Quantum Computing based on Tensor Products
DFT and Factorization of Integers

Guillermo Morales Luna

Computer Science Section
CINVESTAV-IPN

E-mail: gmorales@cs.cinvestav.mx

5-th International Workshop on Applied Category Theory
Graph-Operad Logic
Agenda

1. Quantum Computation of the Discrete Fourier Transform

2. Shor Algorithm
 - Quantum Algorithm to Calculate the Order of a Number
Agenda

1. Quantum Computation of the Discrete Fourier Transform

2. Shor Algorithm
 - Quantum Algorithm to Calculate the Order of a Number
Given \(f : [0, n - 1] \rightarrow \mathbb{C} \) its discrete Fourier transform is \(\hat{f} : [0, n - 1] \rightarrow \mathbb{C} \)

\[
\forall j \in [0, n - 1] : \quad \hat{f}(j) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \exp\left(\frac{2\pi i j k}{n}\right) f(k). \quad [i = \sqrt{-1}]
\]
For \[f = \sum_{j=0}^{n-1} f(j)e_j \in \mathbb{C}^n, \]
its discrete Fourier transform is
\[
\text{DFT}(f) = \hat{f} = \sum_{j=0}^{n-1} \hat{f}(j)e_j \in \mathbb{C}^n.
\]
DFT is linear transform and, w.r.t. the canonical basis, it is represented by the unitary matrix
\[
\text{DFT} = \frac{1}{\sqrt{n}} \left(\exp \left(\frac{2\pi ijk}{n} \right) \right)_{jk}
\]
\[\text{DFT}^H \text{ coincides with DFT except that the exponents in each entry have sign } "-".\]
In particular,

\[\forall j \in \left[0, n - 1\right] : \text{DFT}(e_j) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \exp\left(\frac{2\pi ijk}{n}\right) e_k. \quad (1) \]

and obviously,

\[\text{DFT}(f) = \sum_{j=0}^{n-1} f(j) \text{DFT}(e_j). \quad (2) \]

Now, let us assume that \(n = 2^\nu \) is a power of 2. DFT can be calculated by fast Fourier transform FFT. This is a typical procedure of time complexity \(O(\nu 2^\nu) = O(n \log n) \). Through the inherent parallelism of quantum computing the procedure can be reduced to time complexity \(O(\nu) \).
Let us observe that, on one side, $\mathbb{H}_\nu = \mathbb{C}^n$, and by identifying each $j \in [0, 2^\nu - 1]$ with $\varepsilon_j = \varepsilon_{j,\nu-1} \cdots \varepsilon_{j,1}\varepsilon_{j,0}$:

$$\text{DFT}(e_{\varepsilon_j}) = \bigotimes_{k=0}^{\nu-1} \frac{1}{\sqrt{2}} \left(e_0 + \exp\left(\frac{\pi ij}{2^k} \right) e_1 \right)$$

$$= \frac{1}{\sqrt{2}} (e_0 + \exp\left(\frac{\pi ij}{2^0} \right) e_1) \otimes \frac{1}{\sqrt{2}} (e_0 + \exp\left(\frac{\pi ij}{2^1} \right) e_1) \otimes \cdots \otimes \frac{1}{\sqrt{2}} (e_0 + \exp\left(\frac{\pi ij}{2^{\nu-1}} \right) e_1) \quad (3)$$

The products appearing in this tensor product suggest the operators $Q_k : \mathbb{H}_1 \rightarrow \mathbb{H}_1$ and their “controlled” versions:

$$Q_k = \begin{bmatrix} 1 & 0 \\ 0 & \exp\left(\frac{\pi i j}{2^k} \right) \end{bmatrix}, \quad Q_{kj}^c = \begin{bmatrix} 1 & 0 \\ 0 & \exp\left(\frac{\pi i j}{2^k} \right) \end{bmatrix}.$$
Thus, for instance, if $j = 1$ then $Q_{k_1} = Q_k$ while if $j = 0$ then $Q_{k_0} = I$.

