〈b0, . . . , bd−1〉Fq

3.4.2 Comparisons and experiments

In this Section we present a Magma-code implementation of algorithm 3.1, and
compare it with the Schonhage, Berlekamp, and von zur Gathen-Kaltofen-Shoup
(GKS) root-finding algorithms already available in Magma, along with the SRA
technique as presented in [38] (cf. table 3.2). Our code is available at

https://github.com/JJChiDguez/root-finding

Our experiments were done on an Intel Core i7-8550U CPU 1.80GHz machine
with 16GB of RAM. We noticed that Magma was not able to compute a degree-
qd polynomial with coefficients in Fq and qd ≥ 230. For this instance of the
problem only our method could complete the computation. Table 3.3 shows the
measured timings for computing all the roots of hσ(x) when q` ≈ 22048.

p n ` d Roots()
Factorization() basic SRA

This work
Berlekamp GKS [38]

Case ` = pd − 1

2 3 7 3 0.040 0.030 0.020 1.040 0.010

3 2 26 3 0.110 0.120 0.110 58.880 0.010

5 2 24 2 0.050 0.060 0.070 10.500 0.020

7 2 48 2 1.240 1.270 1.280 1702.880 0.020

Case ` = qd − 1

2 3 63 2 0.110 0.050 0.040 2.390 0.010

3 2 80 2 7.420 1.630 1.500 20.020 0.010

Table 3.2: CPU seconds required for finding all the qd roots of hσ(x)
in Fq` . The Magma algorithms used were the Schonhage, Berlekamp,
and von zur Gathen-Kaltofen-Shoup algorithms; which were invoked as
Roots(hσ(x): Al:=“Schonhage”, IsSquarefree:=true), Factorization(hσ(x)),
and Factorization(hσ(x) : Al := “GKS”), respectively.

28 0x1C

https://github.com/JJChiDguez/root-finding

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

p 2 3 5 7 11 13

n 2 5 7 5 5 3

l 1023 242 124 342 120 168

d 10 5 3 3 2 2

log2
(
qd
)

20.000 39.624 48.760 42.110 34.594 22.203

CPU time 0.690 0.080 0.200 0.480 0.280 0.910

Table 3.3: CPU seconds required for finding all the qd roots hσ(x) in Fq` .

3.4.3 Finding instances of elliptic curves for which the
gGHS Weil descent becomes effective

Finally, when the gGHS Weil descent technique is applied to the elliptic curve
E/Fq` with q = 2n, the genus of the resulting curve H/Fq is given as [29],

g = 2m − 2m−deg(Ordγ1 (x)) − 2m−deg(Ordγ2 (x)) + 1, where Ordγ(x) denotes the
irreducible polynomial of minimal degree d that satisfies

(
Ordγ

)σ
(γ) = 0, and

m is the degree of the following polynomial

Ordγ1,γ2,γ3(x) =

{
lcm (Ordγ1(x),Ordγ2(x)) if TrF

q`
/F2

(γ3) = 0,

lcm (Ordγ1(x),Ordγ2(x), x+ 1) otherwise.

The curve E/Fq` is defined by following equation,

E/Fq` : y2 + x · y = x3 + γ3 · x2 +
(
γ1 · γ2

)2
, γ3 ∈ Fq` , and γ1, γ2 ∈

(
Fq`
)×
.

As an implication of the Florian Hess work, theorem 3.4.2 gives a novel
characterization of elliptic curves E/Fq` for which the gGHS Weil descent is
effective in the sense that the resulting (non)-hyperelliptic curve H/Fq has genus
g ≈ `.

Theorem 3.4.2. Let q = 2n and ` := 2t−1 be a Mersenne’s prime. Then, there
are elliptic curves E/Fq` such that the gGHS Weil descent permits to construct
a (non-)hyperelliptic curve H/Fq with genus g ≈ `.

Proof. First, the polynomial (x` − 1) = x2t−x
x gives all the degree-t irreducible

polynomials fk(x) in F2[x]. Now, let γ1 ∈ Fq` , γ2, γ3 ∈
(
Fq`
)×

, and Ordγi(x) =

(x− 1)
ji ·
(
fk(x)

)mi
with mi, ji ∈ {0, 1} such that (mi+ji) 6= 0 and (m1+m2) 6=

0. Moreover, deg
(

Ordγi(x)
)

= (mi · t+ ji) ∈ {1, t, t+ 1}. In additon,

Ordγ1,γ2,γ3(x) =

{
(x− 1)

max{j1,j2} · fk(x) if TrF
q`
/F2

(γ3) = 0,

(x− 1) · fk(x) otherwise.
.

Then, m := deg
(

Ordγ1,γ2,γ3(x)
)
∈
{

max{j1, j2} + t, 1 + t
}

, and the integer

g = 2m−2m−deg(Ordγ1 (x))−2m−deg(Ordγ2 (x))+1 can take the values `, `+1, 2`−1,

0x1D 29

3 EXTENDING THE GLS ENDOMORPHISM TO SPEEDUP
THE GHS WEIL DESCENT

2`, or 2`+ 1; that is, g ≈ `. Consequently, the elliptic curve E/Fq` : y2 + x · y =

x3 +γ3 ·x2 +
(
γ1 · γ2

)2
is such that the gGHS Weil descent permits to construct

a (non-)hyperelliptic curve H/Fq of genus g ≈ `.

Finally, algorithm 3.1 permits to efficiently compute all the roots of the poly-
nomials Ordγ1(x) and Ordγ2(x). Thus, it is possible to efficiently find elliptic
curves E/Fq` such that the gGHS Weil descent technique permits to construct
a hyperelliptic curve H/Fq of genus g ≈ `.

Example: let q = 22, ` = 27−1, Fq = F2[ν]〈ν2+ν+1〉 and Fq` = Fq[η]/〈η127+
η+ 1〉. Then γ3 = 0 and γ1, γ2 := γ = ν · 0x1170004172B01161470037B2A0A . 1

Define the elliptic curve E/Fq` : y2 + x · y = x3 + γ4 for which the gGHS Weil
descent constructs an hyperelliptic curve H/Fq of genus g = 127. In particular,
Ordγ(x) = (x7 + x6 + x5 + x4 + x3 + x2 + 1) ∈ F2[x] and, #E(Fq`) = (28 ·3) ·r,
with r = 0x15555555555555555555555555555555A7B52674132A255076D8A961E886A1

is 245-bit prime integer number.

1 The j-th bit of γ corresponds with j-th coefficient in F2[η]/〈η127 + η + 1〉.

30 0x1E

Chapter 4

On the Cost of Computing
Isogenies Between
Supersingular Elliptic
Curves

The beauty of mathematics only shows itself to more patient followers.

Maryam Mirzakhani

The security of the Jao-De Feo Supersingular Isogeny Diffie-Hellman (SIDH)
key agreement scheme is based on the intractability of the Computational Super-
singular Isogeny (CSSI) problem — computing Fp2 -rational isogenies of degrees
2e and 3e between certain supersingular elliptic curves defined over Fp2 . The
classical meet-in-the-middle attack on CSSI has an expected running time of
O(p1/4), but also has O(p1/4) storage requirements. In this chapter, we demon-
strate that the van Oorschot-Wiener golden collision finding algorithm has a
lower cost (but higher running time) for solving CSSI, and thus should be used
instead of the meet-in-the-middle attack to assess the security of SIDH against
classical attacks. The smaller parameter p brings significantly improved perfor-
mance for SIDH.

4.1 Supersingular elliptic curves and isogenies

Let p = `eAA `eBB − 1 be a prime1, where `A and `B are distinct small primes and
`eAA ≈ `

eB
B ≈ p1/2. Let E be a (supersingular) elliptic curve defined over Fp2 with

#E(Fp2) = (p + 1)2. Then E(Fp2) ∼= Zp+1 ⊕ Zp+1, whence the torsion groups

1 More generally, one can take p = `
eA
A `

eB
B d± 1 where d is a small cofactor.

0x1F 31

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

E[`eAA] and E[`eBB] are contained in E(Fp2) 1.

In the following, we write (`, e) to mean either (`A, eA) or (`B , eB). All
isogenies φ considered in this chapter are separable, whereby deg φ = #Ker(φ).

Let S be an order-`e subgroup of E[`e]. Then there exists an isogeny φ : E→
E′ (with both φ and E′ defined over Fp2) with kernel S. The isogeny φ is unique

up to isomorphism in the sense that if φ̃ : E → Ẽ is another isogeny defined
over Fp2 with kernel S, then there exists an Fp2-isomorphism ψ : E′ → Ẽ with

φ̃ = ψ ◦ φ.

Given E and S, an isogeny φ with kernel S and the equation of E′ can be
computed using Vélu’s formulas [67]. The running time of Vélu’s formulas is
polynomial in #S and log p. Since #S ≈ p1/2, a direct application of Vélu’s
formulas does not yield a polynomial-time algorithm for computing φ and E′.
However, since #S is a power of a small prime, one can compute φ and E′ in
time that is polynomial in log p by using Vélu’s formulas to compute a sequence
of e degree-` isogenies.

We will denote the elliptic curve that Vélu’s formulas yields by E/S and
the (Vélu) isogeny by φS : E → E/S. As noted above, φS is unique up to
isomorphism. Thus, for any fixed E, there is a one-to-one correspondence be-
tween order-`e subgroups of E[`e] and degree-`e isogenies φ : E → E′ defined
over Fp2 . It follows that the number of degree-`e isogenies φ : E → E′ is
`e + `e−1 = (`+ 1)`e−1.

Vélu’s formulas (see [44]) can be used to compute degree-` isogenies. We
present Vélu’s formulas for ` = 2 and ` = 3.

Consider the elliptic curve E/Fp2 : y2 = x3 + ax+ b, and let P = (xP, yP) ∈
E(Fp2) be a point of order two. Let v = 3x2

P + a, a′ = a− 5v, b′ = b− 7vxP, and
define the elliptic curve E′/Fp2 : y2 = x3 + a′x+ b′. Then the map

(x, y) 7→
(
x+

v

x− xP
, y − vy

(x− xP)2

)
is a degree-2 isogeny from E to E′ with kernel 〈P〉.

Let P = (xP, yP) ∈ E(Fp2) be a point of order three. Let v = 6x2
P + 2a,

u = 4y2
P, a′ = a− 5v, b′ = b− 7(u+ vxP), and define the elliptic curve E′/Fp2 :

y2 = x3 + a′x+ b′. Then the map

(x, y) 7→
(
x+

v

x− xP
+

u

(x− xP)2
, y

(
1− v

(x− xP)2
− 2u

(x− xP)3

))
is a degree-3 isogeny from E to E′ with kernel 〈P〉.

Suppose now that R ∈ E(Fp2) has order `e where ` ∈ {2, 3} and e ≥ 1. Then
the isogeny φ : E→ E/〈R〉 can be efficiently computed as follows. Define E0 = E

and R0 = R. For i = 0, 1, . . . , e − 1, let φi : Ei → Ei+1 be the degree-` isogeny
obtained using Vélu’s formulas with kernel 〈`e−1−iRi〉, and let Ri+1 = φi(Ri).
Then φ = φe−1 ◦ · · · ◦ φ0.

1 The torsion-m subgroup is defined as E[m] := {P ∈ E(Fp2) : [m]P = O}.

32 0x20

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

Remark 4.1.1. (cost of computing an `e-isogeny) As shown in [49], a ‘balanced
strategy’ for computing a degree-`e isogeny requires approximately e

2 log2 e point
multiplications by `, e

2 log2 e degree-` isogeny evaluations, and e constructions
of degree-` isogenous curves. Also presented in [49] is a slightly faster ‘optimal
strategy’ that accounts for the relative costs of a point multiplication and a
degree-` isogeny evaluation.

4.2 SIDH protocol

In SIDH, the parameters `A, `B , eA, eB , p and E are fixed and public, as are
bases {PA,QA} and {PB ,QB} for the torsion groups E[`eAA] and E[`eBB].

In (unauthenticated) SIDH, Alice selects mA, nA ∈R [0, `eAA − 1], not both
divisible by `A, and sets RA = mAPA + nAQA and A = 〈RA〉; note that A is an
order-`eAA subgroup of E[`eAA]. Alice then computes the isogeny φA : E → E/A
while keeping A and φA secret. She transmits

E/A, φA(PB), φA(QB)

to Bob. Similarly, Bob selects mB , nB ∈R [0, `eBB − 1], not both divisible by `B ,
and sets RB = mBPB + nBQB and B = 〈RB〉. Bob then computes the isogeny
φB : E→ E/B. He keeps B and φB secret and transmits

E/B, φB(PA), φB(QA)

to Alice. Thereafter, Alice computes φB(RA) = mAφB(PA) + nAφB(QA) and

(E/B)/〈φB(RA)〉,

whereas Bob computes φA(RB) = mBφA(PB) + nBφA(QB) and

(E/A)/〈φA(RB)〉.

The compositions of isogenies

E→ E/A→ (E/A)/〈φA(RB)〉

and
E→ E/B → (E/B)/〈φB(RA)〉

both have kernel 〈RA,RB〉. Hence the elliptic curves computed by Alice and
Bob are isomorphic over Fp2 , and their shared secret k is the j-invariant of
these curves.

Remark 4.2.1. (SIDH vs. SIKE) SIDH is an unauthenticated key agreement
protocol. The NIST submission [53] specifies a variant of SIDH that is a key
encapsulation mechanism (KEM) called SIKE (Supersingular Isogeny Key En-
capsulation). In SIKE, Alice’s long-term public key is (E/A, φA(PB), φA(QB)).
Bob sends Alice an ephemeral public key (E/B, φB(PA), φB(QA)) where B is de-
rived from Alice’s public key and a random string, and then computes a session

0x21 33

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

key from the j-invariant of the elliptic curve (E/A)/〈φA(RB)〉, the aforemen-
tioned random string, and the ephemeral public key. One technical difference
between the original SIDH specification in [54, 49] and the SIKE specification in
[53] (and also the SIDH implementation in [45]) is that in the latter the secret
RA is of the form PA + nAQA where nA is selected (almost) uniformly at ran-
dom from the interval [0, `eAA − 1] (and similarly for RB). Thus, RA is selected
uniformly at random from a subset of size approximately `eA of the set of all
order-`eAA subgroups (which has cardinality `eAA + `eA−1

A).

The challenge faced by a passive adversary is to compute k given the public
parameters, E/A, E/B, φA(PB), φA(QB), φB(PA) and φB(QA). A necessary
condition for hardness of this problem is the intractability of the Computational
Supersingular Isogeny (CSSI) problem: Given the public parameters `A, `B ,
eA, eB , p, E, PA, QA, PB , QB , the elliptic curve E/A, and the auxiliary points
φA(PB) and φA(QB), compute the Vélu isogeny φA : E→ E/A (or, equivalently,
determine a generator of A).

An assumption one makes (e.g., see [49]) is that the auxiliary points φA(PB)
and φA(QB) are of no use in solving CSSI. Thus, we can simplify the statement
of the CSSI problem to the following:

Poblem 4.2.1 (CSSI). Given the public parameters `A, `B , eA, eB , p, E, PA,
QA, and the elliptic curve E/A, compute a degree-`eAA isogeny φA : E→ E/A.

4.3 Meet-in-the-Middle

For the sake of simplicity, we will suppose that e is even. We denote the number
of order-`e/2 subgroups of E[`e] by N = (`+ 1)`e/2−1 ≈ p1/4.

Let E1 = E and E2 = E/A. Let R denote the set of all j-invariants of
elliptic curves that are isogenous to E1; then #R ≈ p/12 [63]. Let R1 denote
the set of all j-invariants of elliptic curves over Fp2 that are `e/2-isogenous to

E1. Since #R� N , one expects that the number of pairs of distinct order-`e/2

subgroups (A1, A2) of E1[`e] with j(E1/A1) = j(E1/A2) is very small. Thus,
we shall assume for the sake of simplicity that #R1 = N . Similarly, we let
R2 denote the set of all j-invariants of elliptic curves that are `e/2-isogenous to
E2, and assume that #R2 = N . Since E1 is `e-isogenous to E2, we know that
R1 ∩ R2 6= ∅. Moreover, since #R1 � #R and #R2 � #R, it is reasonable
to assume that #(R1 ∩R2) = 1; in other words, we can assume that there is a
unique degree-`e isogeny φ : E1 → E2.

