
Section 8 alludes to "One-Sided Shifts," a subject of considerable historical as well as
practical importance. The ladder operators in quantum mechanics, for instance. It would
hardly do to omit "Shifts with a Countable Alphabet," particularly if one were a mathematician
interested in generality. Pushing just a little bit further, one might encounter coupled map
lattices and even probabilistic automata.

The concluding tenth section recognizes "Higher Dimensional Shifts," about which practi-
cally nothing is known and yet everyone would like to know something.

Very well, everyone has their favorite wish list. This reviewer's main concern lies in having
seen how far an approach which he does not particularly like has advanced. For that, the book
has been extremely enlightening, in spite of one's having had most of its references in hand for
several years and having studied them with some diligence. Since theorems tend to be true or
false independently of whether one likes them or not, any "improved" theory is going to have
to account for all these results, even the conjectures, one way or another.

Fortunately, the quibble is not so much with the results, although one would hope to see
fewer of them and better organized. Rather, having seen this book, less time needs to be spent
in trying to �gure out what all those diverse authors really meant; instead e�ort can go into
juggling the little pieces into a better picture.

That, at least, is a personal viewpoint. In the meantime, until another book comes along
(there is one on the horizon - "Theory and Applications in Additive Cellular Automata" an-
nounced for February 1997 by the IEEE Computer Society) - we will let this series rest for a
while, content to repeat the admonition that although the book by Lind and Marcus is not
about cellular automata, it comes so close to being so that nobody who is interested in celllular
automata should ignore it (Nor, either, those who would just like to learn about coding theory
and symbolic dynamics).
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viewpoint, the zeta function depends on a shift's periodicity, but calculated with a particular
weighting. No matter; the section still is chock full of algebraic number theory.

The third section, "Pure Subgroups of Dimension Groups," continues the trend from domi-
nant eigenvalue to non-zero spectrumby involving the dimension groups; the question is mostly:
"What can be said about a chain of dimension subgroups?" The answer is of some use in the
next chapter.

The twelfth, which is the �nal substantive chapter and entitled "Equal Entropy Factors,"
ties o� a few remaining loose ends. Or, which the authors assert, the loose ends are almost tied
down, making the chapter a suitable transition piece into the �nal prospective. In any event,
some more algebraic number theory peeks around the corner.

The sections of the twelfth chapter are:

12.1 Right-Closing Factors

12.2 Eventual Factors of Equal Entropy

12.3 Ideal Classes

12.4 Sufficiency of the Ideal Class Condition

Our reaction to all this is nothing short of amazement: Can resolving the question of two
graphs containing the same labelled paths (alternatively, what pairs of paths can be super-
posed?) really be all this complicated? As consolation, we could recall the demonstrable
insolubility of Post's Correspondence Principle and appreciate our good luck.

In their �nal Chapter 13, "Guide to Advanced Topics," the authors thoughtfully remind us
that the show is not yet over, although they do not go quite so far as inviting us back for the
second act.

The �rst section, titled "More on Shifts of Finite Type and So�c Shifts," lists several
additional topics for consideration:

the core matrix

constraints on degrees of finite-to-one factor codes

renewal systems

almost finite type shifts

One of the constraints in the second item is imposed by the multiplicative nature of the
Welch indices.

The second section continues with "Automorphisms of Shifts of Finite Type," a whole area
to which the monograph "Textile Systems" by Nasu, which has previously been mentioned, is
dedicated. Also worthy of note are the papers of Wagoner interpreting the conjugacy relations,
especially those depending on the factorization of the connection matrix, as constructs from
algebraic topology.

The third section is dedicated to "Symbolic Dynamics and Stationary Processes," It and
the fourth, "Symbolic Dynamics and Ergodic Theory," elaborate on the connections hinted at
in Chapter 9, that symbolic dynamics can be built up from measure theory as well as from
topology.