For $x_0 = \frac{1}{\sqrt{2}}(e_0 + e_1) = H(e_0)$, $Q_{kj}(x_0) = \frac{1}{\sqrt{2}} \left(e_0 + \exp\left(\pi i \frac{j}{2^k}\right)e_1\right)$.

Each $j \in [0, 2^\nu - 1]$ is represented by ε_j. Then, $\forall \ell \in [0, \nu - 1]$, $\frac{\varepsilon_{j,\ell} 2^\ell}{2^k} = \frac{\varepsilon_{j,\ell}}{2^{k - \ell}}$.

$$\exp\left(\pi i \frac{j}{2^k}\right) = \exp\left(\pi i \sum_{\ell=0}^{\nu-1} \varepsilon_{j,\ell} 2^\ell \frac{2^\ell}{2^k}\right) = \prod_{\ell=0}^{\nu-1} \exp\left(\pi i \frac{\varepsilon_{j,\ell}}{2^{k - \ell}}\right)$$

and consequently,

$$Q_{kj} = Q_{k-\nu+1,\varepsilon_j,\nu-1} \circ \cdots \circ Q_{k-1,\varepsilon_j,1} \circ Q_{k,\varepsilon_j,0}.$$

Since k ranges from 0 to $\nu - 1$ there will be required $2(2^\nu - 1)$ gates $Q_{k\varepsilon}$, $k \in [(\nu - 1), \nu - 1]$, $\varepsilon \in \{0, 1\}$.

Whenever $j < 2^{\nu_1}$, with $\nu_1 \leq \nu$, all digits with indexes $\nu_1 - 1$ or $\nu - 1$ have value 0, hence the corresponding controlled gates are the identity map.
For each \((j, k) \in [0, 2^{\nu} - 1] \times [0, \nu - 1]\),

\[
P_{jk} = Q_{k-\nu+1,\varepsilon_j,\nu-1}^{c} \circ \cdots \circ Q_{k-1,\varepsilon_j,1}^{c} \circ Q_{k,\varepsilon_j,0}^{c},
\]

(4)

where \(\nu_1 = \lceil \log_2 j \rceil + 1\). Then: \(P_{jk}(x_0) = \frac{1}{\sqrt{2}} \left(e_0 + \text{exp} \left(\pi i \frac{j}{2^k} \right) e_1 \right)\).

For a fixed \(j \in [0, 2^{\nu} - 1]\), for each \(k = 0, \ldots, \nu - 1\), \(P_{jk}(x_0)\) at the right of eq. (3) will appear in an order left to right w.r.t. eq. (3). Then:

\[
Q_{0,\varepsilon_j,0}^{c}(x_0) = P_{j0}(x_0)
\]

\[
Q_{1,\varepsilon_j,0}^{c} \circ Q_{0,\varepsilon_j,1}^{c}(x_0) = P_{j1}(x_0)
\]

\[
Q_{2,\varepsilon_j,0}^{c} \circ Q_{1,\varepsilon_j,1}^{c} \circ Q_{0,\varepsilon_j,2}^{c}(x_0) = P_{j2}(x_0)
\]

\[
\vdots \quad \vdots
\]

\[
Q_{\nu-1,\varepsilon_j,0}^{c} \circ \cdots \circ Q_{2,\varepsilon_j,\nu-3}^{c} \circ Q_{1,\varepsilon_j,\nu-2}^{c} \circ Q_{0,\varepsilon_j,\nu-1}^{c}(x_0) = P_{j,\nu-1}(x_0)
\]
For each \(k \in [0, \nu - 1] \), the \(Q^c_{\ell, \varepsilon_j, k-\ell} \), with \(\ell = 0, \ldots, k \), are applied consecutively and they are selecting the digits in the base-2 representation of \(j \) going from the most significant till the least significant. Henceforth, it is necessary to apply the reverse operator to switch the bits order in each \(j \in [0, 2^\nu - 1] \).