4.3.1 Basic method

The meet-in-the-middle attack on CSSI [49], which we denote by MITM-basic,
proceeds by building a (sorted) table with entries (j(E1/A1), A1), where A1

ranges over all order-`e/2 subgroups of E1[`e]. Next, for each order-`e/2 subgroup
A2 of E2[`e], one computes E2/A2 and searches for j(E2/A2) in the table (see

34 0x22

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

Figure 4.1). If j(E2/A2) = j(E1/A1), then the composition of isogenies

φA1
: E1 → E1/A1, ψ : E1/A1 → E2/A2, φ̂A2

: E2/A2 → E2,

where ψ is an Fp2-isomorphism and φ̂A2 denotes the dual of φA2 , is the desired
degree-`e isogeny from E1 to E2. The worst-case time complexity of MITM-basic
is T1 = 2N , where a unit of time is a degree-`e/2 Vélu isogeny computation (cf.
Remark 4.1.1). The average-case time complexity is 1.5N . The attack has space
complexity N .

E1

E1,2

E1,2,1

· · ·

· · ·

E1,2,0

· · ·

· · ·

E1,1

E1,1,1

· · ·

· · ·

E1,1,0

· · ·

· · ·

E1,0

E1,0,1

· · ·

· · ·

E1,0,0

· · ·

· · ·

3 · 2e/2−1 leaves3 · 2e/2−1 leaves

E1/A1
isomorphism

ψ

E2

E2,2

E2,2,1

· · ·

· · ·

E2,2,0

· · ·

· · ·

E2,1

E2,1,1

· · ·

· · ·

E2,1,0

· · ·

· · ·

E2,0

E2,0,1

· · ·

· · ·

E2,0,0

· · ·

· · ·

3 · 2e/2−1 leaves

E2/A2

Figure 4.1: Meet-in-the-middle attack for degree-2 isogeny trees.

4.3.2 Depth-first search

The set of pairs (j(E/A), A), with A ranging over all order-`e/2 subgroups of
E[`e], can also be generated by using a depth-first search (DFS) to traverse
the tree in the left of Figure 4.1 (and also the tree in the right of Figure 4.1).
We denote this variant of the meet-in-the-middle attack by MITM-DFS. We
describe the depth-first search for ` = 2.1

Let {P,Q} be a basis for E[2e/2]. Let R0 = 2e/2−1P, R1 = 2e/2−1Q, R2 =
R0 + R1 be the order-2 points on E. For i = 0, 1, 2, the degree-2 isogenies
φi : E → Ei = E/〈Ri〉 are computed, as are bases {P0 = φ0(P),Q0 = φ0(2Q)},
{P1 = φ1(Q),Q1 = φ1(2P)}, {P2 = φ2(P + Q),Q2 = φ2(2P)} for E0[2e/2−1],
E1[2e/2−1], E2[2e/2−1], respectively. A memory stack is initialized with the tuples

1 For the sake of concreteness, all implementation reports of CSSI attacks in this section
are for the case ` = 2. However, all conclusions about the relative efficiencies of classical
and quantum CSSI attacks for ` = 2 are also valid for the ` = 3 case.

0x23 35

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

(E0, 0,P0,Q0), (E1, 1,P1,Q1), (E2, 2,P2,Q2), and the tuple on the top of the
stack is processed recursively as described next.

Suppose that we have to process (Ex, x,Px,Qx), where x ∈ {0, 1, 2} ×
{0, 1}n−1 and 1 ≤ n ≤ e/2 − 1. Let B0 = 2e/2−n−1Px, B1 = 2e/2−n−1Qx
and B2 = B0 + B1 be the order-2 points on Ex. Let Rx0 = B0 and Rx1 = B2

(B1 is the backtracking point), and compute the degree-2 isogenies φxi : Ex →
Exi = Ex/〈Rxi〉 for i = 0, 1. Then two cases arise:

(i) If n < e/2 − 1, then let Px0 = φx0(Px), Qx0 = φx0(2(Px + Qx)), Px1 =
φx1(Px+Qx), Qx1 = φx1(2Px); one can check that {Pxi,Qxi} is a basis for
Exi[2

e/2−n−1] for i = 0, 1. Then, (Ex1, x1,Px1,Qx1) is added to the stack
and (Ex0, x0,Px0,Qx0) is processed next.

(ii) If n = e/2 − 1, the leaves (j(Ex0), x0) and (j(Ex1), x1) of the tree are
stored in the table. If the stack is non-empty, then its topmost entry is
processed next; otherwise the computation terminates.

The cost of building each of the two depth-first search trees is approximately
2N degree-2 isogeny computations, 2N degree-2 isogeny evaluations, N/2 point
additions, and 2N point doublings (where N = 3 · 2e/2−1).

In contrast, the cost of building the table in MITM-basic (with ` = 2) is ap-
proximately Ne

2 2-isogeny computations, Ne
4 log2

e
2 2-isogeny evaluations, and

Ne
4 log2

e
2 point doublings (cf. Remark 4.1.1). A count of Fp2 multiplications

and squarings yields the following costs for the core operations when Jacobian
coordinates are used for elliptic curve arithmetic, isogeny computations, and
isogeny evaluations: 8 (2-isogeny computation), 12 (2-isogeny evaluation), 14
(point addition), 9 (point doubling). This gives a per-table cost of approxi-
mately 5.25Ne log2 e for MITM-basic, and a cost of 65N for MITM-DFS. Thus,
the depth-first search approach yields a speedup by a factor of approximately
e

12.4 log2 e.

4.3.3 Implementation report

The MITM-basic and MITM-DFS attacks (for ` = 2) were implemented in
C, compiled using gcc version 4.7.2, and executed on an Intel Xeon processor
E5-2658 v2 server of 2.40GHz equipped with 20 physical cores and 256 GB of
shared RAM memory; we used fopenmp for the parallelization, and the turbo
boost was enabled. Our code for the MITM-basic, MITM-DFS and VW golden
collision search CSSI attacks is available at

https://github.com/JJChiDguez/CSSI

For p = 2eA3eBd−1, the elliptic curve E/Fp : y2 = x3 +x has #E(Fp) = p+1
and #E(Fp2) = (p + 1)2. A point P ∈ E(Fp2) of order 2 · 3 · d was randomly
selected, and the isogenous elliptic curve E1 = E/〈P〉 was computed. Then, a
random order-2eA subgroup A of E1(Fp2) was selected, and the isogenous elliptic
curve E2 = E1/A was computed. Our CSSI challenge was to find a generator of
A given E1 and E2.

36 0x24

https://github.com/JJChiDguez/CSSI

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

We used Jacobian coordinates for elliptic curve arithmetic, isogeny computa-
tions, and isogeny evaluations. For MITM-basic, the leaves of the E1-rooted tree
shown in Figure 4.1 were generated as follows. Let {P,Q} be a basis for E1[2e/2].
Then for each pair (b, k) ∈ {0, 1, 2} × {0, 1, . . . , 2e/2−1 − 1}, triples

(
j(E1/〈P + (b2e/2−1 + k)Q〉), b, b2e/2−1 + k

)
, for b = 0, 1,

(j(E1/〈(2k)P + Q〉), b, k) , for b = 2,

were computed and stored in 20 tables sorted by j-invariant (each of the 20
cores was responsible for generating a portion of the leaves). The 20 tables were
stored in shared RAM memory.

MITM-DFS was executed using 12 cores. Each core was responsible for gen-
erating a portion of the leaves, and the 12 sets of leaves were stored in shared
RAM memory. Table 4.1 shows the time expended for finding 2e-isogenies for
e ∈ {32, 34, 36, 38, 40, 42, 44} with the MITM-basic and MITM-DFS attacks.
These experimental results confirm the accuracy of the attacks’ heuristic anal-
ysis.

MITM-basic MITM-DFS

expected measured clock clock

eA eB d time space time cycles cycles

32 20 23 217.17 220.72 217.26 234.50 231.73

34 21 109 218.17 221.83 218.24 235.49 232.71

36 22 31 219.17 222.87 219.14 236.43 233.67

38 23 271 220.17 223.99 220.20 237.59 234.60

40 25 71 221.17 225.04 221.15 238.63 235.71

42 26 37 222.17 226.09 222.11 239.83 236.78

44 27 37 223.17 227.14 223.25 241.07 237.87

Table 4.1: Meet-in-the-middle attacks for finding a 2eA -isogeny between two
supersingular elliptic curves over Fp2 with p = 2eA · 3eB · d − 1. For each
p, 25 randomly generated CSSI instances were solved and the average of the
results are reported. The ‘expected time’ and ‘measured time’ columns give the
expected number and the actual number of degree-2eA/2 isogeny computations
for MITM-basic. The space is measured in bytes.

0x25 37

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

4.4 Golden collision search

4.4.1 Van Oorschot-Wiener parallel collision search

Let S be a finite set of cardinality M , and let f : S → S be an efficiently-
computable function which we shall heuristically assume is a random function.
The van Oorschot-Wiener (VW) method [60] finds a collision for f , i.e., a pair
x, x′ ∈ S with f(x) = f(x′) and x 6= x′.

Define an element x of S to be distinguished if it has some easily-testable
distinguishing property. Suppose that the proportion of elements of S that are
distinguished is θ. For i = 1, 2, . . ., the VW method repeatedly selects xi,0 ∈R S,
and iteratively computes a sequence xi,j = f(xi,j−1) for j = 1, 2, 3, . . . until a
distinguished element xi,a is encountered. In that event, the triple (xi,a, a, xi,0)
is stored in a table sorted by first entry. If xi,a was already in the table, say
xi,a = xi′,b with i 6= i′, then a collision has been detected (see Figure 4.2). The
two colliding table entries (xi,a, a, xi,0), (xi′,b, b, xi′,0) can then be used to find a
collision for f by iterating the longer sequence (say the ith sequence) beginning
at xi,0 until it is the same distance from xi,a as xi′,0 is from xi′,b, and then
stepping both sequences in unison until they collide (see Figure 4.3).

xi′,b

xi,0 xi′,0

x′
x

xi,a

Figure 4.2: VW method: detecting a collision (x, x′).

By the birthday paradox, the expected time before a collision occurs is√
πM/2, where a unit of time is an f evaluation. After a collision has occurred,

the expected time before it is detected is 1/θ, and thereafter the expected time
to find the collision is approximately 3/θ. Thus, the expected time complex-
ity of the VW method is approximately

√
πM/2 + 4/θ. The expected storage

complexity is θ
√
πM/2. The parameter θ can be selected to control the storage

requirements.
The collision detecting stage of the VW method can be effectively paral-

lelized. Each of the available m processors computes its own sequences, and

38 0x26

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

xi′,b

x

xi,a

xi′,0

x′

xi,0

Figure 4.3: VW method: finding a collision (x, x′).

the distinguished elements are stored in shared memory. The expected time
complexity of parallelized VW is then 1

m

√
πM/2 + 2.5

θ . The space complexity

is θ
√
πM/2.

4.4.2 Finding a golden collision

A random function f : S → S is expected to have (M − 1)/2 unordered colli-
sions. Suppose that we seek a particular one of these collisions, called a golden
collision; we assume that the golden collision can be efficiently recognized. Thus
one continues generating distinguished points and collisions until the golden col-
lision is encountered. The expected time to find q collisions is only about

√
q

times as much as that to find one collision. However, since not all collisions
are equally likely and the golden collision might have a very low probability of
detection (see [59]), it is necessary to change the version of f periodically.

Suppose that the available memory can store w triples (xi,a, a, xi,0). When
a distinguished point xi,a is encountered, the triple (xi,a, a, xi,0) is stored in
a memory cell determined by hashing xi,a. If that memory cell was already
occupied with a triple holding a distinguished point xi′,b = xi,a, then the two
triples are used to locate a collision.

Van Oorschot and Wiener proposed setting

θ = α
√
w/M (4.1)

and using each version of f to produce βw distinguished points. Experimen-
tal data presented in [60] suggested that the total running time to find the
golden collision is minimized by setting α = 2.25 and β = 10. Then, for
210 ≤ w ≤ M/210, the expected running time to find the golden collisions

0x27 39

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

when m processors are employed is slightly overestimated as

1

m
(2.5

√
M3/w). (4.2)

Remark 4.4.1. (verifying the VW heuristic analysis) The running time esti-
mate (4.2) relies on several heuristics, the most significant of which is that when
210 ≤ w ≤ M/210 then each version of f generates approximately 1.3w colli-
sions, of which approximately 1.1w are distinct. The numbers 1.3w and 1.1w
were determined experimentally in [60]. Then the probability that a particular
version of f yields the golden collision is approximately 1.1w/(M/2), whence
the ex-pected number of function versions needed to locate the golden collision
is approximately 0.45M/w, and the expected total time is

0.45
M

w
× 10w × 1

2.25

√
M/w ≈ 2

√
M3/w.

To verify these numbers, we ran some experiments using a “random” function
fn,v : {0, 1}n → {0, 1}n (so M = 2n), where v is a string identifying the function
version, and fn,v(X) is defined to be the n most significant bits of MD5(v,X).
Table 4.2 lists the numbers of collisions and distinct collisions that were found
for different values of (n,w), confirming the 1.3w and 1.1w numbers reported in
[60].

4.4.3 The attack

Let I = {1, 2, . . . , N} and S = {1, 2} × I. For i = 1, 2, let Ai denote the set of
all order-`e/2 subgroups of Ei[`

e], define fi : Ai → Ri by fi(Ai) = j(Ei/Ai), and
let hi : I → Ai be bijections. Let g : R → S be a random function. Finally,
define f : S → S by

f : (i, x) 7→ g(fi(hi(x))).

Then one can view f as a “random” function from S to S.
Recall that one expects there are unique order-`e/2 subgroups A1, A2 of

E1[`e], E2[`e], respectively, with j(E1/A1) = j(E2/A2). Let y1 = h−1
1 (A1) and

y2 = h−1
2 (A2). Then the collision for f that we seek is the golden collision

(1, y1), (2, y2). Using m processors and w cells of memory, the VW method can
be used to find this golden collision in expected time

1

m
(2.5

√
8N3/w) ≈ 7.1p3/8/(w1/2m).

Remark 4.4.2. (finding any collision vs. finding a golden collision) The prob-
lem of finding a collision for a hash function H : {0, 1}∗ → {0, 1}n and the
problem of computing discrete logarithms in a cyclic group G can be formu-
lated as problems of finding a collision for a random function f : S → S, where
#S = 2n for the first problem and #S = #G for the second problem (see [60]).

40 0x28

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

w 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

M = 220

c1 1.66 1.30 1.48 1.30 1.48 1.38 1.28 1.27 1.29 1.27 1.28 1.27 1.24 1.18 1.08 — —

c2 1.31 1.14 1.26 1.11 1.22 1.15 1.08 1.05 1.03 1.02 1.03 1.00 0.94 0.83 0.61 — —

M = 224

c1 1.38 1.36 1.38 1.37 1.33 1.31 1.31 1.36 1.32 1.33 1.31 1.30 1.30 1.29 1.29 1.27 1.24

c2 1.21 1.14 1.16 1.16 1.12 1.10 1.11 1.13 1.11 1.11 1.09 1.06 1.06 1.05 1.04 1.00 0.95

M = 228

c1 1.09 1.21 1.33 1.35 1.36 1.35 1.30 1.34 1.32 1.34 1.33 1.34 1.33 1.32 1.31 1.31 1.30

c2 0.98 1.06 1.10 1.15 1.15 1.12 1.09 1.12 1.12 1.13 1.12 1.13 1.12 1.10 1.08 1.07 1.07

M = 232

c1 1.21 1.44 1.35 1.35 1.35 1.31 1.30 1.32 1.33 1.35 1.33 1.34 1.33 1.34 1.33 1.33 1.32

c2 1.00 1.18 1.17 1.12 1.16 1.10 1.10 1.11 1.13 1.13 1.13 1.13 1.12 1.13 1.12 1.12 1.11

M = 236

c1 1.34 1.31 1.29 1.32 1.38 1.34 1.31 1.32 1.35 1.32 1.33 1.34 1.33 1.33 1.33 1.33 1.33

c2 1.10 1.10 1.08 1.13 1.16 1.13 1.11 1.10 1.13 1.12 1.12 1.13 1.13 1.13 1.13 1.13 1.13

Table 4.2: Observed number c1w of collisions and number c2w of distinct
collisions per version v of the MD5-based random function fn,v : {0, 1}n →
{0, 1}n. The numbers are averages for 20 function versions when w ≤ 28 and
10 function versions when w ≥ 29.

For both formulations, any collision for f yields a solution to the original prob-
lem. Thus, letting N = 2n or N = #G, the problems can be solved using van
Oorschot-Wiener collision search in time approximately

1

m
N1/2.

In contrast, the only formulation of CSSI as a collision search problem for f :
S → S that we know requires one to find a golden collision for f . For this
problem, the van Oorschot-Wiener algorithm has running time approximately

N3/2/(w1/2m).

