CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS DEL INSTITUTO POLITECNICO NACIONAL

Concurrent Movements Over Rough Surfaces

Student: Farid García Lamont Advisor: Dr. José Matías Alvarado Mentado Computation Ph.D.

Index

> Antecedents (RoboCup, Terrain exploration)

Surface modeling

- Texture recognition
- Appearance-Based-Models for Vision
- Squaring

> Rough Surfaces

- Roughness (friction)
- Friction Coefficient

> Movements concurrency on rough surfaces

- Concurrent moves on football soccer game
- Squaring as mean of Concurrency Control
- Future: Motion on irregular surfaces
 - Adaptive velocity = friction(texture)
 - Tests on Bioloid kit

What is RoboCup? (antecedents)

 Tournament with simulation and robotics football players categories.
 Goal: intelligent machines and software deploys to play soccer without human help.

Category: Small Size League

Terrain exploration

Current methods (terrain exploration)

Laser Methods (2006, 2005, 2004)

- On-line terrain scanning.
- Robot's speed can be limited.

Vibration Methods (2005, 2004, 2003)

- On-line terrain recognition during robot exploration.
- Cannot anticipate surface roughness immediately in front of the robot.

Problem overview

- RoboCup players on even surfaces have:
 - Speed, Agility, Precision.
- What's on fields with *soft* drops and holes?

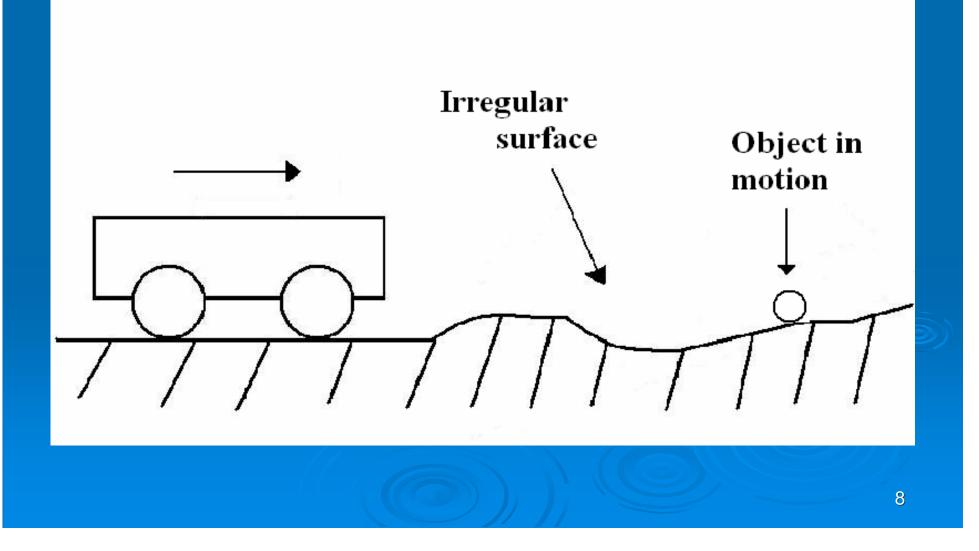
• For moving on soft surface:

- Neural network training
- Kalman filter state prediction

Roughness

- Irregularities: slopes and holes.
- Appearance-Based-Modeled (ABM)
- Concurrent Environments
 - Collective games

Problem statement



Surface recognition by texture (roughness) information

> Off-line surface modeling

- Surface aerial view (satellite images)
- Training through previous surface images
- > Modeling of:
 - Surface irregularities
 - Moving object

> Tracking of moving object

Surface Modeling methodology Appearance-Based-Model

> Acquire object's images from different perspectives. > Apply principal component analysis. > Obtain orthonormal base from eigenvectors. \triangleright Project all images to eigenspace. > Image recognition.