Each bit \(\varepsilon \) is represented by the basic vector \(e_\varepsilon \). Consequently, each controlled operator \(Q^c_{k, \varepsilon} \), with domain in \(H_1 \) can be identified with the operator \(x \mapsto Q^{c^2}(x, e_\varepsilon) \) where

\[
Q^{c^2} = (I \otimes Q_k) \circ C \circ (I \otimes Q^H_k) \circ C \circ (Q_k \otimes I). \tag{5}
\]
Algorithm for the Fourier transform

Input. \(n = 2^\nu, \mathbf{f} \in \mathbb{C}^n = \mathbb{H}_\nu. \)

Output. \(\hat{\mathbf{f}} = \text{DFT}(\mathbf{f}) \in \mathbb{H}_\nu. \)

Procedure \(\text{DFT}(n, \mathbf{f}) \)

1. Let \(\mathbf{x}_0 := H(\mathbf{e}_0). \)
2. For each \(j \in [0, 2^\nu − 1], \) or equivalently, for each \((\varepsilon_{j,\nu−1} \cdots \varepsilon_{j,1} \varepsilon_{j,0}) \in \{0, 1\}^\nu, \) do (in parallel):
 1. For each \(k \in [0, \nu − 1] \) do (in parallel):
 1. Let \(\delta := R_k(\varepsilon_j|_k) \) be the reverse of the chain consisting of the \((k + 1)\) less significant bits.
 2. Let \(\mathbf{y}_{jk} := \mathbf{x}_0. \)
 3. For \(\ell = 0 \) to \(k \) do \{ \(\mathbf{y}_{jk} := Q^{c^2}(\mathbf{y}_{jk}, \mathbf{e}_{\delta,j,\ell}) \) (see eq. (5)) \}
2. Let \(\mathbf{y}_j := \mathbf{y}_{j0} \otimes \cdots \otimes \mathbf{y}_{j,\nu−1} \) (see eq. (3)).
3. Output as result \(\hat{\mathbf{f}} = \sum_{j=0}^{2^\nu−1} f_j \mathbf{y}_j. \)
Agenda

1. Quantum Computation of the Discrete Fourier Transform

2. Shor Algorithm
 - Quantum Algorithm to Calculate the Order of a Number
Modular multiplicative groups

- For $n, m \in \mathbb{Z}$, its greatest common divisor is $d = \gcd(n, m)$ where d divides n and m and any other common divisor divides also d.
- Euclid’s Algorithm calculates, for two given n and m, $d = \gcd(n, m)$ and express as $d = an + bm$, with $a, b \in \mathbb{Z}$.
- n and m are relative prime if $\gcd(n, m) = 1$.
- $\Phi(n) = \{m \in \left[1, n\right] | \gcd(n, m) = 1\}$.
- $\phi(n) = \text{card}(\Phi(n))$: Euler’s function at n.
- $(\Phi(n)$, multiplication modulo $n)$ is a group of order $\phi(n)$.
- If $m \in \Phi(n)$ then $m^{\phi(n)} = 1 \mod n$.
- For each integer $m \in \Phi(n)$ there exists a minimal element r, divisor of $\phi(n)$, such that $m^r = 1 \mod n$. Such an r is the order of m in $\Phi(n)$.
Let n be an integer to be factored

1. Select an integer m such that $1 < m < n$.
2. If $\gcd(n, m) = d > 1$, then d is a non-trivial factor of n.
3. Otherwise, $m \in \Phi(n)$.
 1. If m has an even order r, then $k = m^{\frac{r}{2}}$ will be such that $k^2 \equiv 1 \mod n$, and $(k - 1)(k + 1) \equiv 0 \mod n$.
 2. By calculating $\gcd(n, k - 1)$ and $\gcd(n, k + 1)$, one gets non-trivial factors of n.
First problem

Find an element of even order in $\Phi(n)$

If m is chosen randomly, the probability that m has even order is $1 - \frac{1}{2^\ell}$ where ℓ is the number of prime factors in n. Hence, the probability that after k attempts the sought witnessing number has not been found is $2^{-k\ell}$ and this tends to zero quickly as k increases.
Biggest problem

Calculate the order of a current element \(m \) in \(\Phi(n) \)

Let \(\nu = \lceil \log_2 n \rceil \), \(\nu \) is the size of \(n \).