4.4.4 Implementation report

The VW attack (for ` = 2) was implemented in C, compiled using gcc version
4.7.2, and executed on an Intel Xeon processor E5-2658 v2 server equipped with
20 physical cores and 256 GB of shared RAM memory. We used fopenmp for the
parallelization and openssl’s MD5 implementation. The CSSI challenges were
the same as the ones in §4.3.3.

0x29 41

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

Let {P1,Q1}, {P2,Q2} be bases for E1[2e/2], E2[2e/2], respectively. Noting
that N = 3 · 2e/2−1, we identify the elements of I = {1, 2, . . . , N} with elements
of I1 × I2 where I1 = {0, 1, 2} and I2 = {0, 1, . . . , 2e/2−1 − 1}. The bijections
hi : I1 × I2 → Ai for i = 1, 2 are defined by

hi : (b, k) 7→
{

Pi + (b2e/2−1 + k)Qi, if b = 0, 1,
(2k)Pi + Qi, if b = 2.

Let S = {1, 2} × I1 × I2. For n ∈ {0, 1}64, we let gn : R → S be the function
computed using Algorithm 4.1. We then define the version fn : S → S of f by
(i, x) 7→ gn(fi(hi(x))).

Algorithm 4.1: The “random” function gn

Input: n ∈ {0, 1}64 and j ∈ Fp2 .
Output: c ∈ {1, 2}, b ∈ I1, k ∈ I2.

1 counter := 0;
2 repeat
3 h← MD5(1, j, n, counter) ;
4 Let h′ be the e/2 + 2 least significant bits of h, and parse h′ as

(k, c, b), where k, c, b have bitlengths e/2− 1, 1, and 2, respectively ;
5 counter ← counter + 1;

6 until b 6= 11;
7 return (c+ 1, b, k).

We set θ = 2.25
√
w/2N , where w = 2t, and declare an element X ∈ S

to be distinguished if the integer formed from the 32 least significant bits of
MD5(2, X) is ≤ 232θ. If X is distinguished, then it is placed in memory cell s,
where s is the integer determined by the t least significant bits of MD5(3, X).
If a distinguished point is not encountered after 10/θ iterations, then that trail
is abandoned and a new trail is formed.

Table 4.3 shows the time expended for finding 2e-isogenies for e ∈ {32, 34, 36,
38, 40, 42, 44} with the VW attack. These experimental results confirm the
accuracy of the VW attack’s heuristic analysis.

To gain further confidence that the VW attack’s heuristic analysis is accu-
rate for cryptographically-interesting CSSI parameters (e.g., e = 256), we ran
some experiments to estimate the number of collisions and distinct collisions for
functions fn when e = 50, 60, 70, 80. The results, listed in Table 4.4, confirm
the 1.3w and 1.1w estimates in [60].

4.5 Comparisons

There are many factors that can affect the efficacy of an algorithm.

1. Time: the worst-case or average-case number of basic arithmetic opera-
tions performed by the algorithm.

42 0x2A

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

median average

expected number measured clock measured clock

eA eB d w time of runs # fn’s time cycles # fn’s time cycles

32 20 23 29 223.20 25 180 223.55 240.79 319 224.38 241.62

34 21 109 29 224.70 25 256 224.54 241.89 714 226.02 243.37

36 22 31 210 225.70 25 369 226.06 243.51 838 227.25 244.70

38 23 271 211 226.70 25 196 226.15 243.70 567 227.69 245.23

40 25 71 211 228.20 25 162 226.36 243.99 1015 229.01 246.64

42 26 37 212 229.20 25 477 228.92 246.52 1940 230.95 248.55

44 27 37 213 230.20 25 431 229.78 247.46 942 230.91 248.58

Table 4.3: Van Oorschot-Wiener golden collision search for finding a 2eA -isogeny
between two supersingular elliptic curves over Fp2 with p = 2eA · 3eB ·d− 1. For
each p, the listed number of CSSI instances were solved and the median and
average of the results are reported. The #fn’s column indicates the number
of random functions fn that were tested before the golden collision was found.
The expected and measured times list the number of degree-2eA/2 isogeny com-
putations.

2. Space: the amount of storage (RAM, hard disk, etc.) required.

3. Parallelizability : the speedup achievable when running the algorithm on
multiple processors. Ideally, the speedup is by a factor equal to the number
of processors, and the processors do not need to communicate with each
other; if this is the case then the parallelization is said to be perfect1.

4. Communication costs: the time taken for communication between proce-
ssors, and the memory access time for retrieving data from large storage
devices. Memory access time can be a dominant cost factor when using
extremely large storage devices [42].

5. Custom-designed devices: the possible speedups that can be achieved by
executing the algorithm on custom-designed hardware. Examples of such
devices are TWINKLE [64] and TWIRL [65] that were designed for the
number field sieve integer factorization algorithm.

In this section we analyze and compare the efficacy of the meet-in-the-middle
algorithm, VW golden collision search, and a mesh sorting algorithm for solving
CSSI. We make two assumptions:

1. The number m of processors available is at most 264.

2. The total amount of storage w available is at most 280 units.

1 If the processors share the same storage space, then frequent storage accesses might
decrease the parallelizability of the algorithm.

0x2B 43

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

e p w 28 210 212 214 216

50 250331179− 1 c1 1.37 1.36 1.37 1.41 1.49

c2 1.14 1.12 1.12 1.11 1.09

60 26033731− 1 c1 1.37 1.34 1.34 1.35 1.36

c2 1.15 1.13 1.13 1.12 1.12

70 270332127− 1 c1 1.33 1.34 1.34 1.34 1.34

c2 1.13 1.14 1.13 1.13 1.13

80 28032571− 1 c1 1.35 1.32 1.33 1.34 1.33

c2 1.14 1.12 1.13 1.13 1.13

Table 4.4: Observed number c1w of collisions and number c2w of distinct
collisions per CSSI-based random function fn. The numbers are averages for 25
function versions (except for (e, w) ∈ {(80, 212), (80, 214), (80, 216)} for which 5
function versions were used).

Our analysis will ignore communication costs, and thus our running time esti-
mates can be considered to be lower bounds on the “actual” running time.

Remark 4.5.1. (feasible amount of storage and number of processors) The
Sun-way TaihuLight supercomputer, the most powerful in the world as of March
2018, has 223.3 CPU cores [69]. In 2013, it was estimated that Google’s data
centres have a total storage capacity of about a dozen exabytes1 [69]. Thus it is
reasonable to argue that acquiring 264 processors and a storage capacity (with
low access times) of several dozen yottabytes2 for the purpose of solving a CSSI
problem will be prohibitively costly for the foreseeable future.

4.5.1 Meet-in-the-middle

As stated in §4.3, the running time of MITM-basic and MITM-DFS is approxi-
mately 2N and the storage requirements are N , where N ≈ p1/4. Since for
N ≥ 280 the storage requirements are infeasible, we deem the meet-in-the-
middle attacks to be prohibitively expensive when N � 280.

Of course, one can trade space for time. One possible time-memory tradeoff
is to store a table with entries (j(E1/A1), A1), where A1 ranges over a w-subset
of order-`e/2 subgroups of E1[`e]. Next, for each order-`e/2 subgroup A2 of
E2[`e], E2/A2 is computed and j(E2/A2) is searched in the table. If no match
is found, then the algorithm is repeated for a disjoint w-subset of order-`e/2

subgroups of E1[`e], and so on. The running time of this time-memory tradeoff
is approximately

(w +N)
N

w
≈ N2/w.

1 An exabyte is 260 bytes.
2 A yottabyte is 280 bytes.

44 0x2C

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

For MITM-basic, the unit of time is an `e/2-isogeny computation. For MITM-
DFS, the running time (for ` = 2) can be scaled to `e/2-isogeny computations by
dividing by e

12.4 log2 e (cf. §4.3.2). One can see that this time-memory-tradeoff
can be parallelized naturally.

Another possible time-memory tradeoff is to store (j(E1/A1), A1), where A1

ranges over all order-`c subgroups of E1[`e] and c ≈ log` w. Let d = e−c. Then,
for each order-`d subgroup A2 of E2[`e], E2/A2 is computed and j(E2/A2) is
searched in the table. One can check that the running time of this time-memory
tradeoff is approximately N2/w, and that it can be parallelized naturally. Note
that the unit of time here is an `d-isogeny computation instead of an `e/2-isogeny
computation. The larger tree of `d-isogenies can be traversed using a depth-first
search; the running time is then the same as that of the MITM-DFS variant
described in the previous paragraph.

4.5.2 Golden collision search

As stated in §4.4.3, the running time of van Oorschot-Wiener golden collision
search is approximately

N3/2/w1/2.

The algorithm parallelizes naturally.

4.5.3 Mesh sorting

The mesh sorting attack is analogous to the one described by Bernstein [42]
for finding hash collisions. Suppose that one has m processors arranged in a
two-dimensional grid. Each processor only communicates with its neighbours
in the grid. In one unit of time, each processor computes and stores pairs
(j(E1/A1), A1), where A1 is an order-`e/2 subgroup of E1[`e]. Next, these stored
pairs are sorted in time ≈ m1/2 (e.g., see [62]). In the next stage, a second two-
dimensional grid ofm processors computes and stores pairs (j(E2/A2, A2), where
A2 is an order-`e/2 subgroup of E2[`e], and the two sorted lists are compared
for a match. This is repeated for a disjoint m-subset of order-`e/2 subgroups A2

until all order-`e/2 subgroups of E2[`e] have been tested. Then, the process is
repeated for a disjoint subset of order-`e/2 subgroups A1 of E1[`e] until a match
is found. One can check that the calendar running time1 is approximately(

m1/2 +m1/2N

m

)
N

m
≈ N2/m3/2.

4.5.4 Targetting the 128-bit security level

The CSSI problem is said to have a 128-bit security level if the fastest known
attack has total time complexity at least 2128 and feasible space and hardware
costs.

1 Calendar time is the elapsed time taken for a computation, whereas total time is the
sum of the time expended by all m processors.

0x2D 45

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

Suppose that p ≈ 2512, whereby N ≈ 2128; this would be a reasonable choice
for the bitlength of p if the meet-in-the-middle attacks were assessed to be
the fastest (classical) algorithm for solving CSSI. However, as noted above, the
storage costs for the attacks are prohibitive. Instead, one should consider the
time complexity of the time-memory tradeoffs, VW golden collision search, and
mesh sorting under realistic constraints on the storage space w and the number
m of processors. Table 4.5 lists the calendar time and the total time of these
CSSI attacks for (m,w) ∈ {(248, 264), (248, 280), (264, 280)}. One sees that in all
cases the total time complexity is significantly greater than 2128, even though
we have ignored communication costs.

p ≈ 2512 p ≈ 2448

processors space calendar total calendar total
m w time time time time

Meet-in-the-middle (DFS) 48 64 138 186 106 154
time-memory tradeoff 48 80 122 170 90 138

64 80 106 170 74 138

Van Oorschot-Wiener 48 64 112 160 88 136
golden collision search 48 80 104 152 80 128

64 80 88 152 64 128

Mesh sorting 48 — 184 232 152 200
64 — 160 224 128 192

Table 4.5: Time complexity estimates of CSSI attacks for p ≈ 2512 and p ≈ 2448,
and ` = 2. All numbers are expressed in their base-2 logarithms. The unit of
time is a 2e/2-isogeny computation.

Since the total times for p ≈ 2512 in Table 4.5 are all significantly greater
than 2128, one can consider using smaller primes p while still achieving the 128-
bit security level. Table 4.5 also lists the calendar time and the total time of
these CSSI attacks for (m,w) ∈ {(248, 264), (248, 280), (264, 280)} when p ≈ 2448

and N ≈ 2112. One sees that all attacks have total time complexity at least
2128, even though we have ignored communication costs. We can conclude that
selecting SIDH parameters with p ≈ 2448 provides 128 bits of security against
known classical attacks. For example, one could select the 434-bit prime

p434 = 22163137 − 1;

this prime is balanced in the sense that 3137 ≈ 2217, thus providing maximal
resistance to Petit’s SIDH attack [61].

Remark 4.5.2. (communication costs) Consider the case p ≈ 2448, e = 224,
m = 264, w = 280. From (4.1) and (4.2) we obtain θ ≈ 1/215.62 and an
expected running time of 2131.7. For each function version, the 264 processors
will generate approximately 248.4 distinguished points per unit of time (i.e.,

46 0x2E

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

a 2112-isogeny computation). So, on average, the 280 storage device will be
accessed 248.4 times during each unit of time. The cost of these accesses will
certainly dominate the computational costs. Thus our security estimates, which
ignore communication costs, should be regarded as being conservative.

4.5.5 Targetting the 160-bit security level

Using similar arguments as in §4.5.4, one surmises that SIDH parameters with
p ≈ 2536 offer at least 160 bits of CSSI security against known classical (see
Table 4.6). For example, one could select the 546-bit prime

p546 = 22733172 − 1;

this prime is nicely balanced since 3172 ≈ 2273.

p ≈ 2536 p ≈ 2614

processors space calendar total calendar total
m w time time time time

Meet-in-the-middle (DFS) 48 64 150 198 188 236
time-memory tradeoff 48 80 134 182 172 220

64 80 118 182 156 220

Van Oorschot-Wiener 48 64 121 169 149 197
golden collision search 48 80 113 161 141 189

64 80 97 161 125 189

Mesh sorting 48 — 196 244 234 282
64 — 172 236 210 274

Table 4.6: Time complexity estimates of CSSI attacks for p ≈ 2536 and p ≈ 2614,
and ` = 2. All numbers are expressed in their base-2 logarithms. The unit of
time is a 2e/2-isogeny computation.

4.5.6 Targetting the 192-bit security level

Using similar arguments as in §4.5.4, one surmises that SIDH parameters with
p ≈ 2614 offer at least 192 bits of CSSI security against known classical (see
Table 4.6). For example, one could select the 610-bit prime

p610 = 23053192 − 1;

this prime is nicely balanced since 3192 ≈ 2304.

4.5.7 Resistance to quantum attacks

The appeal of SIDH is its apparent resistance to attacks by quantum computers.
What remains to be determined then is the security of CSSI against quantum
attacks.

0x2F 47

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

The fastest known quantum attack on CSSI is Tani’s algorithm [66]. Given
two generic functions g1 : X1 → Y and g2 : X2 → Y , where #X1 ≈ #X2 ≈ N
and #Y � N , Tani’s quantum algorithm finds a claw, i.e., a pair (x1, x2) ∈
X1 × X2 such that g1(x1) = g2(x2) in time O(N2/3). The CSSI problem can
be recast as a claw-finding problem by defining Xi to be the set of all degree-
`e/2 isogenies originating at Ei, gi to be the function that maps a degree-`e/2

isogeny originating at Ei to the j-invariant of its image curve, and Y = R. Since
#X1 = #X2 = N ≈ p1/4, this yields an O(p1/6)-time CSSI attack.

CSSI can also be solved by an application of Grover’s quantum search [52].
Recall that if g : X → {0, 1} is a generic function such that g(x) = 1 for exactly
one x ∈ X, then Grover’s algorithm can determine the x with g(x) = 1 in
quantum time O(

√
#X). The CSSI problem can be recast as a Grover search

problem by defining X to be the set of all ordered pairs (φ1, φ2) of degree-`e/2

isogenies originating at E1, E2, respectively, and defining g(φ1, φ2) to be equal
to 1 if and only if the j-invariants of the image curves of φ1 and φ2 are equal.
Since #X = N2 ≈ p1/2, this yields an O(p1/4)-time quantum attack on CSSI.

The Jao-De Feo paper [54] that introduced SIDH identified Tani’s claw-
finding algorithm as the fastest known attack, whether classical or quantum, on
CSSI. The subsequent literature on SIDH used the simplified running time p1/6

of Tani’s algorithm (i.e., ignoring the implied constant in its O(p1/6) running
time expression) to select SIDH primes p for a desired level of security. In other
words, in order to achieve a b-bit security level against known classical and
quantum attacks, one selects an SIDH prime p of bitlength approximately 6b.
For example, the 751-bit prime p = 23723239 − 1 was proposed in [48] for the
128-bit security level, and this prime has been used in many subsequent works,
e.g., [57, 46, 47, 53, 72]. Also, the 964-bit prime p = 24863301 − 1 was proposed
in [53] for the 160-bit security level.