Section 5 recognizes that there are other shifts, under the heading "So�c-Like Shifts;" and
then there are "Continuous Flows," the topic of Section 6. Section 7 returns to "Minimal
Shifts," an historical antecedent which occupied Hedlund, Gottschalk, Birkho�, Morse, and
others. Involved periodicity classi�cations with which we are still involved date from those
times.
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What is left is spread out into three sections, the �rst of which is called "The Embedding
Theorem." It asserts that a strict embedding is possible when there is a lessening of entropy
and cyclage (distribution of cycles), requiring fourteen pages for its proof, and introducing a
re�nement of the cycle count wherein multiplicity counts. Those who actually work with zeta
functions know that there are tricky distinctions amongst the ways cycles can be enumerated.

The second section, "The Masking Lemma," is short and concerns the behavior of the
graphs de�ning shifts of �nite type consequent to embedment of the shifts themselves.

The third section, "Lower Entropy Factor Codes," covers similar ground for surjections
rather than injections.

The book still has three more chapters, one of which contains still more technical detail,
one of which surveys the extent to which all the theory shows up in actual practice, and the
conclusion which tells us of all the things which remain to be done and possible directions
which the theory could take.

new books and old articles (19)

Douglas Lind and Brian Marcus, in their book "An Introduction to Symbolic Dynamics and
Coding," published last year by Cambridge University Press, have given us a comprehensive
treatment of shifts of �nite type and so�c shifts, an area which has seen considerable activity
since the sixties; one in which they have taken an active part. Maybe a little long for its
intended use as a text book, it nevertheless encompasses the literature of recent years in a
masterly fashion, unifying a heretofore scattered literature.

Shifts both are and aren't cellular automata. The rules governing shifts make their shift-
commuting continuous mappings into cellular automata; Particular shifts are best regarded as
restricted classes of con�gurations, whose behavior under cellular automaton mappings is the
topic of interest. Coding theory concerns possible functions between pairs of con�gurations
whereas automata theory foresees the consequences of iterating a function which has already
been chosen. Evidently the two activities are intimately related.

We have been summarizing the thirteen chapters of the book, two by two, and so have nearly
�nished the book, having arrived at Chapter 11. But there are still more than a hundred pages
to go. If we hurry, we can �nish them up.

"Realization," the title of Chapter 11, reckons with the handful of invariants which have
been adduced for shifts - entropy, cyclage, dimension group, and so on. There is a converse
question, consisting in knowing their arbitrariness. There are concepts, like prime numbers,
which only mathematicians appreciate, but which still cannot be ignored by the rest of the
populace. So we �nd here that there are actually distinctions between entropies which are
integers and those not, some are rational yet others not, algebraic or transcendental and so on.
Esoteric distinctions at �rst sight, but vital in applications.

Why this should be so is perhaps not too di�cult to perceive: entropies refer to rates of
proliferation amongst paths, so integers might well be associated with uniform out-degrees, or
with the authors' road coloring problem. Maybe the association isn't quite that simple, but it
is plausible; knowing for sure comes back to an exercise in algebra. So that is the content of
the �rst section, "Realization of Entropies."

The second section, "Realization of Zeta Functions," goes a step farther, given that the zeta
function depends on traces rather than the dominant eigenvalue alone. From a less algebraic
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still others without coming to an entirely conclusive termination. All this makes its appearance
in Chapter 9, "Degrees of Codes and Almost Conjugacy." One time more, Hedlund's in
uence
is recognized in that chapter's historical notes.

Welch's index theory is pretty de�nitive with respect to the left and right indices, which
have already made their presence felt in the previous chapters through the concepts of clos-
ings, coverings, resolutions and all their variants. But the last has not yet been heard from
the middle index, the actual surviving multiplicity, "All endomorphisms have the same multi-
plicity but some of them are more obtrusive than others," to paraphrase a famous quotation;
Hedlund expressed it by saying that "almost all endomorphisms have the same number of
counterimages."

The �rst section of Chapter 9, The Degree of a Finite-to-One Code, de�nes the degree of a
code and introduces such concepts as a magic word (could that be the vertex at which a path
enters or leaves the Pair Diagram on the one-way trip required by the bubble theorem?).