\(O(n) = O(2^\nu) \), thus an exhaustive procedure has exponential complexity with respect to the input size. Shor’s algorithm is based over a polynomial-time procedure in \(\nu \) to calculate the order of an element.
Calculating the Order of a Number

Let \(n \in \mathbb{N} \) and \(\nu = \lceil \log_2 n \rceil \) be its size.
Let \(\kappa \) s.t. \(n^2 \leq 2^\kappa < 2n^2 \), i.e. \(\kappa = \lceil 2 \log_2 n \rceil \).
There will be necessary to use \(\kappa + \nu \) qubits and all calculations will lie in

\[
\mathcal{H}_{\kappa + \nu} = \mathcal{H}_\kappa \otimes \mathcal{H}_\nu, \text{ of dimension } 2^{\kappa + \nu} = 2^\kappa \cdot 2^\nu.
\]

\(\forall m \in \Phi(n) \), let \(V_m : \mathcal{H}_{\kappa + \nu} \to \mathcal{H}_{\kappa + \nu} \),

\[
V_m : e_{\varepsilon_j} \otimes e_{\varepsilon_i} \mapsto e_{\varepsilon_j} \otimes e_{\varepsilon_{f(i,j,m)}}
\]

(6)

where \(f(i, j, m) = (j + m^i) \mod n \). \(f \) is \(r \)-periodic w.r.t. its first argument \(i \).
Elements whose Order is a Power of 2

Suppose \(m \in \Phi(n) \) whose order \(r \) is a power of 2. Let \(P_1 = H^\otimes \kappa \otimes I^\otimes \nu, H, I : \mathbb{H}_1 \rightarrow \mathbb{H}_1 \) Hadamard’s operator and identity.

\[
P_1(e_0 \otimes e_0) = \frac{1}{\sqrt{2^\kappa}} \sum_{\varepsilon \in \{0,1\}^\kappa} e_\varepsilon \otimes e_0.
\]

Let's write \(s_1 = P_1(e_0 \otimes e_0) \). By applying \(V_m \),

\[
V_m(s_1) = \frac{1}{\sqrt{2^\kappa}} \sum_{i=0}^{2^\kappa - 1} e_{\varepsilon_i} \otimes e_{\varepsilon_{f(i,0,m)}}.
\]

Let \(s_2 = V_m(s_1) \). Let \(J_j = \{i|0 \leq i \leq 2^\kappa - 1 : i = j \mod r\} \). \([0, 2^\kappa - 1] = \bigcup_{j=0}^{r-1} J_j\), and each set \(J_j \) has cardinality \(s = \frac{2^\kappa}{r} \in \mathbb{Z} \). Thus

\[
s_2 = \frac{1}{\sqrt{2^\kappa}} \sum_{j=0}^{r-1} \left(\sum_{i \in J_j} e_{\varepsilon_i} \right) \otimes e_{\varepsilon_{mj}}.
\]