However, this assessment of SIDH security does not account for the cost of
the O(p1/6) quantum space requirements of Tani’s algorithm, nor for the fact
that Grover’s search does not parallelize well — using m quantum circuits only
yields a speedup by a factor of

√
m and this speedup has been proven to be

optimal [71]. Some recent work [41, 56] suggests that Tani’s and Grover’s at-
tacks on CSSI are costlier than the van Oorschot-Wiener golden collision search
algorithm. If this is indeed the case, then one can be justified in selecting SIDH
primes p434 (instead of p751), p546 (instead of p964) and p610 in order to achieve
the 128-, 160- and 192-bit security levels, respectively, against both classical and
quantum attacks. Furthermore, SIDH parameters with p434 could be deemed to
meet the security requirements in NIST’s Category 2 [58] (classical and quantum
security comparable or greater than that of SHA-256 with respect to collision
resistance), and p610 could be deemed to meet the security requirements in
NIST’s Category 4 [58] (classical and quantum security comparable to that of
SHA-384).

48 0x30

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

4.5.8 SIDH performance

A significant benefit of using smaller SIDH primes is increased performance.
The reasons for the boost in SIDH performance are twofold. First, since the
computation of the ground field Fp multiplication operation has a quadratic
complexity, any reduction in the size of p will result in significant savings. Since
high-end processors have a word size of 64 bits, the primes p751, p546 and p434

can be accommodated using twelve, nine and seven 64-bit words, respectively.
Hence, if Fp multiplication using p751 can be computed in T clock cycles, then
a rough estimation of the computational costs for Fp multiplication using p434

and p546 is as low as 0.34T and 0.56T , respectively. Second, since the exponents
of the primes 2 and 3 in p434 and p546 are smaller than the ones in p751, the
computation of the isogeny chain described in §4.1 (see Remark 4.1.1) is faster.

Table 4.7 lists timings for SIDH operations for p434, p546 and p751 using the
SIDH library of Costello et al. [45]. The timings show that SIDH operations are
about 4.8 times faster when p434 is used instead of p751.

Protocol CLN library [48] CLN + enhancements
phase p751 p434 p546 p751 p434 p546

Key
Gen.

Alice 35.7 7.51 13.20 26.9 5.3 10.5

Bob 39.9 8.32 14.84 30.5 6.0 11.7

Shared
Secret

Alice 33.6 7.01 12.56 24.9 5.0 10.0

Bob 38.4 7.94 14.35 28.6 5.8 11.5

Table 4.7: Performance of the SIDH protocol. All timings are reported in 106

clock cycles, measured on an Intel Core i7-6700 supporting a Skylake micro-
architecture. The “CLN + enhancements” columns are for our implementation
that incorporates improved formulas for degree-2 and degree-3 isogenies from
[46] and Montgomery ladders from [50] into the CLN library.

0x31 49

4 ON THE COST OF COMPUTING ISOGENIES BETWEEN
SUPERSINGULAR ELLIPTIC CURVES

50 0x32

Chapter 5

Stronger and Faster
Side-Channel Protections
for CSIDH

Programming is one of the most difficult branches of applied math-
ematics; the poorer mathematicians had better remain pure mathe-
maticians.

Edsger Dijkstra

CSIDH is a recent quantum-resistant primitive based on the difficulty of
finding isogeny paths between supersingular curves. Recently, two constant-
time versions of CSIDH have been proposed: first by Meyer, Campos and Reith,
and then by Onuki, Aikawa, Yamazaki and Takagi. While both offer protection
against timing attacks and simple power consumption analysis, they are vul-
nerable to more powerful attacks such as fault injections. In this chapter, we
identify and repair two oversights in these algorithms that compromised their
constant-time character. By exploiting Edwards arithmetic and optimal addi-
tion chains, we produce the fastest constant-time version of CSIDH to date.
We then consider the stronger attack scenario of fault injection, which is rele-
vant for the security of CSIDH static keys in embedded hardware. We propose
and evaluate a dummy-free CSIDH algorithm. While these CSIDH variants are
slower, their performance is still within a small constant factor of less- protected
variants. Finally, we discuss derandomized CSIDH algorithms.

5.1 CSIDH protocol

CSIDH is an isogeny based primitive, similar to Diffie–Hellman, that can be
used for key exchange and encapsulation [73], signatures [74, 75, 76], and other
more advanced protocols. Compared to the other main isogeny-based primitive

0x33 51

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

SIDH [54, 49], CSIDH is slower. On the positive side, CSIDH has smaller public
keys, is based on a better understood security assumption, and supports an easy
key validation procedure, making it better suited than SIDH for CCA-secure
encryption, static-dynamic and static-static key exchange. In this work we will
use the jargon of key exchange when we refer to cryptographic concepts.

CSIDH works over a finite field FP, where p is a prime of the special form

p := 4

n∏
i=1

`i − 1

with `1, . . . , `n a set of small odd primes. Concretely, the original CSIDH ar-
ticle [73] defined a 511-bit p with `1, . . . , `n−1 the first 73 odd primes, and
`n = 587.

The set of public keys in CSIDH is a subset of all supersingular elliptic curves
defined over FP, in Montgomery form y2 = x3 +Ax2 +x, where A ∈ FP is called
the A-coefficient of the curve.1 The endomorphism rings of these curves are
isomorphic to orders in the imaginary quadratic field Q(

√
−4p). Castryck et

al. [73] choose to restrict the public keys to the horizontal isogeny class of the
curve with A = 0, so that all endomorphism rings are isomorphic to Z[

√
−p].

5.1.1 The class group action

Let E/FP be an elliptic curve with End(E) ∼= Z[
√
−p]. If a is a nonzero ideal

in Z[
√
−p], then it defines a finite subgroup E[a] =

⋂
α∈a ker(α), where we

identify each α with its image in End(E). We then have a quotient isogeny
φ : E→ E′ = E/E[a] with kernel a; this isogeny and its codomain is well-defined
up to isomorphism. If a = (α) is principal, then φ ∼= α and E/E[a] ∼= E. Hence,
we get an action of the ideal class group Cl(Z[

√
−p]) on the set of isomorphism

classes of elliptic curves E over FP with End(E) ∼= Z[
√
−p]; this action is faithful

and transitive. We write a ∗E for the image of (the class of) E under the action
of a, which is (the class of) E/E[a] above.

For CSIDH, we are interested in computing the action of small prime ideals.
Consider one of the primes `i dividing p+ 1; the principal ideal (`i) ⊂ Z[

√
−p]

splits into two primes, namely li = (`i, π − 1) and l̄i = (`i, π + 1), where π is
the element of Z[

√
−p] mapping to the Frobenius endomorphism of the curves.

Since l̄ili = (`i) is principal, we have l̄i = l−1
i in Cl(Z[

√
−p]), and hence

l̄i ∗ (li ∗ E) = li ∗ (̄li ∗ E) = E

for all E/FP with End(E) ∼= Z[
√
−p].

5.1.2 The CSIDH algorithm

At the heart of CSIDH is an algorithm that evaluates the class group action
described above on any supersingular curve over FP. Cryptographically, this
plays the same role as modular exponentiation in classic Diffie–Hellman.

1 Following [48], we represent A = A′/C′ as a projective point (A′ : C′); see §5.3.1.1.

52 0x34

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

The input to the algorithm is an elliptic curve E : y2 = x3 + Ax2 + x,
represented by its A-coefficient, and an ideal class a =

∏n
i=1 l

ei
i , represented by

its list of exponents (ei, . . . , en) ∈ Zn. The output is the (A-coefficient of the)
elliptic curve a ∗ E = le11 ∗ · · · ∗ lenn ∗ E.

The isogenies corresponding to li = (`i, π−1) can be efficiently computed us-
ing Vélu’s formulas and their generalizations: exploiting the fact that #E(FP) =
p + 1 = 4

∏
`i, one looks for a point R of order `i in E(FP) (i.e., a point that

is in the kernels of both the multiplication-by-`i map and π − 1), computes the
isogeny φ : E → E/〈R〉 with kernel 〈R〉, and sets li ∗ E = E/〈R〉. Iterating this
procedure lets us compute lei ∗ E for any exponent e ≥ 0.

The isogenies corresponding to l−1
i are computed in a similar fashion: this

time one looks for a point R of order `i in the kernel of π+1, i.e., a point in E(Fp2)
of the form (x, iy) where both x and y are in FP (since i =

√
−1 is in Fp2 \ FP

and satisfies ip = −i). Then one proceeds as before, setting l−1
i ∗ E = E/〈R〉.

In the sequel we assume that we are given an algorithm QuotientIsogeny

which, given a curve E/FP and a point R in E(Fp2), returns the pair (φ,E′) where
φ : E→ E′ ∼= E/〈R〉 is an isogeny with kernel 〈R〉. We refer to this operation as
isogeny computation. Algorithm 5.1, taken from the original CSIDH article [73],
computes the class group action.

For cryptographic purposes, the exponent vectors (e1, . . . , en) must be taken
from a space of size at least 22λ, where λ is the (classical) security parameter.
The CSIDH-512 parameters in [73] take n = 74, and all ei in the interval [−5, 5],
so that 74 log2(2 · 5 + 1) ' 255.99, consistent with the NIST-1 security level.
With this choice, the implementation of [73] computes one class group action
in 40 ms on average. Meyer and Reith [77] further improved this to 36 ms on
average. Neither implementation is constant-time.

5.1.3 The Meyer–Campos–Reith constant-time algorithm

As Meyer, Campos and Reith observe in [78], Algorithm 5.1 performs fewer
scalar multiplications when the key has the same number of positive and nega-
tive exponents than it does in the unbalanced case where these numbers differ.
Algorithm 5.1 thus leaks information about the distribution of positive and
negative exponents under timing attacks. Besides this, analysis of power traces
would reveal the cost of each isogeny computation, and the number of such
isogenies computed, which would leak the exact exponents of the private key.

In view of this vulnerability, Meyer, Campos and Reith proposed in [78]
a constant-time CSIDH algorithm whose running time does not depend on the
private key (though, unlike [79], it still varies due to randomness). The essential
differences between the algorithm of [78] and classic CSIDH are as follows. First,
to address the vulnerability to timing attacks, they choose to use only positive
exponents in [0, 10] for each `i, instead of [−5, 5] in the original version, while

keeping the same prime p =
∏74
i=1 `i − 1. To mitigate power consumption anal-

ysis attacks, their algorithm always computes the maximal amount of isogenies
allowed by the exponent, using dummy isogeny computations if needed.

0x35 53

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

Algorithm 5.1: The original CSIDH class group action algorithm for
supersingular curves over FP where p = 4

∏n
i=1 `i − 1. The choice of

ideals li = (`i, π − 1), where π is the element of Q(
√
−p) is mapped to

the p-th power Frobenius endomorphism on each curve in the isogeny
class, is a system parameter. This algorithm constructs exactly |ei|
isogenies for each ideal li.

Input: A ∈ FP such that EA : y2 = x3 +Ax2 + x is supersingular, and
an integer exponent vector (e1, . . . , en)

Output: B such that EB : y2 = x3 +Bx2 + x is le11 ∗ · · · ∗ lenn ∗ EA,
1 B ← A ;
2 while some ei 6= 0 do
3 Sample a random x ∈ FP ;
4 s← +1 if x3 +Bx2 + x is square in FP, else s← −1 ;
5 S ← {i | ei 6= 0, sign(ei) = s} ;
6 if S 6= ∅ then
7 k ←

∏
i∈S `i ;

8 Q← [(p+ 1)/k]P, where P is the projective point with
x-coordinate x. ;

9 for i ∈ S do
10 R← [k/`i]Q ; // Point to be used as kernel generator

11 if R 6=∞ then
12 (EB , φ)← QuotientIsogeny(EB ,R) ;
13 Q← φ(Q) ;
14 (k, ei)← (k/`i, ei − s)

15 return B

Since these modifications generally produce more costly group action compu-
tations, the authors also provide several optimizations that limit the slow-down
in their algorithm to a factor of 3.10 compared to [77]. These include the Elliga-
tor 2 map of [80] and [81], multiple batches for isogeny computation (SIMBA),
and sample the exponents ei from intervals of different sizes depending on `i.

5.1.4 The Onuki–Aikawa–Yamazaki–Takagi constant-time
algorithm

Still assuming that the attacker can perform only power consumption analysis
and timing attacks, Onuki, Aikawa, Yamazaki and Takagi proposed a faster
constant-time version of CSIDH in [82].

The key idea is to use two points to evaluate the action of an ideal, one
in ker(π − 1) (i.e., in E(FP)) and one in ker(π + 1) (i.e., in E(Fp2) with x-
coordinate in FP). This allows them to avoid timing attacks, while keeping the
same primes and exponent range [−5, 5] as in the original CSIDH algorithm.
Their algorithm also employs dummy isogenies to mitigate some power analysis

54 0x36

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

attacks, as in [78]. With these improvements, they achieve a speed-up of 27.35%
compared to [78].

We include pseudo-code for the algorithm of [82] in Algorithm 5.2, to serve
both as a reference for a discussion of some subtle leaks in §5.2 and also as a
departure point for our dummy-free algorithm in §5.4.

Algorithm 5.2: The Onuki–Aikawa–Yamazaki–Takagi CSIDH algo-
rithm for supersingular curves over FP, where p = 4

∏n
i=1 `i − 1. The

ideals li = (`i, π− 1), where π maps to the p-th power Frobenius endo-
morphism on each curve, and the exponent bound vector (m1, . . . ,mn),
are system parameters. This algorithm computes exactly mi isogenies
for each `i.

Input: A supersingular curve EA : y2 = x3 +Ax2 + x over FP, and an
integer exponent vector (e1, . . . , en) with each ei ∈ [−mi,mi].

Output: EB : y2 = x3 +Bx2 + x such that EB = le11 ∗ · · · ∗ lenn ∗ EA.
1 (e′1, . . . , e

′
n)← (mi − |e1|, . . . ,mi − |en|) ; // Number of dummy

computations

2 EB ← EA ;
3 while some ei 6= 0 or e′i 6= 0 do
4 S ← {i | ei 6= 0 or e′i 6= 0} ;
5 k ←

∏
i∈S `i ;

6 (T+,T−)← Elligator(EB , u) ; // T− ∈ EB [π + 1] and

T+ ∈ EB [π − 1]

7 (P0,P1)←
(
[(p+ 1)/k]T+, [(p+ 1)/k]T−

)
;

8 for i ∈ S do
9 s← sign(ei) ; // Ideal lsi to be used

10 Q← [k/`i]P 1−s
2

; // Secret kernel point generator

11 P 1+s
2
← [`i]P 1+s

2
; // Secret point to be multiplied

12 if Q 6=∞ then
13 if ei 6= 0 then
14 (EB , ϕ)← QuotientIsogeny(EB ,Q) ;

15 (P0,P1)←
(
ϕ(P0), ϕ(P1)

)
;

16 ei ← ei − s.
17 else
18 EB ← EB ; P 1−s

2
← [`i]P 1−s

2
; e′i ← e′i − 1 ; // Dummies

19 k ← k/`i

20 return B

0x37 55

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

5.2 Repairing constant-time versions

5.2.1 Projective Elligator

Both [78] and [82] use the Elligator 2 map to sample a random point on the cur-
rent curve EA in step 6 of Algorithm 5.2. Elligator takes as input a random field
element u ∈ {2, . . . , p−1

2 } and the Montgomery A-coefficient from the current
curve and returns a pair of points in EA[π − 1] and EA[π + 1] respectively.

To avoid a costly inversion of u2−1, instead of sampling u randomly, Meyer,
Campos and Reith1 follow [81] and precompute a set of ten pairs (u, (u2−1)−1);
they try them in order until one that produces a point Q passing the test in
Step 12 is found. When this happens, the algorithm moves to the next curve,
and Elligator can keep on using the next precomputed value of u, going back
to the first value when the tenth has been reached. This is a major departure
from [81], where all precomputed values of u are tried for each isogeny compu-
tation, and the algorithm succeeds if at least one passes the test. And indeed
the implementation of [78] leaks information on the secret via the timing chan-
nel:2 since Elligator uses no randomness for u, its output only depends on the
A-coefficient of the current curve, which itself depends on the secret key; but
the running time of the algorithm varies and, not being correlated to u, it is
necessarily correlated to A and thus to the secret.

Fortunately this can be easily fixed by (re)introducing randomness in the
input to Elligator. To avoid field inversions, we use a projective variant: given
u 6= 0, 1 and assuming A 6= 0, we write V = (A : u2 − 1), and we want to
determine whether V is the abscissa of a projective point on EA. Plugging V
into the homogeneous equation

EA : Y 2Z2 = X3Z +AX2Z2 +XZ3

gives

Y 2(u2 − 1)2 =
(
(A2u2 + (u2 − 1)2

)
A(u2 − 1).