The second section, Almost Invertible Codes, begins with "De�nition 9.2.1. A Factor Code
(phi) is <almost invertible> if every doubly transitive point has exactly one preimage, i.e.,
d(sub)(phi)=1." Could we be asking whether or not the nuclei of extradiagonal subsets of the
Pair Diagram encompass a su�ciently representative set of vertices?

The third section, Almost Conjugacy, goes on: "in this section we strengthen the relation of
�nite equivalence by requiring the legs to be almost invertible," and we meet the non-wandering
sets.

The fourth and �nal section of the chapter is entitled: Typical Points According to Probabil-
ity." This is an interesting way to confront those endomorphisms whose failure to be reversible
is due to a few mavericks; they are simply banished to a set of measure zero.

As we know, there are essentially three views of symbolic dynamics: combinatorial, topo-
logical, and probabilistic. The �rst would probably answer all questions were it to be pursued
diligently. In the worst case, topological or measure theoretic arguments could simply be fol-
lowed out without mentioning the specialized vocabulary of these disciplines. So symbolic
dynamics must have some unique features, not found in all topological spaces or in all measure
algebras, which give it a unique personality. Certainly, commutation with the shift is one of
them, and its derivation from �nite sequences must be another.

It is nice that topological continuity enters the picture, and much is to be gained from
applying knowledge of topological spaces which is already available within a body of knowl-
edge which has been studied for many years. As this �nal section illustrates, measure theory
encompasses a vocabulary and style of reasoning which can be equally illuminating, when used
with discretion and applied with caution.

Had the authors not used restraint, the book could easily have acquired another chapter or
two, because there has been no lack of interest and publlications on the probabilistic aspects
of symbolic dynamics. Here is just enough of an introduction to rationalize the lukewarm
endomorphisms which aren't invertible, but only weakly so.

Moving on to Chapter 10, Embeddings and Factor Codes, the complement to surjection,
which is injection, comes to the fore. In both cases, concern lies with the circumstances under
which all the invariants, equivalences, and partial invariants can be used to compare two shifts.
As expected, emphasis is given to shifts of �nite type. Also, the subject matter of the chapter
splits into three parts, one of which was already presented Chapter 7. Thus the chapter is
con�ned to strict embeddings, and strict entropy change; entropy conservation is reserved for
Chapter 12.
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There is no lack of advanced and sophisticated concepts in these later chapters. As well
as more familiar concepts: the Pair Diagram makes a brief appearance in Section 3 under the
appelation "�ber product," so we know that we are getting close to the arena in which all the
distinctions between endomorphisms and automorphisms are played out. There are also hints
of the Third Great Theorem, but let it emerge in the remaining chapters.

Still it is hard not to wonder if the presentation could have taken another direction, with
another orientation. We are only beginning to appreciate the publisher's understatement of
the situation: ... "Mathematical prerequisites are relatively modest [...], especially for the �rst
half of the book." ...

new books and old articles (18)

Our perusal of "An Introduction to Symbolic Dynamics and Coding" by Douglas Lind and
Brian Marcus, published by Cambridge University Press, is gradually advancing, eight of the
thirteen chapters having been scrutinized. Although the book is promoted as a textbook
dedicated to symbolic dynamics, especially coding theory, such characterizations have to be
taken with a grain of salt.

As an introduction, with possible application as a textbook, it is something which has been
lacking for the longest time - a single, coherent account of a whole generation of research on
these topics, taking up roughly where G. A. Hedlund's often cited paper on automorphisms
and endomorphisms of the shift left o�. It is �lled with interesting exercises - hundreds of
them - thus traditionally incoporating still more material into an exposition, providing thereby
sidelights and additional details which would otherwise make the text even bulkier.

It also follows the tradition of placing historical notes at the ends of the chapters; what
else could we desire except maybe some biography of assorted investigators, with a 
ow chart
showing who studied under whom, who met at what conference, and other nice, gossipy details?
In other words, an even longer book?

