Next: About this document ...
Up: Periodic Potentials in One
Previous: Summary
-
- 1
-
Eugene Jahnke and Fritz Emde,
Tables of Functions with Formulae and Curves,
Dover Publications, New York, 1945. Chapter XI.
- 2
-
E. T. Whittaker and G. N. Watson,
A Course of Modern Analysis,
Cambridge, at the University Press, 1927. Chapter XIX.
- 3
-
Milton Abramowitz and Irene Stgegun (editors),
Handbook of Mathematical Functions,
U. S. Government Printing Office, Washington D. C., 1964. Chapter 20.
- 4
-
R. de L. Kronig and W. G. Penney,
``Quantum Mechanics of Electrons in Crystal Lattices,''
Proceedings of the Royal Society (London) A 130 499-513 (1931).
- 5
-
W. Kohn,
``Analytic Properties of Bloch Waves and Wannier Functions,''
Physical Review 115 809-821 (1959).
- 6
-
Harold V. McIntosh,
``Quantization as an Eigenvalue Problem,''
In Group Theory and Its Applications, Vol. 3,
(Ernest M. Loebl Editor),
Academic Press pp. 333-368 (1975)
- 7
-
Harold V. McIntosh,
``Quantization and Green's Function for Systems of Linear Ordinary
Differential Equations,''
In Quantum Science: Methods and Structure,
Edited by J. L. Calais, O. Goscinsky.
J. Linderberg and Y. Ohrn,
Plenum Press, New York, pp. 227-294 (1976).
- 8
-
Bill Sutherland and Daniel C. Mattis,
``Ambiguities with the relativistic delta-function potential,''
Physical Review A 24 1194-1197 (1981).
- 9
-
F. Domínguez Adame,
``Relativistic and nonrelativistic Kronig-Penney models,''
American Journal of Physics 55 1003-1006 (1987).
- 10
-
Bruce H. J. McKellar and G. J. Stephenson, Jr.,
``Klein Paradox and the Dirac-Kronig-Penney model,''
Physical Review A 36 2566-2569 (1987).
- 11
-
W. Glöckle, Y. Nogami, and I. Fukui,
``Structure of a composite system in motion in relativistic
quantum mechanics,''
Physical Review D 35 584-590 (1987).
- 12
-
F. A. B. Continho, Y. Nogami, and F. M. Toyama,
``General aspects of the bound-state solutions of the one-dimensional
Dirac equation,''
American Journal of Physics 56 904-907 (1988).
- 13
-
F. Domínguez Adame and E. Macía,
``On Relativistic Singular Harmonic-Oscillator Potentials,''
Europhysics Letters 8 711-715 (1989).
- 14
-
F. Domínguez Adame
``A generalized Dirac-Kronig-Penney model,''
J. Phys Condens. Matter 1 109-112 (1989).
- 15
-
F. Domínguez-Adame and E. Maciá,
``Bound states and confining properties of relativistic point
interaction potentials,''
J. Phys. A: Math. Gen. 22 L419-L423 (1989).
- 16
-
F. Domínguez Adame and M. A. González
``Solvable Linear Potentials in the Dirac Equation,''
Europhysics Letters 13 193-198 (1990).
- 17
-
B. Méndez and F. Domínguez Adame,
``A simple numerical method for the determination of relativistic
one-dimensional band structures,''
J. Phys A: Math. Gen. 24 L331-L336 (1991).
- 18
-
E. Macía and F. Domínguez Adame,
``Scattering states of relativistic point interaction potentials,''
J. Phys. A: Math. Gen. 24 59-69 (1991).
- 19
-
F. Domínguez Adame,
``A relativistic interaction without Klein paradox,''
Physics Letters A 162 18-20 (1992).
- 20
-
B. Méndez, F. Domínguez Adame and E. Macía,
``A transfer matrix method for the determination of one-dimensional
band structures,''
J. Phys A: Math. Gen. 26 171-177 (1993).
- 21
-
D. W. L. Sprung, Hua Wu and J. Martorell,
``Scattering by a finite periodic potential,''
American Journal of Physics 61 1118-1124 (1993).
- 22
-
S. L. Blundell,
``The Dirac Comb and the Kronig-Penney model: Comment on ``Scattering from a locally periodic potential,'' by D. J. Griffiths and N. F. Taussig [Am. J. Phys. 60 883-888 (1992),''
American Journal of Physics 61 1147-1148 (1993).
- 23
-
S. H. Patil,
``Completeness of the energy eigenfunctions for the one-dimensional
-function potential,''
American Journal of Physics 68 712-714 (2000).
- 24
-
D. W. L. Sprung, J. D. Sigetich, Hua Wu and J. Martorell,
``Bound states of a finite periodic potential,''
American Journal of Physics 68 715-722 (2000).
- 25
-
V. Aldaya and J. Guerrero,
``Canonical coherent states for the relativistic harmonic oscillator,''
Journal of Mathematical Physics 36 3191-3199 (1995).
January 9, 2001
Microcomputadoras
2001-01-09