(7)
By a Measurement, it is chosen a vector $\mathbf{e}_{\varepsilon_i} \otimes \mathbf{e}_{\varepsilon_{m_0}}$, $i \in J_{j_0}$, for a fixed $j_0 \leq r$, with probability $\frac{r}{2^\kappa}$. The corresponding state is

$$s_3 = \sum_{i=0}^{2^\kappa-1} g(i)\mathbf{e}_{\varepsilon_i} \otimes \mathbf{e}_{\varepsilon_{m_0}}. \quad (8)$$

where $g : i \mapsto \begin{cases} \sqrt{\frac{r}{2^\kappa}} & \text{if } i \in J_{j_0} \\ 0 & \text{if } i \notin J_{j_0} \end{cases}$ is also r-periodic. \hat{g} is periodic, with period proportional to $\frac{1}{r}$. On other side:

$$\hat{s}_3 = \text{DFT}^H(s_3) = \sqrt{\frac{r}{2^\kappa}} \sum_{k=0}^{s-1} \left(\frac{1}{\sqrt{2^\kappa}} \sum_{\ell=0}^{2^\kappa-1} \exp \left(-\frac{2\pi i \ell}{2^\kappa} (kr + j_0) \right) \mathbf{e}_\ell \right) \otimes \mathbf{e}_{\varepsilon_{m_0}},$$

and, by interchanging the summation order we get:

$$s_4 = \hat{s}_3 = \frac{1}{\sqrt{r}} \left(\sum_{\ell=0}^{2^\kappa-1} \left(\frac{1}{s} \sum_{k=0}^{s-1} \exp \left(-\frac{2\pi i \ell k}{s} \right) \right) \exp \left(-\frac{2\pi i \ell j_0}{2^\kappa} \right) \mathbf{e}_\ell \right) \otimes \mathbf{e}_{\varepsilon_{m_0}}. \quad (9)$$
Since \(\exp\left(-\frac{2\pi i \ell}{s}\right) \) is a \(s \)-th root of unit, \(\frac{1}{s} \sum_{k=0}^{s-1} \exp\left(-\frac{2\pi i \ell k}{s}\right) \) is either 1 or 0 depending on whether \(\ell \) has the form \(\ell = ts \), with \(t = 0, \ldots, r - 1 \).

\[
s_4 = \frac{1}{\sqrt{r}} \left(\sum_{t=0}^{r-1} \exp\left(-\frac{2\pi i t j_0}{r}\right) e^{2\kappa t/r} \right) \otimes e^{\epsilon/mj_0}.
\] (10)

By a measurement it is obtained \(\frac{2^{\kappa} t_0}{r} \), with \(t_0 \in \left[0, r - 1\right] \), each with probability \(r^{-1} \).

If \(t_0 = 0 \), then it is not possible to obtain any information about \(r \) and the procedure should be repeated.

Otherwise, it is obtained the rational value \(\frac{r_0}{r_1} = \frac{t_0}{r} \). The values \(r_0 \) and \(r_1 \) are known, but till this point neither \(t_0 \) nor \(r \) are known. Nevertheless, \textbf{a fortiori} \(r_1 \) should divide \(r \). Thus, the quantum algorithm should be applied once more with \(m_1 = m^{r_1} \) as input. In a recursive way, the factorization \(r = r_1 r_2 \cdots r_p \) is got, containing at most \(\log_2 r \) factors.
Algorithm to find a divisor of the order of an element

Input. $n \in \mathbb{N}, m \in \Phi(n)$ of order a power of 2.
Output. r such that $r | o(m)$.

Procedure `DivisorOrderPower2(n, m)`

1. Let $\nu := \lceil \log_2 n \rceil$, $\kappa := 2 \nu$.
2. Let $V_m : \mathbb{H}_{\kappa + \nu} \rightarrow \mathbb{H}_{\kappa + \nu}$ be defined as in eq. (6).
3. Let $s_1 := (H^{\otimes \kappa} \otimes I^{\otimes \nu})(e_0 \otimes e_0)$.
4. Let $s_2 := V_m(s_1)$.
5. Let $s_3 := \sum_{i=0}^{2^\kappa - 1} g(i)e_{\varepsilon_i} \otimes e_{\varepsilon_{m^0}^j}$ be the equivalent state to “take a measurement” in s_2. g is determined by eq. (8).
6. Let $s_4 := \text{IDFT}(2^\kappa, s_3)$.
7. Let $e_{\varepsilon_k} \otimes e_{\varepsilon_{m^0}^j}$ be a measurement of s_4.
8. If $k == 0$ then repeat from step 3. Else, let $r_0 = \frac{k}{2^\kappa}$ and output as result r_1.
Algorithm to calculate the order of an element

Input. \(n \in \mathbb{N}, \ m \in \Phi(n) \) of order a power of 2.