What kind of students are going to assimilate a �ve hundred page book, �lled with the most
advanced and abstract of modern mathematics, even in a full year course? That is another
matter. Especially when it turns out that still more time is going to be required for even the
experts to assimilate and organize all the fascinating ideas which are just barely peeking out
from beneath a horrendous maze of facts. We are reminded of that kindly elephant, she who
provided gainful employment to a whole coterie of wise mem.

Close inspection shows vestiges of Hedlund's magnum opus surfacing here and there in the
book; mention has already been made of the way that continuity and shift invariance in
uence
the kinds of mappings; for the authors, they de�ne the sliding block codes, even as they de�ne
the cellular automata for others.

Allusion to Hedlund's encounter with uniform multiplicity �nds its way into the historical
notes concluding Chapter 8, although the chapter's presentation is slightly weighted toward
the e�ects of non-uniformity as seen in Moore's Garden of Eden Theorem. From the outset the
orientation of coding theory is toward surjective mappings, which means that it is very much
concerned with multiplicities, uniqueness and decodability, and would take anything else as an
aberration.

The third leg of Hedlund's trinity (your reviewer's interpretation, not Hedlund's) quanti�es
exact details of the loss of limiting multiplicity, via the Welsh Indices. Hedlund's treatment
relies on quite a few supplementary notions, such as periodicity, transitivity, recurrence, and
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is used several times in the text.
The �rst section estasblished the Decomposition Theorem, which follows readily enough

given the previous preparation; it requires a conjugacy to factor into speci�c components, that
resemble duality. The second section gives the dual tower an algebraic form, very reminiscent
of the LR scheme for diagonalizing matrices. The third section introduces a variant process
which makes two matrices equivalent when they have a common factorization but with the
factors in the opposite orders.

Although the usual course on matrix algebra may not emphasize these relationships, they
are implicit in such standard sources as Halmos' Introduction to Finite Dimensional Hilbert
Spaces. The context of graph theory replaces the �eld of complex coe�cients with the positive
integers, which aren't even a ring, making the results more complicated and requiring fresh
proofs.

Example 7.3.12 answers the question posed in the introduction to the chapter by exhibiting
a tower of length 7, commenting that there is a whole family of matrix pairs whose relationship
is still unknown.

The fourth section surveys the results from linear algebra which retain their validity, while
introducing some group theory of its own. The Jordan form remains, as well as the Smith form
for integral matrices. The �fth section introduces an entirely new concept, which is called the
dimension group. Basically, it seems to result from giving positive (or nonnegative) matrices
a place to work out their idiosyncracies by asking which vectors they eventually place on an
integer lattice after multiple iteration, and which of those are positive.

The authors have done a good job of explaining these ideas; hitherto it has been necessary
to cull them from a mass of journal articles. Even if is hard to grasp the deeper signi�cance
of all the de�nitions, at least they are laid out in a form where they can be examined. One
gets the idea that somehow iteration is being used to turn the carrier space of the connection
matrix into a shift sequence maybe akin to the original.

The chapter closes with a 
ow chart relating all the di�erent theorems and the di�erent
kinds of equivalence which they embody.

In Chapter 8 we �nd out that if we had been talking about cellular automata, we would have
been talking about reversible cellular automata, and that they are just about the hardest ones
to deal with. Next in line of succession comes surjective automata, which are not reversible
because of multiplicity. If some way could be found to defeat multiplicity, reversibility would
prevail. One approach is topological; Hedlund's version. Yet another is statistical, since it
sometimes happens that the set of sequences which fails Hedlund's criterion has measure zero.
But we are getting ahead of the game.

The title of Chapter 8 is "Finite-to-One Codes and Finite Equivalence," with four sections:
1. Finite-to-One Codes, de�ning the concept, and relating it to right resolution, which would
give it a high Welch R Index. Theorem 8.1.16 about bubbles could be recognized as Moore's
Garden-of-Eden Theorem, and the general discussion as deriving from Hedlund's Second Great
Theorem, namely the Uniform Multiplicity Theorem.