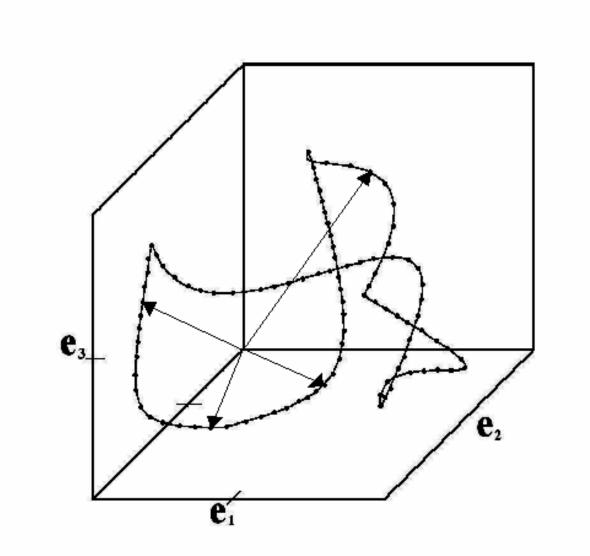
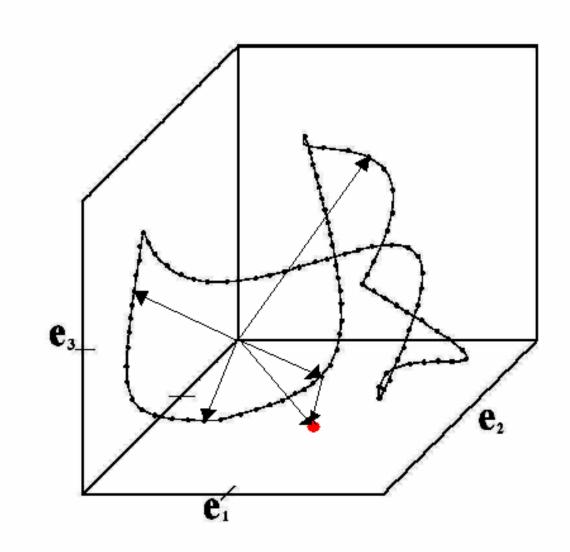


Image Recognition



12

Advantages:

- Adaptive: the more essential acquired images, the more efficient image recognition is.
- High space dimension, n×m, so expensive computational cost... but eigenspace is reduced with the "Turk and Pentland trick", N×N (N<<n·m).

More advantages:

> Object's integral modeling: • Shape, color, texture. > Common feature to obstacles recognition > Model soft surfaces irregularities • Small drops and holes. > Slopes minors to 15° > Consider surface texture (roughness)

Disadvantages

Light sensitive

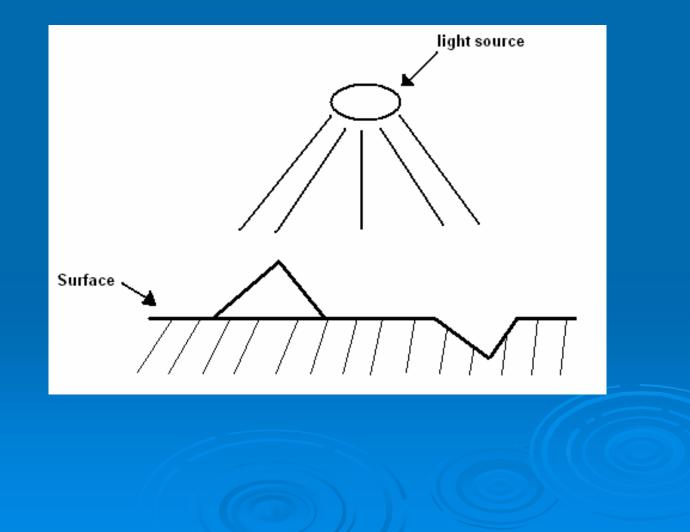
The number of operations for recognition
 is O(k log₂ n), where k is the space dimension
 and n the quantity of points in the manifold.