Output. \(r \) such that \(r = o(m) \).

Procedure OrderPower2\((n, m)\)

1. Initially \(r := 1 \) and \(m_1 := m \).
2. Repeat
 1. let \(r_1 := \text{DivisorOrderPower2}(n, m_1) \);
 2. update \(r := r \cdot r_1 \);
 3. update \(m_1 := m_1^{r_1} \mod n \).
3. until \(r_1 == 1 \).

3. Output \(r \).
Elements with Arbitrary Order

Let us drop the assumption that order \(r \) is a power of 2. As before, let \(V_m \) be defined as in eq. (6):
\[
\mathbf{s}_1 = (H^\otimes \kappa \otimes 1^\otimes \nu)(\mathbf{e}_0 \otimes \mathbf{e}_0)
\]
and
\[
\mathbf{s}_2 = V_m(\mathbf{s}_1) = \frac{1}{\sqrt{2^\kappa}} \sum_{j=0}^{r-1} \left(\sum_{i \in J_j} \mathbf{e}_{\mathbf{\varepsilon}_i} \right) \otimes \mathbf{e}_{\mathbf{\varepsilon}_{m_j}}.
\]
(11)

where the sets \(J_j \) are equivalence classes, but in the current case their cardinalities may differ. If \(u = 2^\kappa \mod r \) and \(s = (2^\kappa - u)/r \) then \(u \) classes will have \(s + 1 \) elements and the remaining classes will have \(s \) elements. Let \(s_j = s + 1 \) for \(j = 1, \ldots, u \) and \(s_j = s \) for \(j = u + 1, \ldots, r - 1, 0 \). Then the state after taking a measurement, as in eq. (8), is, for some \(j_0 \in [0, r - 1] \):
\[
\mathbf{s}_3 = \sum_{i=0}^{2^\kappa - 1} g(i) \mathbf{e}_{\mathbf{\varepsilon}_i} \otimes \mathbf{e}_{\mathbf{\varepsilon}_{m_{j_0}}}.
\]
(12)

where \(g : i \mapsto \begin{cases}
\frac{1}{\sqrt{s_{j_0}}} & \text{if } i \in J_{j_0} \\
0 & \text{if } i \notin J_{j_0}
\end{cases} \)
\[s_4 = \tilde{s}_3 = \frac{1}{\sqrt{2^\kappa}} \left(\sum_{\ell=0}^{2^\kappa-1} \left(\frac{1}{\sqrt{s_{j_0}}} \sum_{k=0}^{s_{j_0}-1} e^{-\frac{2\pi i \ell k r}{2^\kappa}} \right) e^{-\frac{2\pi i \ell j_0}{2^\kappa}} e_\ell \right) \otimes e_{\varepsilon_{m j_0}}. \]

(13)

The coefficients involving the inner summation never will be zero (since \(r \) does not divide \(2^\kappa \), there is no “complete sample” of \(s_{j_0} \)-th roots of unit). In a measurement for the first qubit, the probability to choose \(e_\ell \otimes e_{\varepsilon_{m j_0}} \) is

\[
P(\ell) = \frac{1}{\sqrt{2^\kappa s_{j_0}}} \left| \sum_{k=0}^{s_{j_0}-1} \exp\left(-\frac{2\pi i \ell k r}{2^\kappa} \right) \right|^2
\]

and the maxima of those values correspond to \(\ell = \text{ClosestIntegral} \left(\frac{k 2^\kappa}{r} \right) \).