Section 2 takes up the case of Right-Resolving Codes, with section 3 devoted to Finite
Equivalence, an interesting concept from Universal Algebra having to do with ordering func-
tions according to the equivalence relation induced by counterimages, and �nding the least
upper bound of a pair of functions. Section 4 combines the previous two titles under the head-
ing "Right Resolving Finite Equivalence," all of which is done for the sake of obtaining a lesser,
but more tractable (computable), kind of equivalence.
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new books and old articles (17)

"An Introduction to Symbolic Dynamics and Coding" by Douglas Lind and Brian Marcus,
published by Cambridge University Press, is a book which means what it says, in the sense
that it is a thoroughgoing exposition of material to be found in the literature of symbolic
dynamics over the past thirty years. Much of this is research was performed by the authors
themselves, but the book goes much farther than that, making it a very readable presentation
of the whole entire subject.

Although cellular automata receive the most extremely casual notice, the fact remains that
the treatment has the most detailled possible applications to cellular automata, particularly
with respect to the borderline between reversible automata and the others. The book takes
great pains to introduce topology and to explain it, a feature conspicuously lacking in the
journal articles on which it is based. Nevertheless, the reader whose grounding lies in automata
theory will �nd an entirely di�erent point of view, with its own traditions, language, and
priorities.

For the most part, cellular automata theory starts with the de�nition of its working mate-
rials - states, lattice, rule of evolution - and goes on to examine all kinds of particular examples
and classify them before �nally turning to an organized theory. With symbolic dynamics,
structure seems to have the highest priority, sometimes to the extent that examples are never
contemplated; at most maybe to provide a counterexample or two. There is another important
di�erence: whereas reversibility is one of many properties of an automaton which merit at-
tention, it is �rst, foremost, and seemingly the only characteristic of dynamical systems which
seems to garner interest.

It is in keeping with the systems dynamical viewpoint that the �rst part of the book explains
concepts like the full shift, subshifts of �nite type, and so�c systems, in considerable detail,
relating them to speci�c kinds of graphs; even including a respectable introduction to the theory
of graphs (directed graphs), About the only thing missing is the de�nition of a dual graph,
but it soon becomes apparent that such operations as state splitting and the introduction of
division matrices and amalgamation matrices are very much involved with the calculation of
duals.

Sometimes a dual graph is called an edge graph, which is a term the authors use liberally.
However, the essence of the dual transformation consists in one speci�c factorization and
reassembly of the connection matrix when the factors are multiplied in the opposite order.
Repetition produces a dual tower, but it is not always possible to run the process backwards;
certain supplementary conditions must be met. Not to be overlooked is the similarity of the
construction of the dual tower to the formation of the higher block presentations, both of which
are intimately related to the presence of paths in the basic graph.

Bearing in mind the relationship that sometimes exists between the sequences in a shift
space, paths through a graph, and the algebraic properties of its connection matrix, it is time
to examine Chapter 7, Conjugacy. Several levels of relationship have to be taken into account
because algebra, topology, and indexing are all there. The basic concept is that a function f
between two systems A and B, themselves with structures a and b, should satisfy a f = f b,
something which is often depicted in a commuting category theory diagram. The trick lies in
giving the symbols concrete meaning.

The chapter opens with an innocuous pair of 2x2 integer matrices, and the question of
whether they are conjugate? It is a good example to bear in mind as the theory unfolds, and
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of sliding block codes.
Only about a third of the chapter is dedicated to the strict business of topological de�nition;

an equal portion describes the zeta function, with a third dedicated to a specialty of one of the
authors, the Markov partitions.

Both of these latter concepts are vaguely related to the idea of representing a function as a
matrix. Practical di�culty arises because it would require in�nite dimensional matrices to rep-
resent most mappings, especially to represent the mapping point by point. If the representation
were possible, the matrix could be interpreted as the connectivity matrix of a diagram, which
would then be analyzed in terms of paths, roots, cycles, leaves and the rest of the vocabulary.
In particular, traces connection matrix powers de�ne loops if their points are weighted to make
the correspondence work.

