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Abstract. In this paper is shown that the Appearance-Based modeling is the 

best pattern recognition method for supporting the velocity updating of 

wheeled-robots navigation. Although Appearance-Based recognition algorithms 

have lower accuracy than the ones for detailed pattern recognition, they 

successfully classify terrain textures by regarding the average of the 

appearance. Actually, the detailed recognition algorithms success in 

recognizing patterns depicted with lines, dots or borders, but they fail for 

recognizing patterns where the average appearance is required. As human 

driving experience shows, the assessment of the average appearance is needed 

for velocity updating during navigation on outdoor terrains. Human drivers 

make the velocity adjusting based on an estimation of the terrain average 

appearance. Hence, as the experimental result illustrate, the algorithms for 

average appearance recognition are the best option for training wheeled-robot 

for velocity updating while navigating over outdoor terrains. 

Keywords: Roughness Recognition, Velocity Updating, Wheeled-Robots 

Navigation. 

1 Introduction 

Outdoor autonomous robots are relevant for terrain exploration missions. The terrain 

difficulties of solar system planets –like Mars–, to move through terrains having soil, 

rocks and slopes, requires the usage of robots with the highest degree of autonomy to 

overcome such difficulties [1]. As well, in Earth exploration missions where human 

lives may be in dangerous circumstances, the autonomous robots are as well required. 

For instance, search of landmines or exploration of active volcano craters. 

Autonomous navigation on outdoor terrains is highly complex, obstacle detection and 

avoidance as well as the terrain features information for no slides, are both required. 

Environment data must be accurate and quickly processed by the robot’s navigation 

systems. Besides, when data from human remote controllers is not quickly available, 

the autonomous robots should be equipped for convenient reactions, particularly in 

front of unpredicted circumstances. Actually, beyond the obstacle location and 

avoidance, the robot’s velocity control, regarding the terrain features, has been few 

attended and it is a weakness for efficient and safe navigation nowadays.  



The classification of terrain roughness has just recently been a bit more attended 

[2]. In [2] a path over a rough terrain is generated with a terrain-based criterion 

function, and then the robot is controlled so as to move on the chosen path. In [3] the 

navigation strategy assesses the terrain’s features of roughness, slopes and 

discontinuity. Larson et al. [4] analyze the terrain roughness by means of spatial 

discrimination which then is (meta-) classified. In [5] roughness recognition is by 

using artificial vision, so novel textures recognition is later to an off-line recognition 

training from sample texture. Pereira et al. [6] plotted maps of terrains incorporating 

roughness information that is based on the measurement of vibrations occurring in the 

suspension of the vehicle; this online method can recognize textures at the moment 

the vehicle passes over them, what is a limitation for remote recognition. 

For the purpose of velocity updating for autonomous navigation on rough terrains 

we claim that is not required to identify textures at high-detail level. Actually, as 

analyzed in Section 3, high precision recognition methods like Local Binary Patterns 

(LBP) [7], or Advanced Local Binary Patterns with Rotation Invariance (ALBPRI) 

[8], having 97.54% and 99.64% of respective efficacy, do not well performed 

accounting recognition of outdoors terrains textures. The listed accuracy percentages 

correspond to tests carried out on the texture image database of the Columbia Utrecht 

Reflectance and Texture Database [9], which is the most common benchmark used for 

testing texture recognition algorithms. 

The LBP and ALBPRI methods have good performance for texture recognition. 

But these works do not mention anything about recognition of new textures, that is, 

nothing is said about how a different texture from the texture training set is classified. 

They just verify if the testing textures belong to any class of the texture training set, 

i.e., they only give two result values, false and true. 

For our purpose, we desire to determine how similar the set of test textures and the 

set of training textures they are. The Appearance Based Vision (ABV) [10] method 

having 75% of detailed texture recognition efficacy is good enough for the velocity 

updating during outdoor navigation as results show in Section 3.2. Although ABV 

does not take into account the fine details of textures, it captures the so called average 

appearance of the textures. In other words, with a testing texture, even if it is a new 

texture, the ABV method compares it with the classes of the training set and indicates 

the texture class that resembles more to them, according to the average appearance.  

In this paper is proposed to improve the process of robot velocity adaptation, by 

regarding the terrain features and imitating as human beings do. Humans use a quick 

imprecise estimation of the terrain features but enough to navigate without slides or 

falls. The human’s estimation on the right velocity to safe navigate on irregular 

terrains is via imprecise but enough surface texture recognition [3]. Actually, we 

show below that concerning terrains exploration for robot navigation, the highest 

precision methods for texture recognition are not the adequate but failed. 