We can test the existence of a solution for Y by computing the Legendre sym-
bol of the right hand side: if it is a square, the points with projective XZ-
coordinates

T+ = (A : u2 − 1), T− = (−Au2 : u2 − 1)

are in EA[π − 1] and EA[π + 1] respectively, otherwise their roles are swapped.
We are left with the case A = 0. Following [81], Meyer, Campos and Reith

precompute once and for all a pair of generators T+,T− of E0[π−1] and E0[π+1],
and output those instead of random points. This choice suffers from a similar
issue to the previous one: because the points are output in a deterministic way,

1 Presumably, Onuki et al. do the same, however their exposition is not clear on this point,
and we do not have access to their code.

2 The Elligator optimization is described in §5.3 of [78]. The unoptimized constant-time
version described in Algorithm 2 therein is not affected by this problem.

56 0x38

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

the running time of the whole algorithm will be correlated to the number of
times the curve E0 is encountered during the isogeny walk.

In practice, E0 is unlikely to ever be encountered in a random isogeny walk,
except as the starting curve in the first phase of a key exchange, thus this flaw
seems hard to exploit. Nevertheless, we find it not significantly more expensive
to use a different approach, also suggested in [81]: with u 6= 0, only on E0, we
define the output of Elligator as T+ = (u : 1),T− = (−u : 1) when u3 + u is a
square, and we swap the points when u3 + u is not a square.

With these choices, under reasonable heuristics experimentally verified in [81],
the running time of the whole algorithm is uncorrelated to the secret key as long
as the values of u are unknown to an adversary. We summarize our implemen-
tation of Elligator in Algorithm 5.3, generalizing it to the case of Montgomery
curves represented by projective coefficients (see also Section 5.3.1.1).

Algorithm 5.3: Constant-time projective Elligator

Input: A supersingular curve E(A′:C′) : C ′y2 = C ′x3 +A′x2 + C ′x over

FP, and an element u ∈ {2, . . . , p−1
2 }.

Output: A pair of points T+ ∈ E(A′:C′)[π− 1] and T− ∈ E(A′:C′)[π+ 1].

1 t← A′
(
(u2 − 1)u2A′

2
C ′ + ((u2 − 1)C ′)3

)
;

2 a← isequal(t, 0) ; // t = 0 iff A′ = 0
3 α, β ← 0, u ;
4 cswap(α, β, a) ; // α = 0 iff A′ 6= 0
5 t′ ← t+ α(u2 + 1) ; // t′ 6= 0
6 T+ ← (A′ + αC ′(u2 − 1) : C ′(u2 − 1)) ;
7 T− ← (−A′u2 − αC ′(u2 − 1) : C ′(u2 − 1)) ;
8 b← Legendre symbol(t′, p) ; // b = ±1
9 c← isequal(b,−1) ;

10 cswap(T+,T−, c);
11 return (T+,T−) ;

5.2.2 Fixing a leaking branch in Onuki–Aikawa–Yamazaki–
Takagi

The algorithm from [82], essentially reproduced in Algorithm 5.2, includes a
conditional statement at Line 12 which branches on the value of the point Q
computed at Line 10. But this value depends on the sign s of the secret expo-
nent ei, so the branch leaks information about the secret. We propose repairing
this by always computing both Q0 ← [k/`i]P0 and Q1 ← [k/`i]P1 at Line 10,
and replacing the condition in Line 12 with a test for (Q0 = ∞) or (Q1 = ∞)
(and using constant-time conditional swaps throughout).1 This fix is visible in

1 We also found a branch on secret data in the code provided with [78] at https://zenon.
cs.hs-rm.de/pqcrypto/faster-csidh, during the 3-isogeny computation, when computing
[`]P = [(`−1)/2]P+ [(`+ 1)/2]P. This can be easily fixed by a conditional swap, without
any significant impact on running time.

0x39 57

https://zenon.cs.hs-rm.de/pqcrypto/faster-csidh
https://zenon.cs.hs-rm.de/pqcrypto/faster-csidh

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

Line 13 of Algorithm 5.5 (see page 64).

5.3 Optimizing constant-time implementations

In this section we propose several optimizations that are compatible with both
non-constant-time and constant-time implementations of CSIDH.

5.3.1 Isogeny and point arithmetic on twisted Edwards
curves

In this subsection, we present efficient formulas in twisted-Edwards coordinates
for four fundamental operations: point addition, point doubling, isogeny compu-
tation (as presented in [83]; cf. §5.1.2), and isogeny evaluation (i.e. comput-
ing the image of a point under an isogeny). Our approach obtains a modest
but still noticeable improvement with respect to previous proposals based on
Montgomery representation, or hybrid strategies that propound combinations
of Montgomery and twisted-Edwards representations [84, 85, 86, 87, 88].

Castryck, Galbraith, and Farashahi [84] proposed using a hybrid representa-
tion to reduce the cost of point doubling on certain Montgomery curves, by
exploiting the fact that converting between Montgomery and twisted Edwards
models can be done at almost no cost. In [88], Meyer, Reith and Campos consid-
ered using twisted Edwards formulas for computing isogeny and elliptic curve
arithmetic, but concluded that a pure twisted-Edwards-only approach would
not be advantageous in the context of SIDH. Bernstein, Lange, Martindale, and
Panny observed in [81] that the conversion from Montgomery XZ coordinates to
twisted Edwards YZ coordinates occurs naturally during the Montgomery lad-
der. Kim, Yoon, Kwon, Park, and Hong presented a hybrid model in [86] using
Edwards and Montgomery models for isogeny computations and point arith-
metic, respectively; in [85] and [87], they suggested computing isogenies using
a modified twisted Edwards representation that introduces a fourth coordinate
w.

To the best of our knowledge, the quest for more efficient elliptic curve and
isogeny arithmetic than that offered by pure Montgomery and twisted-Edwards-
Montgomery representations remains an open problem. As a step forward in
this direction, Moody and Shumow [83] showed that when dealing with isogenies
of odd degree d = 2` − 1 with ` ≥ 2, twisted Edwards representation offers a
cheaper formulation for isogeny computation than the corresponding one using
Montgomery curves; nevertheless, they did not address the problem of getting
a cheaper twisted Edwards formulation for the isogeny evaluation operation.

5.3.1.1 Montgomery curves

A Montgomery curve [89] is defined by the equation EA,B : By2 = x3 +Ax2 +x,
such that B 6= 0 and A2 6= 4 (we often write EA for EA,1). We refer to [90]
for a survey on Montgomery curves. When performing isogeny computations

58 0x3A

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

and evaluations, it is often more convenient to represent the constant A in the
projective space P1 as (A′ : C ′), such that A = A′/C ′. Montgomery curves are
attractive because they are exceptionally well-suited to performing the differ-
ential point addition operation which computes x(P + Q) from x(P), x(Q), and
x(P−Q). Equations (5.1) and (5.2) describe the differential point doubling and
addition operations proposed by Montgomery in [89]:

X[2]P = C24(XP + ZP)2(XP − ZP)2, (5.1)

Z[2]P = ((XP + ZP)2 − (XP − ZP)2)·
(C24(XP − ZP)2 +A24p((XP + ZP)2 − (XP − ZP)2))

where A24p = A+ 2C and C24 = 4C, and

XP+Q = ZP−Q [(XP − ZP)(XQ + ZQ) + (ZP + ZP)(XQ − ZQ)]
2
, (5.2)

ZP+Q = XP−Q [(XP − ZP)(XQ + ZQ)− (ZP + ZP)(XQ − ZQ)]
2
.

Montgomery curves can be used to efficiently compute isogenies using Vélu’s
formulas [91]. Suppose we want the image of a point Q under an `-isogeny φ,
where ` = 2k + 1. For each 1 ≤ i ≤ k we let (Xi : Zi) = x([i]P), where 〈P 〉 =
kerφ. Equation (5.3) computes (X ′ : Z ′) = x(φ(Q)) from (XQ : ZQ) = x(Q).

X ′ = XP

(k∏
i=1

[
(XQ − ZQ)(Xi + Zi) + (ZQ + ZQ)(Xi − Zi)

])2

, (5.3)

Z ′ = ZP

(k∏
i=1

[
(XQ − ZQ)(Xi + Zi)− (ZQ + ZQ)(Xi − Zi)

])2

.

5.3.1.2 Twisted Edwards curves

In [92] we see that every Montgomery curve EA,B : By2 = x3 + Ax2 + x is
birationally equivalent to a twisted Edwards curve EA,d : ax2 + y2 = 1 + dx2y2;
the curve constants are related by

(A,B) =

(
2(a+ d)

a− d
,

4

a− d

)
and (a, d) =

(
A+ 2

B
,
A− 2

B

)
,

and the rational maps φ : EA,d → EA,B and ψ : EA,B → EA,d are defined by

φ : (x, y) 7−→ ((1 + y)/(1− y), (1 + y)/(1− yx)) ,

ψ : (x, y) 7−→ (x/y, (x− 1)/(x+ 1)) . (5.4)

Rewriting this relationship for Montgomery curves with projective constants,
EA,d is equivalent to the Montgomery curve E(A:C) = EA/C,1 with constants

A24p := A+ 2C = a , A24m := A− 2C = d , C24 := 4C = a− d .

0x3B 59

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

To avoid notational ambiguities, we write (YP : TP) for the P1 projection of the
y-coordinate of the point P ∈ EA,d. Let P ∈ E(A:C). In projective coordinates,
the map ψ of (5.4) becomes

ψ : (XP : ZP) 7−→ (YP : TP) = (XP − ZP : XP + ZP). (5.5)

Comparing (5.5) with (5.1) reveals that YP and TP appear in the doubling for-
mula, so we can substitute them at no cost. Replacing A24p and C24 with their
twisted Edwards equivalents a and e = a−d, respectively, we obtain a doubling
formula for twisted Edwards Y T coordinates:

Y[2]P = e · Y 2
P · T 2

P − (T 2
P − Y 2

P) · (eY 2
P + a(T 2

P − Y 2
P)),

T[2]P = e · Y 2
P · T 2

P + (T 2
P − Y 2

P) · (eY 2
P + a(T 2

P − Y 2
P)).

Similarly, the coordinates YP, TP, YQ, TQ, YP−Q and TP−Q appear in (5.2), and
thus we derive differential addition formulas for twisted Edwards coordinates:

YP+Q = (TP−Q − YP−Q)(YPTQ + YQZP)2 − (TP−Q + YP−Q)(YPTQ − YQZP)2,

TP+Q = (TP−Q − YP−Q)(YPTQ + YQZP)2 + (TP−Q + YP−Q)(YPTQ − YQZP)2.

The computational costs of doubling and differential addition are 4M+2S+4A
(the same as evaluating (5.1)) and 4M+2S+6A (the same as (5.2)), respectively.

The Moody–Shumow formulas for isogeny computation [83] are given in
terms of twisted Edwards Y T -coordinates. It remains to derive a twisted
Edwards Y T -coordinate isogeny-evaluation formula for `-isogenies where ` =
2k + 1. We do this by applying the map in (5.5) to (5.3), which yields

Y ′ = (TP−Q + YP−Q) ·
(k∏
i=1

[
TQY[i]P + YQT[i]P

])2

− (TP−Q − YP−Q) ·
(k∏
i=1

[
TQY[i]P − YQT[i]P

])2

,

T ′ = (TP−Q + YP−Q) ·
(k∏
i=1

[
TQY[i]P + YQT[i]P

])2

+ (TP−Q − YP−Q) ·
(k∏
i=1

[
TQY[i]P − YQT[i]P

])2

.

The main advantage of the approach outlined here is that by only using
points given in Y T coordinates, we can compute point doubling, point addi-
tion and isogeny construction and evaluation at a lower computational cost.
Indeed, isogeny evaluation in XZ costs 4kM + 2S + 6kA, whereas the above
Y T coordinate formula costs 4kM + 2S + (2k + 4)A, thus saving 4k − 4 field
additions.

60 0x3C

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

5.3.2 Addition chains for a faster scalar multiplication

Since the coefficients in CSIDH scalar multiplications are always known in ad-
vance (they are essentially system parameters), there is no need to hide them
by using constant-time scalar multiplication algorithms such as the classical
Montgomery ladder. Instead, we can use shorter differential addition chains.1

In the CSIDH group action computation, any given scalar k is the product
of a subset of the collection of the 74 small primes `i dividing p+1

4 . We can take
advantage of this structure to use shorter differential addition chains than those
we might derive for general scalars of a comparable size. First, we pre-computed
the shortest differential addition chains for each one of the small primes `i. One
then computes the scalar multiplication operation [k]P as the composition of
the differential addition chains for each prime ` dividing k.

Power analysis on the coefficient computation might reveal the degree of the
isogeny that is currently being computed, but, since we compute exactly one
`i-isogeny for each `i per loop, this does not leak any secret information.

This simple trick allows us to compute scalar multiplications [k]P using dif-
ferential addition chains of length roughly 1.5dlog2(k)e. This yields a saving of
about 25% compared with the cost of the classical Montgomery ladder.

5.4 Removing dummy operations for fault-attack
resistance

The use of dummy operations in the previous constant-time algorithms implies
that the attacker can obtain information on the secret key by injecting faults
into variables during the computation. If the final result is correct, then she
knows that the fault was injected in a dummy operation; if it is incorrect, then
the operation was real. For example, if one of the values in in Line 18 of
Algorithm 5.2 is modified without affecting the final result, then the adversary
learns whether the corresponding exponent ei was zero at that point.

Fault injection attacks have been considered in the context of SIDH ([93],
[94]), but to the best of our knowledge, they have not been studied yet on dummy
operations in the context of CSIDH. Below we propose an approach to constant-
time CSIDH without dummy computations, making every computation essential
for a correct final result. This gives us some natural resistance to fault, at the
cost of approximately a twofold slowdown.

Our approach to avoiding fault-injection attacks is to change the format of
secret exponent vectors (e1, . . . , en). In both the original CSIDH and the Onuki
et al. variants, the exponents ei are sampled from an integer interval [−mi,mi]
centered in 0. For naive CSIDH, evaluating the action of leii requires evaluating
between 0 and m isogenies, corresponding to either the ideal li (for positive ei)
or l−1

i (for negative ei). If we follow the approach of [82], then we must also
compute k − |ei| dummy `i-isogenies to ensure a constant-time behaviour.

1 A differential addition chain is an addition chain such that for every chain element c
computed as a+ b, the difference a− b is already present in the chain.

0x3D 61

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

For our new algorithm, the exponents ei are uniformly sampled from sets

S(mi) = {e | e = mi mod 2 and |e| ≤ mi},

i.e., centered intervals containing only even or only odd integers. The interesting
property of these sets is that a vector drawn from S(m)n can always be rewrit-
ten (in a non-unique way) as a sum of m vectors with entries {−1,+1} (i.e.,
vectors in S(1)n). But the action of a vector drawn from S(1)n can clearly be
implemented in constant-time without dummy operations: for each coefficient
ei, we compute and evaluate the isogeny associated to li if ei = 1, or the one
associated to l−1

i if ei = −1. Thus, we can compute the action of vectors drawn
from S(m)n by repeating m times this step.

More generally, we want to evaluate the action of vectors (e1, . . . , en) drawn
from S(m1) × · · · × S(mn). Algorithm 5.4 achieves this in constant-time and
without using dummy operations. The outer loop at line 3 is repeated exactly
max(mi) times, but the inner “if” block at line 5 is only executed mi times
for each i; it is clear that this flow does not depend on secrets. Inside the “if”
block, the coefficients ei are implicitly interpreted as

|ei| = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ (1− 1)− (1− 1) + (1− 1)− · · ·︸ ︷︷ ︸
mi−ei times

,

i.e., the algorithm starts by acting by l
sign(ei)
i for ei iterations, then alternates

between li and l−1
i for mi− ei iterations. We assume that the sign : Z→ {±1}

operation is implemented in constant time, and that sign(0) = 1. If one is
careful to implement the isogeny evaluations in constant-time, then it is clear
that the full algorithm is also constant-time.

Algorithm 5.4: An idealized dummy-free constant-time evaluation of
the CSIDH group action.