Then, an identity relating the determinant of a matrix exponential to the exponential of its
trace relates the characteristic polynomial of the matrix to the cycle structure. The exponential
of the trace is the zeta function, whose properties derive from the matrix identity. By de�ning
the zeta function directly in terms of cycle counts, di�culties with in�nite matrices are avoided.

The matrix identity has been known since the beginning of the century, but the zeta function
seems to be an artifact introduced somewhere around the middle of the century, perhaps by
Weil or Artin. There are many ways in which the bibliographical notes in the book could be
extended, to trace more little historical details such as this one.

Markov partitions derive their origin from trying to dissect a space into subsets, and then
to describe the mapping between subsets in matrix form. A laudable objective, it does not
always work out in practice. Sometimes a dissection can be shown to be compatible with the
given function, to which the section on Markov partitions is dedicated. Linear mappings of
integer lattices have provided many practical examples for study. Of course, no mention is
made of any matricial representation, setting the discussion directly in the realm of dynamical
systems.

From Chapter 7 onward, the book enters another realm.
That might make one wonder, what there is left to mention in Chapter 13, which is entitled

"Guide to Advanced Topics?" Mainly, Chapters 7 through 12 could be characterized in terms
of what has actually been done in the past quarter century, more or less in the interval since
Hedlund wrote his paper on automorphisms and endomorphisms. With that, glimpses of what
might remain are available.

Entitled "Conjugacy," Chapter 7 starts out by asking just that: "When are two shifts of
�nite type conjugate?" So�c shifts have not even entered the picture just yet. The answer that
would be desired would be that, inasmuch as shifts of �nite type depend on a connectivity
matrix, they would be conjugate whenever the matrices had the same canonical structure.

There are classical results: the work of Frobenius and Perron on positive and non-negative
matrices is available, and has been expounded in at least a half dozen widely available and
popular textbooks. Linear algebra has had a complete and exhaustive treatment in Halmos'
book on "Finite Dimensional Vector Spaces," particular parts on polar forms and square roots
and such.

However, applications to Symbolic Dynamics require matrices with integer, and even non-
negative integer, elements, which creates inordinate complexity, only gradually and only re-
cently being resolved.
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the same path. In essence, that is coding theory (sometimes caled transducer theory), the title
of Chapter 5.

This is the chapter where the authors expound their "state-splitting" theory, whose role is
su�ciently important that one of its diagrams occupies a place of honor on the cover of the
book. Basically the problem is that although Symbolic Dynamics works with sequences, the
best representation of sequences seem to be paths through a diagram. But the question is:
"What diagram?" No one diagram �ts all requirements, bringing on the study of equivalence
and interchangeability between graphs.

Supposing that it is possible to reduce the study of sequences and mappings between se-
quences to the study of diagrams (directed graphs, to be precise), problems have only been
transferred to another arena; the only justi�cation for the substitution would have to be that
it is a more familiar arena. But diagrams are well described by their connectivity matrices, so
the arena is linear algebra, albeit over the integers or rationals, and in any event with respect
to positive matrices.

The discussion of the Perron-Frobenius theory in the earlier chapters results from this
agenda, but there is more to come. Although that theory encompasses individual matrices,
their eigenvectors, eigenvalues, and canonical forms, there remain questions of factorization,
equivalence, transformation and membership in families. Subsequent chapters get to deal with
such annoyances. For the moment, Chapter 5 gives procedures which can be used to relate two
sequences to one another, and conditions under which success can be expected.

Chapter 6 introduces some of the rudiments of point set topology, then goes on to topologize
dynamical systems and discuss the importance of topological relationships. Important among
these are the invariants, which typically include periodicity, and the whole family of periodicities
subsumed in the zeta function. Sometimes the zeta function is an adequate characterization of
topological properties, but often it is not, leaving the remainder of the book to discuss what
else is needed.

It is remarkable how much of a semester course on topology has been hidden away here in a
little less than �fty pages. Let us look at the cover burb once again: ... "Mathematical prereq-
uisites are relatively modest (mainly linear algebra at the undergraduate level), especially for
the �rst half of the book" ... The problem with topology, really, is not with its list of de�nitions
nor its list of fundamental theorems. Rather, it lies with knowing why they should be used,
and gaining experience in consequences. There is the Hardy "Pure Mathematics" approach
with deltas and epsilons, and a Bourbaki fondness for theorems as axioms and de�nitions as
theorems.