Remark: The illumination problem

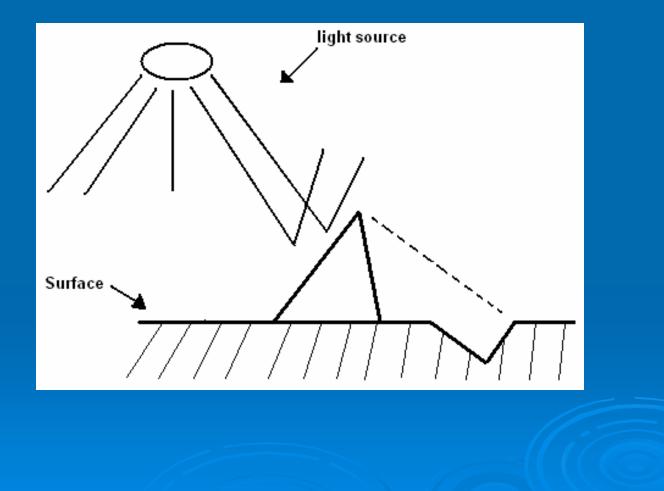
Slight variations in illumination alters the roughness recognition enormously.

The light source must be totally perpendicular and in the middle of the surface, at a convenient height.

Correct illumination angle



Wrong illumination angle



Surface Squaring:

Sensitivity to the surfaces' detailed differences: by using ample information from different training images,

> the roughness differences through the surface are

- Fine modeled
- Well integrated in the model.
- Easy objects location.

Facilitates Concurrency Control

Squaring

(1,1)	(1,2)	(1,3)					
(2,1)	(2,2)	(2,3)					
	-						
				 		.	

Neural network for surfaces recognition

The object recognition as classification problem.

> NN excellent for classification problems.

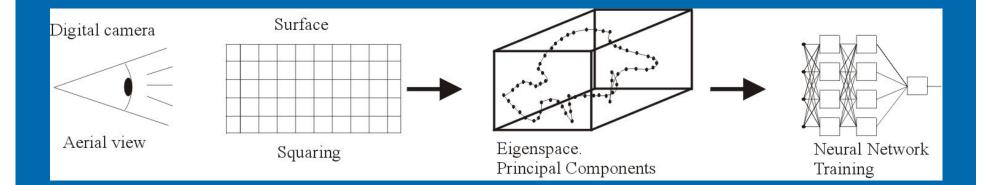
The principal components and the interpolated points are used as the elements of the NN's training set.

NN Training

With the feedback – backpropagation algorithm (learning supervised).

The NN's training and roughness recognition takes a few seconds.

Surface Modeling and NN Training



The NN's training set is $\{(\theta_1, \mu_1), \dots, (\theta_N, \mu_N)\}$.

 μ_i is the friction coefficient of image θ_i . μ_i integration at the training step Friction coefficient from roughness information
≻ Friction coefficient
. Depends of the surface roughness
. Mathematical function of the roughness

24

> NN recognition testing

What is Friction?

Friction is a tangential force that expresses the opposition of two bodies' surfaces in touch against motion.

Friction force is expressed as the multiplication of friction coefficient μ and the normal force *R* between both surfaces:

 $F_R = \mu R.$

Friction Coefficient:

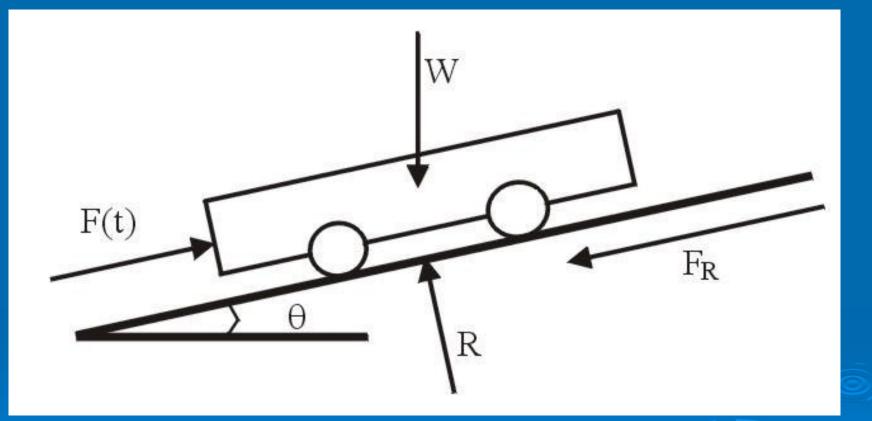
> is a non-unit value μ depending on each pair of touching materials. Real number, 0 ≤ μ ≤ 1.