Input: Secret vector (e1, . . . , en) ∈ S(m1)× · · · × S(mn)
1 (t1, . . . , tn)← (sign(e1), . . . , sign(en)) ; // Secret

2 (z1, . . . , zn)← (m1, . . . ,mn) ; // Not secret

3 while some zi 6= 0 do
4 for i ∈ {1, . . . , n} do
5 if zi > 0 then
6 Act by ltii ;
7 b = isequal(ei, 0) ;
8 ei ← ei − ti ;

9 ti ← (−1)b · ti ; // Swap sign when ei has gone past 0
10 zi ← zi − 1 ;

However, Algorithm 5.4 is only an idealized version of the CSIDH group
action algorithm. Indeed, like in [78, 82], it may happen in some iterations that

62 0x3E

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

Elligator outputs points of order not divisible by `i, and thus the action of li or
l−1
i cannot be computed in that iteration. In this case, we simply skip the loop

and retry later: this translates into the variable zi not being decremented, so the
total number of iterations may end up being larger than max(mi). Fortunately,
if the input value u fed to Elligator is random, its output is uncorrelated to secret
values1, and thus the fact that an iteration is skipped does not leak information
on the secret. The resulting algorithm is summarized in Algorithm 5.5.

To maintain the security of standard CSIDH, the bounds mi must be chosen
so that the key space is at least as large. For example, the original CSIDH
protocol implementation [73] samples secrets in [−5, 5]74, which gives a key
space of size 1174; hence, to get the same security we would need to sample
secrets in S(10)74. But a constant-time version of CSIDH à la Onuki et al. only
needs to evaluate five isogeny steps per prime `i, whereas the present variant
would need to evaluate ten isogeny steps. We thus expect an approximately
twofold slowdown for this variant compared to Onuki et al., which is confirmed
by our experiments.

5.5 Derandomized CSIDH algorithms

As we stressed in Section 5.2, all of the algorithms presented here depend on
the availability of high-quality randomness for their security. Indeed, the input
to Elligator must be randomly chosen to ensure that the total running time is
uncorrelated to the secret key. Typically, this would imply the use of a PRNG
seeded with high quality true randomness that must be kept secret. An attack
scenario where the attacker may know the output of the PRNG, or where the
quality of PRNG output is less than ideal, therefore degrades the security of all
algorithms. This is true even when the secret was generated with a high-quality
PRNG if the keypair is static, and the secret key is then used by an algorithm
with low-quality randomness.

We can avoid this issue completely if points of order
∏
`
|mi|
i , where |mi| is

the maximum possible exponent (in absolute value) for `i, are available from the
start. Unfortunately this is not possible with standard CSIDH, because such
points are defined over field extensions of exponential degree.

Instead, we suggest modifying CSIDH as follows. First, we take a prime
p = 4

∏n
i=1 `i − 1 such that dn log2(3)e = 2λ, where λ is a security parameter,

and we restrict to exponents of the private key sampled from {−1, 0, 1}. Then,
we compute two points of order (p + 1)/4 on the starting public curve, one in
ker(π− 1) and the other in ker(π+ 1), where π is the Frobenius endomorphism.
This computation involves no secret information and can be implemented in
variable-time; furthermore, if the starting curve is the initial curve with A = 0,
or a public curve corresponding to a long term secret key, these points can be
precomputed offline and attached to the system parameters or the public key.
We also remark that even for ephemeral public keys, a point of order p+1 must

1 Assuming the usual heuristic assumptions on the distribution of the output of Elligator,
see [78].

0x3F 63

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

Algorithm 5.5: Dummy-free randomized constant-time CSIDH class
group action for supersingular curves over FP, where p = 4

∏n
i=1 `i− 1.

The ideals li = (`i, π − 1), where π maps to the p-th power Frobenius
endomorphism on each curve, and the vector (m1, . . . ,mn) of exponent
bounds, are system parameters. This algorithm computes exactly mi

isogenies for each ideal li.

Input: A supersingular curve EA over FP, and an exponent vector
(e1, . . . , en) with each ei ∈ [−mi,mi] and ei ≡ mi (mod 2).

Output: EB = le11 ∗ · · · ∗ lenn ∗ EA.

1 (t1, . . . , tn)←
(
sign(e1)+1

2 , . . . , sign(en)+1
2

)
; // Secret

2 (z1, . . . , zn)← (m1, . . . ,mn) ; // Not secret

3 EB ← EA;
4 while some zi 6= 0 do

5 u← Random
({

2, . . . , p−1
2

})
;

6 (T1,T0)← Elligator(EB , u) ; // T1 ∈ EB [π − 1] and

T0 ∈ EB [π + 1]
7 (T0,T1)← ([4]T0, [4]T1) ; // Now T0,T1 ∈ EB [

∏
i `i]

8 for i ∈ {1, . . . , n} do
9 if zi 6= 0 then

10 (G0,G1)← (T0,T1) ;
11 for j ∈ {i+ 1, . . . , n} do
12 (G0,G1)← ([`j]G0, [`j]G1)

13 if G0 6=∞ and G1 6=∞ then
14 cswap(G0,G1, ti) ; // Secret kernel point

generator: G0

15 cswap(T0,T1, ti) ; // Secret point to be

multiplied: T1

16 (EB , φ)← QuotientIsogeny(EB ,G0) ;

17 (T0,T1)←
(
φ(T0), φ(T1)

)
;

18 T1 ← [`i]T1 ;
19 cswap(T0,T1, ti) ;
20 b← isequal(ei, 0) ;
21 ei ← ei + (−1)ti ;
22 ti ← ti ⊕ b ;
23 zi ← zi − 1

24 else if G0 6=∞ then
25 T0 ← [`i]T0 ;

26 else if G1 6=∞ then
27 T1 ← [`i]T1 ;

28 return B

64 0x40

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

be computed anyway for key validation purposes, and thus this computation
only slows down key validation by a factor of two.

Since we have restricted exponents to {−1, 0, 1}, every `i-isogeny in Algo-
rithm 5.2 can be computed using only (the images of) the two precomputed
points. There is no possibility of failure in the test of Line 12, and no need to
sample any other point.

We note that this algorithm still uses dummy operations. If fault-injection
attacks are a concern, the exponents can be further restricted to {−1, 1}, and the
group action evaluated as in (a stripped down form of) Algorithm 5.5. However
this further increases the size of p, as n must now be equal to 2λ.

This protection comes at a steep price: at the 128 bits security level, the
prime p goes from 511 bits to almost 1500. The resulting field arithmetic would
be considerably slower, although the global running time would be slightly offset
by the smaller number of isogenies to evaluate.

On the positive side, the resulting system would have much stronger quan-
tum security. Indeed, the best known quantum attacks are exponential in the
size of the key space (≈ 22λ here), but only subexponential in p (see [95, 96, 73]).
Since our modification more than doubles the size of p without changing the size
of the key space, quantum security is automatically increased. For this same
reason, for security levels beyond NIST-1 (64 quantum bits of security), the size
of p increases more than linearly in λ, and the variant proposed here becomes
natural. Finally, parameter sets with a similar imbalance between the size of
p and the security parameter λ have already been considered in the context of
isogeny based signatures [74], where they provide tight security proofs in the
QROM.

Hence, while at the moment this costly modification of CSIDH may seem
overkill, we believe further research is necessary to try and bridge the efficiency
gap between it and the other side-channel protected implementations of CSIDH.

5.6 Experimental results

Tables 5.1 and 5.2 summarize our experimental results, and compare our algo-
rithms with those of [73], [78], and [82]. Table 5.1 compares algorithms in
terms of elementary field operations, while Table 5.2 compares cycle counts of
C implementations. All of our experiments were ran on a Intel(R) Core(TM)
i7-6700 CPU Skylake 4.00GHz machine with 16GB of RAM. Turbo boost was
disabled. The software environment was the Ubuntu 16.04 operating system
and gcc version 5.5.

In all of the algorithms considered here (except the original [73]), the group
action is evaluated using the SIMBA method (Splitting Isogeny computations
into Multiple BAtches) proposed by Meyer, Campos, and Reith in [78]. Roughly
speaking, SIMBA-m-k partitions the set of primes `i into m disjoint subsets Si
(batches) of approximately the same size. SIMBA-m-k proceeds by computing
isogenies for each batch Si; after k steps, the unreached primes `i from each
batch are merged.

0x41 65

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

Castryck et al. We used the reference CSIDH implementation made available
for download by the authors of [73]. None of our countermeasures or algorithmic
improvements were applied.

Meyer–Campos–Reith. We used the software library freely available from
the authors of [78]. This software batches isogenies using SIMBA-5-11. The
improvements we describe in §5.2 and §5.3 were not applied.

Onuki et. al. Unfortunately, the source code for the implementation in [82]
was not freely available, so direct comparison with our implementation was im-
possible. Table 5.1 includes their field operation counts for their unmodified
algorithm (which, as noted in §5.2, is insecure) using SIMBA-3-8, and our es-
timates for a repaired version applying our fix in §5.2. We did not apply the
optimizations of §5.3 here. (We do not replicate the cycle counts from [82] in
Table 5.2, since they may have been obtained using turbo boost, thus rendering
any comparison invalid.)

Our implementations. We implemented three constant-time CSIDH algo-
rithms, using the standard primes with the exponent bounds mi from [82, §5.2].

MCR-style This is essentially our version of Meyer–Campos–Reith (with one
torsion point and dummy operations, batching isogenies with SIMBA-5-
11), but applying the techniques of §5.2 and §5.3.

OAYT-style This is essentially our version of Onuki et. al. (using two torsion
points and dummy operations, batching isogenies with SIMBA-3-8), but
applying the techniques of §5.2 and §5.3.

No-dummy This is Algorithm 5.5 (with two torsion points and no dummy
operations), batching isogenies using SIMBA-5-11.

In each case, the improvements and optimizations of §5.2-5.3 are applied, inclu-
ding projective Elligator, short differential addition chains, and twisted Edwards
arithmetic and isogenies. Our software library is freely available from

https://github.com/JJChiDguez/csidh .

The field arithmetic is based on the Meyer–Campos–Reith software library [78];
since the underlying arithmetic is essentially identical, the performance compari-
sons below reflect differences in the CSIDH algorithms.

Results. It is shown in Table 5.2 that the techniques we introduced in §5.2
and §5.3 produce substantial savings compared with the implementation of [78].
In particular, our OAYT-style implementation yields a 39% improvement over [78].
Since the implementations use the same underlying field arithmetic library, these
improvements are entirely due to the techniques introduced in this work. While
our no-dummy variant is (unsurprisingly) slower, we see that the performance
penalty is not prohibitive: it is less than twice as slow as our fastest dummy-
operation algorithm, and only 22% slower than [78].

66 0x42

https://github.com/JJChiDguez/csidh

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

Implementation CSIDH Algorithm M S A Ratio
Castryck et al. [73] unprotected, unmodified 0.252 0.130 0.348 0.26

Meyer–Campos–Reith [78] unmodified 1.054 0.410 1.053 1.00
Onuki et al. [82] unmodified 0.733 0.244 0.681 0.67

This work
MCR-style 0.901 0.309 0.965 0.83
OAYT-style 0.657 0.210 0.691 0.59
No-dummy 1.319 0.423 1.389 1.19

Table 5.1: Field operation counts for constant-time CSIDH. Counts are given in
millions of operations, averaged over 1024 random experiments. The counts for
a possible repaired version of [82] are estimates, and hence displayed in italics.
The performance ratio uses [78] as a baseline, considers only multiplication and
squaring operations, and assumes M = S.

Implementation CSIDH algorithm Mcycles Ratio
Castryck et al. [73] unprotected, unmodified 155 0.39

Meyer–Campos–Reith [78] unmodified 395 1.00

This work
MCR-style 337 0.85
OAYT-style 239 0.61
No-dummy 481 1.22

Table 5.2: Clock cycle counts for constant-time CSIDH implementations, av-
eraged over 1024 experiments. The ratio is computed using [78] as baseline
implementation.

0x43 67

5 STRONGER AND FASTER SIDE-CHANNEL PROTECTIONS
FOR CSIDH

68 0x44

Chapter 6

Concluding remarks

Mathematics is a game played according to certain simple rules with
meaningless marks on paper.

David Hilbert

We have first shown that extending the GLS endomorphism allows to speedup
the GHS Weil descent attack. In particular, we have proven that the GLS en-
domorphism on E/F2n·` induces an efficient endomorphism Ψ∗ : JacH(Fq) →
JacH(Fq) on the jacobian of the image of the GHS Weil descent applied on
E/F2n·` . We show that the above endomorphism yields a factor n speedup
when using standard index-calculus procedures for solving the Discrete Loga-
rithm Problem (DLP) on JacH(Fq). Our analysis is backed up by the explicit
computation of a DLP defined on a prime order subgroup of a GLS elliptic curve
over the field F25·31 . A Magma implementation of a standard index-calculus
procedure boosted with the GLS endomorphism is able to find this discrete
logarithm in about 1, 035 CPU days.

Additionally, we have presented an efficient root-finding algorithm for lin-
earized polynomials. Such polynomials are of interest for determining the genus
of the image of the gGHS Weil descent technique. Our experiments show that
our method succeeds finding the roots of hσ(x) for relatively large instances
of this problem, instances where the generic state-of-the-art root-finding algo-
rithms tend to fail because of memory exhaustion. Further, we took advantage
of our algorithm to show that Mersene’s primes ` = 2t − 1, allows to discover a
family of elliptic curves E/Fq` for which the gGHS Weil descent successfully and
deterministically constructs a (non-)hyperelliptic curve H/Fq of genus g ≈ `.

We have then analyzed the cost of computing isogenies elliptic curves (the
computationally hard problem for which the security of isogeny-based cryptog-
raphy is based). Our implementations of the Meet-in-The-Middle (MITM) and
van Oorschot & Wiener (VW) golden collision search CSSI attacks are, to the
best of our knowledge, the first ones reported in the literature. The implemen-

0x45 69

6 CONCLUDING REMARKS

tations confirm that the performance of these attacks is accurately predicted by
their heuristic analysis.

Our concrete cost analysis of the attacks leads to the conclusion that VW
golden collision search is more effective that the MITM attack. Thus one can
use 448-bit primes and 536-bit primes p in SIDH to achieve the 128-bit and
160-bit security levels against known classical attacks on the CSSI problem. We
emphasize that these conclusions are based on our understanding of how to best
implement these algorithms, and on assumptions on the amount of storage and
the number of processors that an adversary might possess.

On the other hand, our conclusions are somewhat conservative in that the
analysis does not account for communication costs. Moreover, whereas it is
generally accepted that the AES-128 and AES-256 block ciphers attain the 128-
bit security level in the classical and quantum settings, the time it takes to
compute a degree-2112 isogeny (which is the unit of time for the golden colli-
sion search CSSI attack with balanced 448-bit prime p) is considerably greater
than the time for one application of AES-128 or AES-256. As a consequence,
our security analysis has strongly impacted on the post-quantum cryptography
community, to the point of being endorsed by the SIKE protocol designers and
pushing them to use our proposed smaller prime integer numbers.

Finally, we have studied side-channel protected implementations of the isoge-
ny based primitive CSIDH. Previous implementations failed at being fully con-
stant time on the inputs because of some subtle mistakes. We fixed those prob-
lems, and proposed new improvements, to achieve the most efficient version of
CSIDH protected against timing and simple power analysis attacks to date. All
of our algorithms were implemented in C, and the source made publicly available
online. We also have studied the security of CSIDH in stronger attack scenarios.
We proposed a protection against some fault-injection and timing attacks that
only comes at a cost of a twofold slowdown. We also sketched an alternative ver-
sion of CSIDH “for the conservative”, with much stronger security guarantees,
however at the moment this version seems too costly for the security benefits;
further work is required to make it comparable with the original definition of
CSIDH in terms of efficiency.

6.1 List of implemented codes

1. A parallel version of the Enge-Gaudry algorithm was implemented using
the computer algebra system Magma [30]. Our Magma-codes implementa-
tion of our procedures is available at

https://github.com/JJChiDguez/combining GLS with GHS.

2. A Magma-code implementation of an efficient root-finding algorithm for
linearized polynomials (see Algorithm 3.1). Our code is available at

https://github.com/JJChiDguez/root-finding.

70 0x46

https://github.com/JJChiDguez/combining_GLS_with_GHS
https://github.com/JJChiDguez/root-finding

6 CONCLUDING REMARKS

3. The MITM-basic and MITM-DFS attacks (for ` = 2) were implemented in
C. This C-code implementation requires the library fopenmp for the par-
allelization. Our code for the MITM-basic, MITM-DFS and VW golden
collision search CSSI attacks is available at

https://github.com/JJChiDguez/CSSI.

4. A C-code implementation of the following three different constant-time
CSIDH algorithms was performed:

MCR-style This is essentially our version of Meyer–Campos–Reith (with
one torsion point and dummy operations, batching isogenies with
SIMBA-5-11), but applying the techniques of §5.2 and §5.3.

OAYT-style This is essentially our version of Onuki et. al. (using
two torsion points and dummy operations, batching isogenies with
SIMBA-3-8), but applying the techniques of §5.2 and §5.3.