Surface textures are captured via artificial vision, after image processing the 

estimation of texture class is gotten as well as the slopes inclinations. The algorithm’s 

output indicates the velocity the robot can move depending on the terrain features. 

Bright and uniform lighting during navigation is required to guaranty consistent 

roughness recognition; therefore the presence of shadows, which treatment is a hard 

task to pattern recognition [11] is out of the scope of this work. 



The rest of the article is organized as follows: Section 2 summarizes the closest 

antecedents in the field of texture recognition; then, the method and architecture of 

the fuzzy neural network for velocity updating is introduced. Section 3 describes tests 

and experimental results. A brief discussion is in Section 4, and the paper ends with 

conclusions. 

2 Outdoor Terrains Recognition 

Texture recognition is an issue that has been studied extensively; the local binary 

pattern-based methods are widely used for its good performance in the recognition of 

textures. Textures are modeled with multiple histograms of micro-textons; the micro-

textons are extracted with a local binary pattern operator.  

LBP [7] is a gray-scale invariant texture primitive statistic. For each pixel in an 

image, a binary code is produced by thresholding its neighborhood with the value of 

the center pixel. A histogram is created to collect up the occurrences of different 

binary patterns. LBP can be regarded as a micro-texton operator. At each pixel, it 

detects the best matching local binary pattern representing different types of curved 

edges, spots, flat areas, etc. After scanning the whole image to be analyzed, each pixel 

will have a label corresponding to one texton in the vocabulary. The histogram of 

labels computed over a region is then used for texture description. 

Conventional LBP just considers the uniform patterns in the images. It discards 

important pattern information for images whose dominant patterns are not uniform 

patterns. ALBPRI [8] proposes a new rotation and histogram equalization invariant 

texture classification method by extending the conventional LBP approach to reflect 

the dominant pattern information contained in the texture images and capturing the 

spatial distribution information of dominant patterns. 

These methods do well recognize patterns depicted with lines, dots or borders, but 

fails for recognizing different depicted appearances. When human drivers drive 

vehicles, they do not inspect the terrain textures with a magnifying glass nor take a 

look at a small distance to account details of particular lines, dots or borders; they just 

estimate the texture roughness basing on previous pattern recognition experience 

while driving [3]. 

Human beings classify textures according to past experience; when human drivers 

find a novel terrain texture, they employ their experience to estimate how rough the 

novel texture is. Then, they decide how fast they can drive without slide risks. By 

using fuzzy logic the human process for identifying the terrain roughness can be 

modeled in such a way to be used by the robot mimicking this human ability. To 

imitate the human experience during terrain recognition for navigation, it is clever to 

pay attention in convenient methods for recognizing the surface appearance average, 

and such that not lost in unnecessary details for the outdoors navigation purpose. 

Moreover, frequently the surfaces details recognition is computationally high-cost and 

it should be avoided for autonomous navigation. Actually, the Appearance Based 

Vision method is good enough for the velocity updating during outdoor navigation. 



2.1 Appearance-Based Vision  

The ABV method gets the principal components of image distribution, namely, the 

eigenvectors of the covariance matrix of the object images set. The ordered 

eigenvectors fashion the features accounting and charectizing the variation among the 

different images. The use of ABV for object recognition involves the next operators 

and operations. 

Let mn

N

×⊂ RII },,{ 1 K  the set of training images, all the images are stacked so 

that we obtain the set 
mn

N

⋅⊂ R},,{ 1 φφ K . The vectors are normalized with 

iii φφφ /
~

= . The average vector is computed, ∑ =
=

N

i iN 1

1
~
φC . The images are 

centered by subtracting the average vector with each image; resulting vectors are 

placed to form the matrix [ ]CC −−=Φ Nφφ
~

,,
~

1 L . The covariance matrix is 

computed, 
TΦΦ=Ω  and its eigenvalues and eigenvectors are calculated. The 

eigenvectors are ordered in a decreasing fashion according to the eigenvalues, where 

they are placed as columns of matrix Ψ . All the training images are projected to the 

eigenspace with Nii

T

i ,,1),
~

( K=−Ψ= Cφθ . 

In the recognition phase the testing image is projected into the eigenspace and a 

supervised neural network classifies the image. In other words, let tI  the testing 

image, it is stacked and normalized, 
tϕ~ . Then, it is projected to the eigenspace with 

)~( C−Ψ= t

T

t ϕω . A supervised neural network classifies 
tω . 