Case in point: "Lemma 6.2.8. Let M and N be compact metric spaces, and (th):M (arrow)
N be continuous, one-to-one, and onto. Then (th)( � 1):N (arrow) M is also continuous."

Our authors strike a happy balance between Hardy and Bourbaki: the theorem avoids using
words like "surjective" and "injective," but as we read on we had better know the relationship
of compactness to convergent subsequences and something about the uniqueness of limits.

This is an excellent book and it is eminently readable. It is just that the computer science
student who had the notion that it was not necessary to take the calculus courses had better
choose another book (or else go back and �ll in some gaps). Facility in thinking topologically
is well worth acquiring.

Anyway, in the next paragraph we discover that Hedlund's First Great Theorem means
di�erent things to di�erent people. Those who thought that it laid the foundations of cellular
automata theory, disabused of their misconception, will �nd that it actually authorizes the use
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The chapters that follow are much more dependent on the topology of symbolic dynamics,
and the relationship between topological mappings and algebraic mappings of the connectivity
matrices behind so�c shifts and shifts of �nite type. However, the relationship between the
topology and the matrices does not seem to be as clearly de�ned as it should be, with the
consequence that there may be much preoccupation with things which are not really issues.
At the same time, of course, there are some real substantive issues.

The book does not go into these details, but before continuing with the review it may be
worthwhile to expound a point of view.

First, althoughmany bene�ts 
ow from the use of topology, and there are excellent prospects
of discovering many more, it is also true that topology can be a great distraction. One of the
principal topological results is Hedlund's (Curtis-Lyndon-Hedlund)'s theorem that continuous,
shift-commuting maps of the shift dynamical system are cellular automata. The practical con-
sequence is the use of local maps to de�ne global maps, or in coding theorists use of sliding
block maps.

Once the cellular automaton approach has been settled upon, labelled de Bruijn diagrams
provide the machinery for discovering their properties; di�erent labellings for di�erent char-
acteristics. They are NOT exclusion matrices for shifts of �nite type, but ARE essentially
connection matrices for so�c shifts. There is a duality involved, and mostly it is a historical
accident that shifts of �nite type held the predominant role.

Surjectivity is decided by the subset diagrams of the de Bruijn diagrams, which is also
where the in
uence of the Welch Indices is felt. Uniform multiplicity results from surjectivity,
the second important Hedlund theorem.

Amongst other things, pair diagrams derived from de Bruijn diagrams mediate the multi-
plicities of surjective mappings, isolate reversible mappings, and perform other servives. There
is a counterpart of Moore's Garden-of-Eden theorem, but the simplest test of reversibility is
"no loops outside the diagonal."

These "other services" have wrought havoc with interpretations of topology. In reading
Hedlund's article, be it noted how often (n-1)-separability arises as a concept (basically, the
nodes in the de Bruijn diagram), the preoccupation with transitivity, recurrence, periodicity,
and a host of other requirements. In Lind and Marcus's book, note the preoccupation with
magic words, road coloring problems, left and right resolution, and so on.

The fundamental question is: what shall we do with loops outside the diagonal? If they
do not intersect it, they may be harmless, implying a multiplicity of counterimages. If the
connection is one-way we have the resolvings, with memory or with anticipation, depending on
the direction of the connection.

new books and old articles (16)

We have come up to chapter 5 in a review of the new book by Douglas Lind and Brian Marcus,
"An Introduction to Symbolic Dynamics and Coding" recently published by Cambridge Uni-
versity Press. Although not dedicated to cellular automata, most of its content is thoroughly
relevant, with direct applications to automata theory.