No-dummy This is Algorithm 5.5 (with two torsion points and no dummy
operations), batching isogenies using SIMBA-5-11.

In each case, the improvements and optimizations of §5.2-5.3 were ap-
plied, including projective Elligator, short differential addition chains, and
twisted Edwards arithmetic and isogenies. Our software library is freely
available from

https://github.com/JJChiDguez/csidh .

6.2 List of publications

As a result of this thesis research, we obtain three international conferences
articles accepted and published:

[31] Jesús-Javier Chi and Thomaz Oliveira, “Attacking a Binary GLS El-
liptic Curve with Magma”, Progress in Cryptology - LATINCRYPT 2015,
LNCS 9230 (2015), 308–326.

[99] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domı́nguez,
Alfred Menezes, Francisco Rodŕıguez-Henŕıquez, “On the Cost of Compu-
ting Isogenies Between Supersingular Elliptic Curves”, Selected Areas in
Cryptography — SAC 2019. LNCS 11349 (2018), 322–343.

[100] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domı́n-
guez, Luca De Feo, Francisco Rodŕıguez-Henŕıquez, and Benjamin Smith,
“Stronger and Faster Side-Channel Protections for CSIDH”, Progress in
Cryptology - LATINCRYPT 2019. LNCS 11774 (2019), 173-193

Additionally, the following work has been submitted to the indexed journal
Finite Fields and Their Applications, which is still under revision.

0x47 71

https://github.com/JJChiDguez/CSSI
https://github.com/JJChiDguez/csidh

6 CONCLUDING REMARKS

• Jesús-Javier Chi-Domı́nguez, Francisco Rodŕıguez-Henŕıquez, and Be-
njamin Smith, “Extending the GLS endomorphism to speedup the GHS
Weil descent using Magma”.

6.3 Forthcoming research

First of all, the main result of chapter 3 implies that the GLS endomorphism
of a GLS curve E/F22n induces an efficient endomorphism Ψ∗ : JacH(F2n) →
JacH(F2n) on the jacobian of the image of the GHS Weil descent applied on
E/F22n ; that is, there is an efficient endomorphism Ψ: H(F2n) → H(F2n) on
the genus two hyperelliptic curve H/F2n . This observation is useful because it
allows to combine a GLV method [25] with the induced endomorphism Ψ∗ in
order to perform an efficient scalar multiplication on H/F2n , and clearly this
observation requires to be analyzed for constructive aspects of genus-2 curve
based cryptography.

Subsequently, Martins-Banegas-Custódio show in [98] analyzed a code-based
scheme which was submitted to the NIST competition. In particular, they
present four root-finding algorithms that are protected against remote timing
exploitation. However, we think that our efficient root-finding algorithm for
linearized polynomials can be used to accelerate their computations.

Next, the VW golden collision search CSSI attack is based on a parallel
paradigm of programming, and GPU’s are designed for being used to solve hard
problems which allow parallelization. Thus, it is of interest to know how the VW
golden collision search CSSI attack behaves in a cuda-code implementation on
GPU’s. On the other hand, VW golden collision search method is backed on the
fact of using hash tables per each different random function. However, Dequen-
Ionica-Trimoska showed that half of the hash table cells are never reached [97]
and therefore, they suggest to use a structure called radix-tree to accelerate the
timings of the method. Consequently, it is of interest to know the practical
implications of using radix-tree in VW golden collision search CSSI attack.

As mentioned in chapter 4, the only two applications of the VW golden
collision search method are for attacking 2DES, 3DES, and (as a result of this
thesis) SIDH schemes. Thus, it is important to know if CSIDH is falling in
this small and particular set of cryptographic schemes. To be more precise, an
analysis of the VW golden collision search CSSI attack but applied to CSIDH
protocol must be done.

Finally, as mentioned in chapter 5, the quantum security of CSIDH protocol
is still not well understanding because of different algorithms, and debatable
assumptions about the required resources; anyhow, the best option would be
to propose a paranoic constant-time c-code implementation of CSIDH protocol,
which requires a finite field with at least 21500 elements. Clearly, this paranoic
CSIDH protocol will be very slow (perhaps, with stronger security) and needs
a further research study.

72 0x48

Appendix

Magma codes: Discrete Logarithm
Problem on E/F25×31

A.1 Elliptic curve instances

Listing 1: EC instance.mag

1 clear;
2

3 n := 5; l := 31; q := 2^n; N := 2^l;
4

5 F_2 := GF(2);
6 P_2 <t> := PolynomialRing(F_2);
7

8 F_q <u> := ext <F_2| t^5 + t^2 + 1>;
9 F_qn <v>:= ext <F_q| t^31 + t^3 + 1>;

10

11 a_qn := F_qn !1; b_qn := v^18 + v^17 + v^12 + v^8 + v^5 + v^4 + 1;
12 E_qn := EllipticCurve ([F_qn| 1, a_qn , 0, 0, b_qn]);
13 c := 0x12E7FB306F6; r := 0x6C530B0FAF0022649878E620CAE2D;
14

15 Pt_x := F_qn![u^10, u^30, u^24, u^17, u^26, u^23, u^22, u^8,
16 u^4, u^25, u^24, u^19, 0, u^30, u^2, u^8, u^24, u^16, u^21,
17 u^19, u^3, u^2, u^21, u^7, u^11, u^4, u^23, u^13, u^3, u^23,
18 u^23];
19 Pt_y := F_qn![u^25, u^29, u^16, u^20, 0, 1, u^10, u^6, u^13,
20 u^30, u^8, u^30, u^9, u^9, 0, u^9, u^8, u^28, u^21, u^23, u^23,
21 u^16, u^27, u^22, u^8, u^4, u^8, u^12, u^17, u^7, u^9];
22 Pt := E_qn![Pt_x , Pt_y];
23

24 Pt_prime_x := v^355/v^133 + (v+u+1);
25 Pt_prime_y := F_qn![u^15, u^12, u^12, 1, u^15, u^22, u^16, 0,
26 u^17, u^3, u^19, u^10, u^9, u^25, u^18, u^23, u^13, u^9, u^12,
27 u^22, u^30, u^17, u^15, u^22, u^2, u^22, u^21, u^16, u^13, u^7,
28 u^20];
29

30 Pt_prime := c*E_qn![Pt_prime_x , Pt_prime_y]; �
0x49 73

A APPENDIX

A.2 Hyperelliptic curve instances

Listing 2: HEC instance.mag

1 P_q <w> := PolynomialRing(F_q);
2

3 h_q := u^7*w^32 + u^12*w^16 + u^30*w^8 + u^28*w^2 + u^7*w;
4 f_q := u^4*w^65 + u^14*w^64 + u^14*w^33 + u^19*w^17 + u^16*w^8
5 + u^15*w^5 + u^25*w^4 + u^4*w^3 + u^24*w;
6

7 H_q := HyperellipticCurve(f_q , h_q);
8 J_q := Jacobian(H_q);
9

10 D_x := P_q![u^9, u^18, u^28, u^3, u^29, u^21, u^17, u^19, u^26,
11 u^16, u^8, u^25, u^11, u^8, u^5, u^18, 0, u^2, u^21, u^3, u^28,
12 u^19, u^22, u^14, u^24, u^6, u^28, u^19, u^16, u^21, u^20, u^18,
13 1];
14 D_y := P_q![u^4, u^24, 0, u^2, u^20, u^18, u^30, u, u^6, u^6,
15 u^27, u^29, u^14, u^29, u^17, u^10, u^12, u^23, u^11, u^3, u^12,
16 u^11, u^9, u^14, u^30, u^25, u^6, 0, u^5, u^2, u^29, u^25];
17 D := J_q![D_x , D_y];
18

19 D_prime_x := P_q![u^19, u^8, u^23, u^7, u^26, 0, u^2, u^4, u^21,
20 u^12, u^17, u^20, u^22, u^2, u^5, u^17, u, u^27, u^28, u^16, u^6,
21 u^18, u^5, u^27, u^19, u^15, u^11, u^14, u^8, u^6, u^26, u^11, 1];
22 D_prime_y := P_q![u^2, u^24, u^21, u^13, u^10, u^17, 1, u^15,
23 u^29, u^3, u^16, u^4, u, u^17, u^13, u^22, u^26, u^18, u^8, u^16,
24 u^21, u^26, u, u^16, u^16, u^3, u^5, u^24, u^26, u^26, u^14, u^14];
25

26 D_prime := J_q![D_prime_x , D_prime_y]; �

A.3 Testing the solution

Listing 3: checking dlog.mag

1 load "EC_instance.mag";
2 load "HEC_instance.mag";
3

4 dLog := 0x618877C96DE350E8C7980393356E3;
5 (Pt * dLog) eq Pt_prime;
6 (D * dLog) eq D_prime; �

74 0x4A

Bibliography

[1] W. Diffie and M. Hellman, “New directions in cryptography”, IEEE Trans-
actions on Information Theory, 22 (1976), 644–654.

[2] L. Adleman, R. Rivest and A. Shamir, “A Method for Obtaining Digital
Signatures and Public-key Cryptosystems”, Communications of the ACM,
ACM 21 (1978), 120–126.

[3] S. Miller, “Use of Elliptic Curves in Cryptography”, Advances in Cryptology
- CRYPTO ’85, LNCS 218 (1986), 417–426.

[4] N. Koblitz, “Elliptic curve cryptosystems’, Mathematics of Computation,
AMS 48 (1987), 203–209.

[5] L. Grover, “A Fast Quantum Mechanical Algorithm for Database Search”,
Symposium on the Theory of Computing, ACM (1996), 212–219.

[6] P. Shor, “Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer”, Journal on Computing, SIAM
26 (1997), 1484–1509.

[7] S. Galbraith, X. Lin, and M. Scott, “Endomorphisms for Faster Elliptic
Curve Cryptography on a Large Class of Curves”. Journal of Cryptology,
24 (2011), 446–469”.

[8] D. Hankerson, K. Karabina, and A. Menezes, “Analyzing the Galbraith-
Lin-Scott Point Multiplication Method for Elliptic Curves over Binary
Fields”, IEEE Transactions on Computers, 58 (2009), 1411–1420.

[9] A. Ay, C. Mancillas-López, E. Öztürk, Francisco Rodŕıguez-Henŕıquez, and
Erkay Savas, “Constant-time hardware computation of elliptic curve scalar
multiplication around the 128 bit security level”, Microprocessors and Mi-
crosystems — Embedded Hardware Design, 62 (2018): 79–90.

[10] T. Oliveira, D. Aranha, J. López, and F. Rodŕıguez-Henŕıquez, “Improving
the performance of the GLS254”, Presentation at CHES 2016 rump session,
(2016).

0x4B 75

BIBLIOGRAPHY

[11] T. Oliveira, J. López, D. Aranha, and F. Rodŕıguez-Henŕıquez, “Two is
the fastest prime: lambda coordinates for binary elliptic curves”, Journal
of Cryptographic Engineering 4 (2014), 3–17.

[12] T. Oliveira, J. López, D. Aranha, and F. Rodŕıguez-Henŕıquez, “Lambda
Coordinates for Binary Elliptic Curves”, Cryptographic Hardware and Em-
bedded Systems – CHES 2013. LNCS 8086 (2013), 311-330.

[13] G. Frey, “How to disguise an elliptic curve”. Talk at ECC’98, Waterloo.
Public version available at https://cr.yp.to/bib/1998/frey-disguise.ps.

[14] S. Galbraith and N. Smart, “A Cryptographic Application of Weil De-
scent”, Cryptography and Coding — IMA 1999, LNCS 1746 (1999), 191–
200.

[15] A. Menezes and M. Qu, “Analysis of the Weil Descent Attack of Gaudry,
Hess and Smart”, Topics in Cryptology — CT-RSA 2001, LNCS 2020
(2001), 308–318.

[16] M. Maurer, A. Menezes, and E. Teske, “Analysis of the GHS Weil Descent
Attack on the ECDLP over Characteristic Two Finite Fields of Composite
Degree”, Progress in Cryptology — INDOCRYPT 2001, LNCS 2247 (2001),
195–213.

[17] J. Couveignes, “Hard Homogeneous Spaces”, Cryptology ePrint Archive:
Report 2006/291. Available http://eprint.iacr.org/2006/291.

[18] A. Rostovtsev and A. Stolbunov, “Public-Key Cryptosystem Based on
Isogenies”, Cryptology ePrint Archive: Report 2006/145. Available http:
//eprint.iacr.org/2006/145.

[19] A. Stolbunov, “Constructing public-key cryptographic schemes based on
class group action on a set of isogenous elliptic curves”, Advances in Math-
ematics of Communications, AMC 4 (2010), 215–235.

[20] S. Galbraith, “Mathematics of Public Key Cryptography”, Cambridge
University Press, New York, NY, USA, 1st edition, 2012. Public version
2.0 available at https://www.math.auckland.ac.nz/∼sgal018/crypto-book/
main.pdf.

[21] L. Washington, “Elliptic Curves: Number Theory and Cryptography”, Sec-
ond Edition, Chapman & Hall/CRC, 2008.

[22] P. Gaudry, E. Thomé, N. Thériault, and C. Diem, “A double large prime
variation for small genus hyperelliptic index calculus”, Mathematics of
Computation. AMS 76 (2007), 475–492.

[23] P. Gaudry, “An algorithm for solving the discrete log problem on hyperel-
liptic curves”, Advances in Cryptology - EUROCRYPT 2000, 1807 (2000),
19–34.

76 0x4C

https://cr.yp.to/bib/1998/frey-disguise.ps
http://eprint.iacr.org/2006/291
http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2006/145
https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf
https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf

BIBLIOGRAPHY

[24] A. Enge and P. Gaudry, “A general framework for subexponential discrete
logarithm algorithms”, Acta Arithmetica, 102 (2002), 83–103.

[25] R. Gallant, R. Lambert, and S. Vanstone, “Faster point multiplication on
elliptic curves with efficient endomorphisms”, Advances in Cryptology —
CRYPTO 2001, LNCS 2139 (2001), 190–200.

[26] P. Gaudry, F. Hess, and N. Smart, “Constructive and destructive facets of
weil descent on elliptic curves”, Journal of Cryptology, 15 (2002), 19–46.

[27] S. Galbraith, F. Hess, and N. Smart, “Extending the GHS weil descent
attack”, Advances in Cryptology - EUROCRYPT 2002, LNCS 2332 (2002),
29-44.

[28] F. Hess, “The GHS Attack Revisited”, Advances in Cryptology - EURO-
CRYPT 2003, LNCS 2656 (2003), 374–387.

[29] F. Hess, “Generalising the GHS Attack on the Elliptic Curve Discrete Loga-
rithm Problem”, LMS Journal of Computation and Mathematics, 7 (2004),
167–192.

[30] Magma Computational Algebra System version 2.19-7, Online public cal-
culator available at http://magma.maths.usyd.edu.au/magma/.

[31] J.-J. Chi and T. Oliveira, “Attacking a binary GLS elliptic curve with
magma”, Progress in Cryptology - LATINCRYPT, 2015, LNCS 9230
(2015), 308–326.

[32] M. Velichka, M. Jacobson Jr, and A. Stein, “Computing discrete logarithms
in the jacobian of high-genus hyperelliptic curves over even characteristic
finite fields”, Mathematics of Computation, AMS 83 (2014), 935–963.

[33] M. Jacobson, A. Menezes, and A. Stein, “Solving elliptic curve discrete
logarithm problems using Weil descent”, Journal of the Ramanujan Math-
ematical Socciety, 16 (2001), 231–260.

[34] E.-R. Berlekamp, “Factoring polynomials over finite fields”, The Bell Sys-
tem Technical Journal, 46 (1967), 1853–1859.

[35] E.-R. Berlekamp, “Factoring Polynomials Over Large Finite Fields”, Math-
ematics of Computation, 24 (1970), 713–735

[36] D.-G. Cantor and H. Zassenhaus, “A New Algorithm for Factoring Poly-
nomials Over Finite Fields”, Mathematics of Computation, 36 (1981), 587–
592.

[37] J. von zur Gathen and D. Panario, “Factoring Polynomials Over Finite
Fields: A Survey” Journal of Symbolic Computation, 31 (2001), 3–7.

0x4D 77

http://magma.maths.usyd.edu.au/magma/

BIBLIOGRAPHY

[38] “Finding Roots in GF(pn) with the Successive Resultant Algorithm” Cryp-
tology ePrint Archive: Report 2014/506. Available http://eprint.iacr.org/
2014/506.

[39] J.-H. Davenport, C. Petit, and B. Pring, ”A Generalised Successive Resul-
tants Algorithm“, Arithmetic of Finite Fields - WAIFI 2016, LNCS 10064
(2016), 105–124.