> Robot has rubber wheels as mean of traction,

- Necessary to recognize the surface texture, and
- to look for the corresponding coefficient for rubber on the different materials:

• Wood, steel, carpet, fabric, ground, grass, mosaic, ...

The Physics of friction



 $F(t) - W\sin\theta - F_R = m\ddot{x}(t)$

Concurrency on Collective Games

Football soccer

- Players compete for:
 - Space on the field
 - Ball possessing
- > Risk of (situations to avoid):
 - Collisions between players
 - Ball disputing between team partners

Concurrent Control

> Necessary Data

- Location of:
 - Players (team partners and opponents)
 - Ball
- Distance between players
- Opponent's goal
- > Squaring helps to draw a map useful:
 - to locate players and the ball,
 - to control the players moves

Concurrent Control

Each square is occupied by only one player at time (first coming).

> So, before a player walks to a square:

- it checks if it is occupied, if not,
- the player locks the square and moves to occupy it.
- No one else can use that square until the owner releases the lock.

Concurrent Control

> When the owner decides to move,

- locks the next square where is going to move,
- then moves to the square and
- finally releases the lock of the square where it was.

Football Soccer Simulation

> Two teams with five players each one

- The team with the ball tries to make a goal
- The other team pursues the opponents in order not to let them make goal

One coach per team

- The coach gives instructions of movements to do
- The coach knows the opponents and partners location

Football Soccer Simulation

... What's on motion on *irregular surfaces?!*

• Textures on the surface • Drops and holes on the surface • Concurrent access to the surface • Tracking of moving object

My future research Adaptive Velocity

> Player's speed cannot be constant due to texture is different throughout the surface!

> Players have to adapt their speed depending on the:

- Texture
 - Slow if surface is slippery
 - Fast if surface is rough
- Size of holes or slopes in its trajectory

> Always trying to move as fast as it is possible

Future Tests (Bioloid kit)

Thanks! Opinions, suggestions or Questions...

Farid García Lamont email: farid@computacion.cs.cinvestav.mx

 Let {I₁,...,I_N}⊂ R^{nm} the training images.
 The images are stacked {φ₁,...,φ_N}⊂ R^{nm}.
 All the vectors are normalized with φ̃_i = φ_i/|| φ_i ||, {φ̃₁,...,φ̃_N}⊂ R^{nm} is the set after this operation.

4) The average vector is calculated $\vec{\mathbf{C}} = \frac{1}{N} \sum_{i=1}^{N} \widetilde{\phi}_i$.

5) The images are centered : $\Phi = \left[\widetilde{\phi}_1 - \vec{\mathbf{C}} \right| \cdots \left| \widetilde{\phi}_N - \vec{\mathbf{C}} \right] \in \mathbf{R}^{nm \times N}.$

6) The covariance matrix is obtained :

 $\Omega = \Phi \Phi^{\mathrm{T}}$.

7) The eigenvalues and eigenvectors are calculated with the known equation : $\Omega \Psi = \vec{\lambda} \Psi.$ Where :

 $\Psi = [\mathbf{e}_1 | \cdots | \mathbf{e}_{nm}],$ $\vec{\lambda} = \{\lambda_1, \dots, \lambda_{nm}\}.$

8) All the training images are projected to the eigenspace:

$$\boldsymbol{\theta}_i = \boldsymbol{\Psi}^T \left(\boldsymbol{\phi}_i - \mathbf{C} \right) \in \mathbf{R}^{nm}, i = 1, \dots, N.$$

The images are interpolated using splines, and finally we have a manifold $\theta(q)$.

Image Recognition

Let the testing image \mathbf{I}_t , is stacked and normalized $\boldsymbol{\varphi}_t$, then it is projected to the eigenspace: $\boldsymbol{\omega}_t = \boldsymbol{\Psi}^T (\boldsymbol{\varphi}_t - \mathbf{C}).$

The object recognition is reduced to find the closest manifold point, in other words, to find the minimum q such that :

 $|| \omega_t - \theta(q) || \le \varepsilon$, for $\varepsilon \ge 0$.