During outdoors navigation, human drivers estimate the convenient vehicle 

velocity by regarding their previous experience when driving on similar terrain 

textures. In other words, human drivers estimate how rough, in average, the terrain is, 

instead if specific texture details are recognized. Human drivers that navigate on 

uneven terrains do not need to learn, or to know, about specific details but on the 

textures appearance average. The average recognition of textures, as the humans do, is 

the behavior that is mimicked and implemented in order to strengthen the robot 

navigation abilities. 

2.2 The Fuzzy Neural Network for Velocity Updating 

For robot velocity updating according to the terrain features, our proposal sets to 

imitate as human beings do. For safe navigation on irregular terrains, the human’s 

velocity estimation is via imprecise but enough surface texture recognition [3]. When 

a human driver observes a novel terrain texture, uses his experience to estimate how 

rough the texture is; then decides the convenient car driving velocity. Thus, in the first 

step, the terrain’s textures are neural-net-clustered in a roughness meta-class: a 

Supervised Neural Network (SNN) classifies textures; then, a Fuzzy Neural Network 

(FNN) makes a roughness meta-classification from the terrain texture class. By 

adding the texture roughness setting and the slope data, the FNN matches each terrain 

roughness with the corresponding velocity meanwhile the robot navigates safely. 



For detection of slopes inclination, an infrared sensor located in the frontal part of 

the robot does parallel ray projection to the robot’s motion; the other sensor projects 

its ray directly to the floor perpendicular to the first sensor. The inclination angle of 

slopes is computed by trigonometric operations. The off-line and on-line steps to 

update velocity regarding the terrains roughness and the inclination slopes while 

navigating are next described: 

 

Off-line training steps 

1) Select and model the representative outdoor textures images of the robot’s 

environment. The images are captured while the robot is stationary. 

2) Train the SNN to learn the texture classification established by the human 

expert driver. 

3) Train the FNN to determine the velocity regarding the texture classes as well 

as the inclination angle of slopes, according to an expert driver’s directives 

(build the fuzzy sets and make the inference IF-THEN rules system). 

On-line steps 

4) Acquisition of terrain images from the robot while it is in motion. 

5) The SNN classifies the texture, this information is forwarded to the FNN. 

6) The FNN inputs are the texture class and the slope inclination angle. The 

FNN indicates the updated velocity to the robot mechanical control system. 

7) The cycle is repeated as the robot moves, and the velocity is cycle updated. 

 

Following is the architecture of the five-layer FNN. The terrain features 

recognition followed by the robot velocity tuning is as shown in Fig. 1.  

 

Fig. 1 The Fuzzy Neural Network 

The texture class and slope input data are assessed to adjust the velocity that is the 

FNN output data. The FNN first layer inputs are the slope size and the texture class, 

the second layer sets the terms of input membership variables, the third sets the terms 

of the rule base, the fourth sets the term of output membership variables, and in the 

fifth one, the output is the robot’s velocity. The textures roughness is meta-classified 

in three fuzzy sets, High (H), Medium (M) and Low (L). The inclination angles of 

slopes are meta-classified in six fuzzy sets: Plain (Pl), Slightly Plain (SP), Slightly 

Sloped (SS), Moderato Sloped (MS), High Slope (HS) and Very High (VH). The 

FNN output values are either: High Velocity (HV), Moderate Velocity (MV), Low 



Velocity (LW) or Stop (ST). Membership functions of the input and output variables 

terms denote the corresponding texture roughness, slope inclination angle and 

velocity, respectively. The FNN output sets the velocity the robot can move safely. 

The fuzzy-making procedure maps the crisp input values to the linguistic fuzzy 

terms with membership values in [0,1]. In this work the trapezoid membership 

functions (MF) for texture variable and the triangle MF for angle variable are 

respectively used. Taking X, Y, Z as variables of the respective predicates, the general 

form of inference rules is: 

IF Slope angle is X AND Roughness is Y THEN Velocity is Z. 

The inputs parameters are the slope angle and roughness, and the output is the 

estimated velocity. The de-fuzzy procedure maps the fuzzy output from the inference 

mechanism to a crisp signal. When the robot finds a slope steeper than the allowed 

threshold, it stops, and evaluates which movement to make, whose decision concerns 

to path planning. 