[40] L. De Feo, C. Petit, and M. Quisquater, ”Deterministic root finding in
finite fields“ ACM Comm. Computer Algebra, 49 (2015), 87-89.

[41] G. Adj, D. Cervantes-Vázquez, J. Chi-Domı́nguez, A. Menezes and F.
Rodŕıguez-Henŕıquez, “On the cost or computing isogenies between su-
persingular elliptic curves”, Cryptology ePrint Archive: Report 2018/313.
Available http://eprint.iacr.org/2018/313.

[42] D. Bernstein, “Cost analysis of hash collisions: Will quantum computers
make SHARCS obsolete?”, In: Workshop Record of SHARCS’09: Special-
purpose Hardware for Attacking Cryptographic Systems, 2009. Available
from https://cr.yp.to/papers.html#collisioncost.

[43] G. Brassard, P. Høyer and A. Tapp, “Quantum cryptanalysis of hash and
claw-free functions”, Latin American Symposium on Theoretical Informat-
ics — LATIN’98, LNCS 1380 (1998), 163–169.

[44] D. Charles, E. Goren and K. Lauter, “Cryptographic hash functions from
expander graphs”, Journal of Cryptology, 22 (2009), 93–113.

[45] C. Costello et al., SIDH Library, https://www.microsoft.com/en-us/
research/project/sidh-library/.

[46] C. Costello and H. Hisil, “A simple and compact algorithm for SIDH with
arbitrary degree isogenies”, Advances in Cryptology — ASIACRYPT 2017,
LNCS 10624 (2017), 303–329.

[47] C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes and D. Urbanik, “Ef-
ficient compression of SIDH public keys”, Advances in Cryptology — EU-
ROCRYPT 2017, LNCS 10210 (2017), 679–706.

[48] C. Costello, P. Longa and M. Naehrig, “Efficient algorithms for supersin-
gular isogeny Diffie-Hellman”, Advances in Cryptology — CRYPTO 2016,
LNCS 9814 (2016), 572–601.

[49] L. De Feo, D. Jao and J. Plût, “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies”, Journal of Mathematical Cryp-
tology, 8 (2014), 209–247.

[50] A. Faz-Hernández, J. López, E. Ochoa-Jiménez and F. Rodŕıguez-
Henŕıquez, “A faster software implementation of the supersingular isogeny
Diffie-Hellman key exchange protocol”, IEEE Transactions on Computers,
67 (2018), 1622–1636.

78 0x4E

http://eprint.iacr.org/2014/506
http://eprint.iacr.org/2014/506
http://eprint.iacr.org/2018/313
https://cr.yp.to/papers.html#collisioncost
https://www.microsoft.com/en-us/research/project/sidh-library/
https://www.microsoft.com/en-us/research/project/sidh-library/

BIBLIOGRAPHY

[51] S. Galbraith, C. Petit and J. Silva, “Identification protocols and signature
schemes based on supersingular isogeny problems”, Advances in Cryptology
— ASIACRYPT 2017, LNCS 10624 (2017), 3–33.

[52] L. Grover, “A fast quantum mechanical algorithm for database search”,
Proceedings of the Twenty-Eighth Annual Symposium on Theory of Com-
puting — STOC ’96, ACM Press (1996), 212–219.

[53] D. Jao et al., “Supersingular isogeny key encapsulation”, Round 1 submis-
sion, NIST Post-Quantum Cryptography Standardization, November 30,
2017.

[54] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies”, Post-Quantum Cryptography —
PQCrypto 2011, LNCS 7071 (2011), 19–34.

[55] D. Jao and V. Soukharev, “Isogeny-based quantum-resistant undeniable
signatures”, Post-Quantum Cryptography — PQCrypto 2014, LNCS 8772
(2014), 160–179.

[56] S. Jaques and J. Schanck: “Quantum cryptanalysis in the RAM model:
Claw-finding attacks on SIKE”, Cryptology ePrint Archive: Report
2019/103. Available http://eprint.iacr.org/2019/103.

[57] B. Koziel, R. Azarderakhsh and M. Mozaffari-Kermani, “Fast hardware
architectures for supersingular isogeny Diffie-Hellman key exchange on
FPGA”, Progress in Cryptology — INDOCRYPT 2016, LNCS 10095
(2016), 191–206.

[58] National Institute of Standards and Technology, “Submission re-
quirements and evaluation criteria for the post-quantum cryptog-
raphy standardization process”, December 2016. Available from
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/
documents/call-for-proposals-final-dec-2016.pdf.

[59] P. van Oorschot and M. Wiener, “Improving implementable meet-in-
the-middle attacks by orders of magnitude”, Advances in Cryptology —
CRYPTO ’96, LNCS 1109 (1996), 229–236.

[60] P. van Oorschot and M. Wiener, “Parallel collision search with cryptana-
lytic applications”, Journal of Cryptology, 12 (1999), 1–28.

[61] C. Petit, “Faster algorithms for isogeny problems using torsion point im-
ages”, Advances in Cryptology — ASIACRYPT 2017, LNCS 10625 (2017),
330–353.

[62] C. Schnorr and A. Shamir, “An optimal sorting algorithm for mesh con-
nected computers”, Proceedings of the Eighteenth Annual Symposium on
Theory of Computing — STOC ’86, ACM Press (1986), 255–263.

0x4F 79

http://eprint.iacr.org/2019/103
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf

BIBLIOGRAPHY

[63] R. Schoof, “Nonsingular plane cubic curves over finite fields”, Journal of
Combinatorial Theory, Series A, 46 (1987), 183–211.

[64] A. Shamir, “Factoring large numbers with the TWINKLE device”, Cryp-
tographic Hardware and Embedded Systems — CHES 1999, LNCS 1717
(1999), 2–12.

[65] A. Shamir and E. Tromer, “Factoring large numbers with the TWIRL
device”, Advances in Cryptology — CRYPTO 2003, LNCS 2729 (2003),
1–26.

[66] S. Tani, “Claw finding algorithms using quantum walk”, Theoretical Com-
puter Science, 410 (2009), 5285–5297.

[67] J. Vélu, “Isogénies entre courbes elliptiques”, C. R. Acad. Sc. Paris, 273
(1971), 238–241.

[68] Wikipedia, “Sunway TaihuLight”, https://en.wikipedia.org/wiki/Sunway
TaihuLight.

[69] Wikipedia, “Exabyte”, https://en.wikipedia.org/wiki/Exabyte#Google.

[70] Y. Yoo, R. Azarderakhsh, A. Jalali, D. Jao and V. Soukharev, “A post-
quantum digital signature scheme based on supersingular isogenies”, Fi-
nancial Cryptography and Data Security — FC 2017, LNCS 10322 (2018),
163–181.

[71] C. Zalka, “Grover’s quantum searching algorithm is optimal”, Physical Re-
view A, 60 (1999), 2746–2751.

[72] G. Zanon, M. Simplicio Jr., G. Pereira, J. Doliskani and P. Barreto, “Faster
isogeny-based compressed key agreement”, Post-Quantum Cryptography —
PQCrypto 2018, LNCS 10786 (2018), 248–268.

[73] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes, “CSIDH:
An Efficient Post-Quantum Commutative Group Action”, Advances in
Cryptology — ASIACRYPT 2018, LNCS 11274 (2018), 395–427.

[74] L. De Feo and S. Galbraith, “SeaSign: Compact Isogeny Signatures from
Class Group Actions”, Advances in Cryptology — EUROCRYPT 2019,
LNCS 11478 (2019), 759–789.

[75] T. Decru, L. Panny, and F. Vercauteren, “Faster SeaSign Signatures
Through Improved Rejection Sampling”, Post-Quantum Cryptography —
PQCrypto 2019, LNCS 11505 (2019), 271–285.

[76] W. Beullens, T. Kleinjung, F. Vercauteren, “CSI-FiSh: Efficient Isogeny
based Signatures through Class Group Computations”, Cryptology ePrint
Archive: Report 2019/498. Available http://eprint.iacr.org/2019/498.

80 0x50

https://en.wikipedia.org/wiki/Sunway_TaihuLight
https://en.wikipedia.org/wiki/Sunway_TaihuLight
https://en.wikipedia.org/wiki/Exabyte#Google
http://eprint.iacr.org/2019/498

BIBLIOGRAPHY

[77] M. Meyer and S. Reith, “A Faster Way to the CSIDH”, Progress in Cryp-
tology — INDOCRYPT 2018, LNCS 11356 (2018), 137–152.

[78] M. Meyer, F. Campos, and S. Reith, “On Lions and Elligators: An Efficient
Constant-Time Implementation of CSIDH”, Post-Quantum Cryptography
— PQCrypto 2019, LNCS 11505 (2019), 307–325.

[79] A. Jalali, R. Azarderakhsh, M. Kermani, and D. Jao, “Towards Opti-
mized and Constant-Time CSIDH on Embedded Devices”, Constructive
Side-Channel Analysis and Secure Design — COSADE 2019, LNCS 11421
(2019), 215–231.

[80] D. Bernstein, M. Hamburg, A. Krasnova, and T. Lange, “Elligator: elliptic-
curve points indistinguishable from uniform random strings”, Conference
on Computer and Communications Security — CCS 2013, ACM (2013),
967–980.

[81] D. Bernstein, T. Lange, C. Martindale, and L. Panny, “Quantum Circuits
for the CSIDH: Optimizing Quantum Evaluation of Isogenies”, Advances
in Cryptology — EUROCRYPT 2019, LNCS 11477 (2019), 409–441.

[82] H. Onuki, Y. Aikawa, T. Yamazaki, and T. Takagi, “A Faster Constant-
time Algorithm of CSIDH keeping Two Torsion Points”, Cryptology ePrint
Archive: Report 2019/353. Available http://eprint.iacr.org/2019/353.

[83] D. Moody and D. Shumow, “Analogues of Vélu’s formulas for isogenies on
alternate models of elliptic curves”, Mathematics of Computation, AMS 85
(2016), 1929–1951.

[84] W. Castryck, S. Galbraith, and R. Farashahi, Efficient arithmetic on ellip-
tic curves using a mixed Edwards-Montgomery representation. Cryptology
ePrint Archive: Report 2008/218. Available http://eprint.iacr.org/2008/
218.

[85] S. Kim, K. Yoon, J. Kwon, S. Hong, and Young-Ho Park, “Efficient Isogeny
Computations on Twisted Edwards Curves”, Security and Communication
Networks (2018).

[86] S. Kim, K. Yoon, J. Kwon, Y. Park, and S. Hong, “New Hybrid Method for
Isogeny-based Cryptosystems using Edwards Curves”, Cryptology ePrint
Archive: Report 2018/1215, Available http://eprint.iacr.org/2018/1215.

[87] S. Kim, K. Yoon, Y. Park, S. Hong, “Optimized Method for Computing
Odd-Degree Isogenies on Edwards Curves”, Cryptology ePrint Archive:
Report 2019/110, Available http://eprint.iacr.org/2019/110.

[88] M. Meyer, S. Reith, and F. Campos, “On hybrid SIDH schemes using
Edwards and Montgomery curve arithmetic”, Cryptology ePrint Archive:
Report 2017/1213, Available http://eprint.iacr.org/2017/1213.

0x51 81

http://eprint.iacr.org/2019/353
http://eprint.iacr.org/2008/218
http://eprint.iacr.org/2008/218
http://eprint.iacr.org/2018/1215
http://eprint.iacr.org/2019/110
http://eprint.iacr.org/2017/1213

BIBLIOGRAPHY

[89] P. Montgomery, “Speeding the Pollard and elliptic curve methods of fac-
torization”, Mathematics of Computation, 48 (1987), 243–234.

[90] C. Costello and B. Smith, “Montgomery curves and their arithmetic - The
case of large characteristic fields”, Journal of Cryptographic Engineering 8
(2018), 227–240.

[91] J. Vélu, “Isogénies entre courbes elliptiques”, Comptes Rendus de
l’Académie des Sciences des Paris, 273 (1971), 238–241.

[92] D. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, “Twisted
Edwards curves”, Progress in Cryptology — AFRICACRYPT 2008, LNCS
5023 (2008), 389–405.

[93] A. Gélin and B. Wesolowski, “Loop-Abort Faults on Supersingular Isogeny
Cryptosystems”, Post-Quantum Cryptography — PQCrypto 2017, LNCS
10346 (2017), 93–106.

[94] Y. Ti, “Fault Attack on Supersingular Isogeny Cryptosystems”, Post-
Quantum Cryptography — PQCrypto 2017, LNCS 10346 (2017), 107–122.

[95] A. Childs, D. Jao, and V. Soukharev, “Constructing elliptic curve isogenies
in quantum subexponential time”, Journal of Mathematical Cryptology, 8
(2014), 1–29.

[96] L. De Feo, J. Kieffer, and B. Smith, “Towards Practical Key Exchange
from Ordinary Isogeny Graphs”, Advances in Cryptology — ASIACRYPT
2018, LNCS 11274 (2018), 365–394.

[97] G. Dequen, S. Ionica, and M. Trimoska, “Time-Memory Trade-offs for
Parallel Collision Search Algorithms”, Cryptology ePrint Archive: Report
2017/581. Available http://eprint.iacr.org/2017/581.

[98] D. Martins, G. Banegas, and R. Custódio, “Don’t Forget Your Roots:
Constant-Time Root Finding over F2m”, Progress in Cryptology - LAT-
INCRYPT 2019. LNCS 11774 (2019), 109–129.

[99] G. Adj, D. Cervantes-Vázquez, J. Chi-Domı́nguez, A. Menezes and F.
Rodŕıguez-Henŕıquez, “On the cost or computing isogenies between su-
persingular elliptic curves”, Selected Areas in Cryptography — SAC 2018.
LNCS 11349 (2019), 322–343.

[100] D. Cervantes-Vázquez, M. Chenu, J.-J. Chi-Domı́nguez, L. De Feo, F.
Rodŕıguez-Henŕıquez, and Benjamin Smith, “Stronger and Faster Side-
Channel Protections for CSIDH”, Progress in Cryptology - LATINCRYPT
2019. LNCS 11774 (2019), 173-193

82 0x52

http://eprint.iacr.org/2017/581

	Contents
	List of Figures
	List of Tables
	List of algorithms and program codes
	Introduction
	Elliptic curve in classical cryptography
	Elliptic curve in post-quantum cryptography
	Supersingular Isogeny Diffie-Hellman
	Commutative Supersingular Isogeny Diffie-Hellman

	Organization of the thesis

	Mathematical background
	Groups and rings
	Finite fields
	Hyperelliptic curves over finite fields

	Extending the GLS endomorphism to speedup the GHS Weil descent
	The GLS endomorphism
	Extending the GLS endomorphism
	Combining the GLS and GHS techniques
	New endomorphism on the hyperelliptic curve
	Explicit description of the new endomorphism
	Speeding-up the Index-Calculus algorithm in JacH (Fq)
	Solving discrete logarithms on E/ F2531.
	Comparison with related work

	Root-finding problem related with the gGHS Weil descent attack
	Efficient root-finding algorithm for linearized polynomials
	Comparisons and experiments
	Finding instances of elliptic curves for which the gGHS Weil descent becomes effective

	On the Cost of Computing Isogenies Between Supersingular Elliptic Curves
	Supersingular elliptic curves and isogenies
	SIDH protocol
	Meet-in-the-Middle
	Basic method
	Depth-first search
	Implementation report

	Golden collision search
	Van Oorschot-Wiener parallel collision search
	Finding a golden collision
	The attack
	Implementation report

	Comparisons
	Meet-in-the-middle
	Golden collision search
	Mesh sorting
	Targetting the 128-bit security level
	Targetting the 160-bit security level
	Targetting the 192-bit security level
	Resistance to quantum attacks
	SIDH performance

	Stronger and Faster Side-Channel Protections for CSIDH
	CSIDH protocol
	The class group action
	The CSIDH algorithm
	The Meyer–Campos–Reith constant-time algorithm
	The Onuki–Aikawa–Yamazaki–Takagi constant-time algorithm

	Repairing constant-time versions
	Projective Elligator
	Fixing a leaking branch in Onuki–Aikawa–Yamazaki–Takagi

	Optimizing constant-time implementations
	Isogeny and point arithmetic on twisted Edwards curves
	Montgomery curves
	Twisted Edwards curves

	Addition chains for a faster scalar multiplication

	Removing dummy operations for fault-attack resistance
	Derandomized CSIDH algorithms
	Experimental results

	Concluding remarks
	List of implemented codes
	List of publications
	Forthcoming research

	Appendix
	Elliptic curve instances
	Hyperelliptic curve instances
	Testing the solution

	Bibliography