Suppose that after a measurement, it is chosen \(e_{\ell_k} \otimes e_{\varepsilon_{m j_0}} \), with \(\ell_k = \text{ClosestIntegral} \left(\frac{k 2^\kappa}{r} \right) \). Then, when divided by \(2^\kappa \) we get \(\frac{\ell_k}{2^\kappa} \sim \frac{k}{r} \), and from here we should know \(r \).
Continued fractions

If \(\frac{p}{q} \in \mathbb{Q}^+ \), its continued fraction is

\[
\frac{p}{q} = a_0 + \frac{1}{a_1 + \frac{1}{\ddots + \frac{1}{a_v}}} = [a_0, a_1, \ldots, a_v]
\]

(14)

where \(a_0, a_1, \ldots, a_v \in \mathbb{N} - \{0\} \).

For each \(w \leq v \), \([a_0, a_1, \ldots, a_w]\) is the \(w \)-th convergent of \(\frac{p}{q} \), and is a rational approximation of \(\frac{p}{q} \).
Continued Fractions Algorithm

Input. \(\frac{p}{q} \in \mathbb{Q} \).

Output. \([a_0, a_1, \ldots, a_v]\): continued fraction representing \(\frac{p}{q} \in \mathbb{Q} \).

Procedure ContinuedFraction(\(\frac{p}{q} \))

1. Initially \(lst := [] \) (the empty list) and \(xcurr := \frac{p}{q} \).
2. While the denominator of \(xcurr \) is greater than 1 do
 1. Let \(i := \text{IntegerPart}(xcurr) \);
 2. let express \(\frac{p_1}{q_1} = xcurr \);
 3. update \(xcurr := \frac{q_1}{p_1 - iq_1} \);
 4. update \(lst := lst \ast [i] \).
3. Update \(lst := lst \ast [xcurr] \).
4. Output \(lst \).
Algorithm to find divisors of the order of an element

Input. \(n \in \mathbb{N}, m \in \Phi(n) \).

Output. \(r \) such that \(r \mid o(m) \).

Procedure \(\text{DivisorOrder}(n, m) \)

1. Let \(\nu := \lceil \log_2 n \rceil \), \(\kappa = \lceil 2 \log_2 n \rceil \).
2. Let \(V_m : \mathbb{H}_{\kappa + \nu} \rightarrow \mathbb{H}_{\kappa + \nu} \) as in eq. (6).
3. Let \(\mathbf{s}_1 := (H^{\otimes \kappa} \otimes I^{\otimes \nu})(\mathbf{e}_0 \otimes \mathbf{e}_0) \).
4. Let \(\mathbf{s}_2 := V_m(\mathbf{s}_1) \).
5. Let \(\mathbf{s}_3 := \sum_{i=0}^{2^\kappa - 1} g(i)\mathbf{e}_{\epsilon_i} \otimes \mathbf{e}_{\epsilon_{m^i0}} \) be the state equivalent to "take a measurement" in \(\mathbf{s}_2 \). \(g \) is as in eq. (12).
6. Let \(\mathbf{s}_4 := \text{IDFT}(2^{\kappa}, \mathbf{s}_3) \).
7. Let \(\mathbf{e}_{\epsilon_{\ell_k}} \otimes \mathbf{e}_{\epsilon_{m^i0}} \) a measurement of \(\mathbf{s}_4 \).
If $\ell_k == 0$ then repeat from step 3. Else

1. Let $[a_0, a_1, \ldots, a_v] := \text{ContinuedFraction}(\ell_k/2^k)$;
2. Let $[c_0, c_1, \ldots, c_v]$ be the convergents list; and
3. output the list of denominators less than n of those convergents.

From the obtained divisors of orders, it is possible to find the orders themselves in a similar manner as was sketched in the procedure OrderPower2, but in this case it is necessary to track all divisors provided by the above procedure DivisorOrder.