3 Experimental Steps 

A car-like Bioloid robot transformer kit [12] is used, which uses a processing unit, 

four servomotors for power transmission to the wheels, two infrared sensors located 

in the robot front, and a wireless camera on top-front of the robot. The robot 

dimensions are 9.5 cm width per 15 cm length. In these experiments the SNN is 

trained with terrain textures from images in Fig. 2. In this platform it is used a 

personal computer (PC) and the processor of the robot, to form a master-slave 

architecture, communicated wirelessly. On the PC is implemented and executed the 

velocity estimation algorithm. The robot, on one hand, reports to the PC the sensors 

readings and wirelessly transmits the images captured by video camera, on the other 

hand updates the velocity in accordance with instructions that the PC communicates 

it. 

 

Fig. 2 Robot’s navigation on outdoor surface 

The navigation tests focused on velocity updating, the vehicle navigates on the 

terrain shown in Fig. 2; the robot recognizes textures from the captured images. As 

soon as significant change of terrain textures is detected the PC indicates the robot to 

update its velocity according to the terrain texture currently recognized.  

In here reported experiments textures are respectively modeled with ABV, LBP, 

ALBPRI and a two-dimensional Fourier transform method for roughness 



classification of cast surfaces (FCS) [13], which it is deserved to assess the cast 

surface quality. Terrain images are used during the robot’s training for texture 

recognition of the surfaces it navigates. There were conducted 15 tests with each 

method, the texture images are garden ground covered by a thin layer of dust, and 

dispersed little rocks; the grass is 2-centimeter cut height and dry; the paving stone 

contains leafs, tree branches with a thin dust cover. 

3.1 Algorithm’s Performance 

The expected robot behavior is that the robot increases its velocity, from low to high, 

when it is detected grass, ground and paving stone. That is, the robot must move 

slowly on grass, fast on paving stone; on ground, faster than in grass but slower than 

in paving stone. The robot’s navigation velocity updating results, regarding the 

surface textures, are displayed in Table 1, whose data are average velocity values. It 

shows that the robot moves faster on paving stone than on grass, and in turns, faster 

on ground than on grass. 

Table 1 Velocity results in centimeters per second units 

Method/Texture Ground Grass Paving Stone 

ABV 9.03 4.4 11.43 

ALBPRI 9.68 7.13 11.7 

LBP 12.18 11.7 12.85 

FCS 1.08 4.3 2.16 

The worst performances were with the FCS and LBP methods, the robot did not 

adjust its velocity as expected. The methods ABV and ALBPRI had better 

performance, because the robot adjusted its velocity according to the expected 

behavior. However, with ALBPRI, the estimated velocity for grass is relatively high, 

because it is close to ground value. With ABV, the velocities are slightly lower than 

those of ALBPRI, but ABV estimates a lower velocity for grass. 

During the training attempts using images from a low roughness texture wall, in 

addition to other textures occurs that both, the ALBPRI and LBP methods do miss to 

identify the diverse surface textures, hence misclassifying all of them as wall texture. 

A likely explanation is that both recognition methods are based on the detection of 

borders, edges and dots in order to guaranty well recognition performance. Because 

the wall images are uniformly plain, the required graphical elements for methods well 

performance are not present. It provokes the methods losing to recognize surfaces not 

having clearly marked lines, borders or dots. However, wall images were replaced by 

another kind of wall images with a certain line pattern. 

On the other hand, the ABV method does properly recognize the surface textures 

changes, and then the robot’s velocity is updated, while it is displacing, according to 

the surface features. Therefore, experimental conclusion is that ABV advantages to 

LBP and ALBPRI to model and recognize the physical average appearance of 

textures. By using ABV the recognition of, what we call, the texture average among 

images is competent. ABV method well recognizes the wall plain texture average, as 

well as the texture average of grass, ground or paved. Thus, the textures average 

recognition supports the robots navigation on outdoors terrains. Car drivers do speed 



update by regarding the terrain texture average, i.e., velocity adjustments are 

according to the terrain appearance average variations, which are relevant to human 

drivers by navigating, and disregarding the irrelevant specific lines, dots or borders 

for navigation. 

The FCS method shows high performance in classification by recognizing 

polished surfaces like glass, steel or plastics. The method applied to terrain images 

failed hardly. All the results were wrong; the method misclassified the terrain textures 

as low roughness textures. The plausible explanation is that this method works on 

polished textures that require high precision during recognition. But it misses on 

rough surfaces like grass, ground, soil or pave that do not demand a high precision 

during textures recognizing.  

3.2 Simulation of Real Car Navigation 

In this set of tests, images of the terrain textures are taken from a video film recorded 

by a video camera placed two meters above the floor on a car’s roof. The camera 

recorded the car’s path, under a visual field similar to that of a human driving a real 

car, see Fig. 3.  

 

Fig. 3 Car vision/recognition system 

The outdoor terrains textures images are loose stones, ground with grass, ground, 

asphalt and concrete, on which the truck was moving through. These images are used 

to train the SNN by using the ABV model for textures treatment. The experience of a 

human drive allows for defining the classes of textures and the respective car velocity. 

Tests of simulated car navigation are regarding that the vehicle maximum speed it can 

reach is 50 km/hr. The velocities are as follow: on loose stones, velocity is smaller 

than on ground with grass, and it is smaller than on sole ground, and in turns, it is 

smaller than on paved ways; these results are shown in Table 2, showing the average 

of the velocities resulting in specific experiments.  

Table 2 Velocity updating results 

Texture Velocity km/hr 

Loose stones 10.65 

Ground with grass 18.47 

Ground 27 

Concrete 43.79 

Asphalt 48.91 



The minimum and maximum velocities recorded for loose stones are 10.06 km/hr 

and 18.91 km/hr, respectively. The velocities estimated for ground with grass are a 

little higher. Mostly the velocity remains at 18.11 km/hr. Ground with grass texture is 

less abrupt than loose stones. The grass does not cover the entire surface but there are 

holes with ground, usually small, even so a car can overcome them at low-speed 

motion by the time it avoids damaging vibrations in the vehicle. Even when grass is a 

texture that favors slipping and skidding, but unlikely the loose stones, the wheels 

surfaces of the car have better contact with ground, thus the risk of skidding is 

smaller, but higher than in the next textures. For ground textures, the velocity remains 

constant in almost the entire path at 27.61 km/hr. The surface of ground texture is 

covered with dust and very small stones, and is almost flat, so the vehicle can move 

fast without being affected by strong vibrations, even the small stones and dust in the 

surface could make the car to skid. Velocity for concrete texture remains constant, 

44.44 km/hr in almost the entire path. Finally, the velocities estimated for the asphalt 

remain without changes, 48.91 km/hr throughout the entire path. The textures of 

concrete, paving city streets, and the asphalt covering roads are very similar. The 

covering with this matter create a uniform surface, without holes and slopes, so 

avoiding the car skids. 

An additional aspect to consider concerns with the vehicle’s computing capacities 

for processing the texture images and the velocity updating in real time. Actually, 1) 

determine the range of the camera to capture images of the surface, and 2) the 

sampling time given the progress of the vehicle. The acquired images have a 

resolution of 480×640 pixels in grayscale. The microprocessor employed was a 

Centrino Core 2 Duo at 2GHz and 1.99Gb RAM. The processor spends 0.3 seconds 

for both image processing and velocity updating.  

Actually, for efficient velocity control it must be considered the 0.3 seconds the 

process spends for texture recognition and velocity updating, by assuming that the 

maximum speed is around 50 km/hr, hence the vehicle will advance 5 meters. As 

shown in Fig. 3, the camera must process the next 5-meter road segment before the 

vehicle passes on. That is, when the vehicle moves the first 5-meter stretch, the 

computer processes the image of the posterior 5-meter stretch. When the second 

stretch processing is finished, the vehicle would have started to move in the second 

stretch. This cycle is successively repeated. 

4 Discussion 

Velocity updating according to the surface roughness, is a subject that has not been 

fully addressed. Most of the works focus on the detection and obstacle avoidance 

problem. For instance, Labert et al. [14] use a probabilistic modeling to avoid or to 

mitigate eventual collisions, regarding the environment perception, by updating a 

robot braking action. Selekwa et al. [15] and Ward & Zelinsky [16] addressed the 

navigation and path planning of an autonomous robot which varies the velocity 

according to the proximity of obstacles detected by infrared sensors. So far, all the 

referred works on outdoors autonomous robots do not include in their proposals 

information from terrain surface roughness during navigation. 



 
Conclusions. The efficiency of algorithms for recognition of roughness textures is the 

key point for allowing velocity updating. According to results the appearance average 

instead of high-detailed recognition is the requisite for velocity updating on rough 

terrains. A clever issue is the human mimicking about the recognition and decision 

making for velocity updating. Human drivers make quick terrain recognition but 

enough to a right speed updating during navigation. The computationally low-cost 

and easy implementation of the algorithms make this approach suitable for velocity 

updating of wheeled-robots during autonomous navigation on outdoor terrains. 
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