Taking the viewpoint that the de Bruijn diagram is the fundamental structure for cellular
automata, we �nd that Chapter 5 is not so much concerned with how paths through the
diagram describe the evolution of con�gurations, as how di�erent descriptions can be given to
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or the paradoxes which led to quantum theory. The "solution" of the three body problem via
the appearance of Poincare's "New Methods" seems to have opened a new chapter just as much
as it closed an old one. The new theory seems to have prospered in some environments just as
much as it stagnated in others.

Whatever went on in the twenties and thirties, even as late as the forties and �fties, there
seems little reason to dispute the authors' assertion that shifts of �nite type began to be studied
as such by Parry in the late sixties or by Smale at about the same time. Smale's motivation,
at least, still seems to have had connections with the theory of nonlinear di�erential equations.

Whatever the motives for singling out shifts of �nite type, whether it was pure convenience
or whether that was the nature of the examples which had been taken as models up until that
time, dissatisfactions arose. Credit for the initiative in adopting more general systems seems
to go to B. Weiss in the early seventies, some �ve years later. The route followed by these
newly baptized "so�c systems," �rst based on abstract semigroups, was tortuous and labored.
There were intimations that they had something to do with paths in graphs; also that regular
expressions were involved.

In Chapter 3 so�c shifts have �nally reached a degree of respectability, so that a whole
chapter can be devoted to de�ning them, characterizing them, and even proving theorems
pertaining to their combinations.

The title of Chapter 4, "Entropy," would seem to take it out of the smooth 
ow of chapter
titles. But that is because the word entropy means di�erent things to di�erent people, some-
times many things to the same person, few of them related to classical thermodynamics. What
we are talking about here is the largest eigenvalue of the connectivity diagram of the matrix
which has �nally been settled upon. Such a discussion could logically follow the presentation
of the matrix itself, so the chapter is not out of place.

By and large, Chapter 4 is a standard recapitulation of the Perron-Frobenius theory of
non-negative matrices. At one time, knowledge of this theory was a rarity, but that is no
longer so for anyone who works in communication theory, biology, economics, or a variety of
other �elds. Given that we are reviewing a text book, we are pleased to have found a good
place for practicioners of coding theory and other readers to acquire the basic information. It
is all here - positivity, eventual positivity, irreducibility, cyclic structure, and even entropy as
a proliferation factor.

The fundamental conclusions of the Perron-Frobenius theory are the existence of the dom-
inant eiganvalue, its associated eigenvector, and the alternatives for matrices which are not
strictly positive. Dealing with matrix families or equivalence between matrices is a more ad-
vanced topic, the preoccupation of some of the later chapters.

Chapter 5 goes into one or two detailed schemes for constructing codes, by which is under-
stood a mapping from the full shift to a subshift. The full shift implies an arbitrary data stream
whilst subshifts must meet physical restraints, such as the idiosyncracies of a transmission or
storage medium. According to the authors, "This chapter uses most of the concepts discussed
in the previous four chapters, and it provides concrete and computable solutions to a variety
of coding problems."

Given that information would not be encoded if it could not eventually be recovered, it is
easy to appreciate that coding theorists are primarily concernedwith reversible or conditionally
reversible mappings, whereas cellular automatists see them as special cases, if at all. To each
his own, but the di�erence in emphasis has introduced signi�cant distortions into the two
approaches.
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that the authors are clearly laying out the theory in the way that many prople understand and
practice it.

For the purposes of automata theory, probably the most important item to be emphasized
is that shifts of �nite type have little to do with automata. They represent a means of de�ning
a certain class of con�gurations, whose evolution automata theory would want to examine. But
there are alternative classes of con�gurations, such as those de�ned by one sort of formal lan-
guage or another, which are equally worthy of consideration; indeed recent literature contains
speci�c examples.

The chickens �nally begin to gather about the roost in Chapter 3, which is devoted to
so�c systems. So�c systems have a great deal more to do with automata theory than shifts of
�nite type, but it apparently took quite a while for the connection to become evident. Just
what, if anything, is or was the problem with shifts of �nite type? Basically, if one takes pure
symbolic dynamics as outlined by Hedlund, the continuous, shift-commuting mappings (which
are coextensive with the class of cellular automata) are de�ned by a countable list of exclusions.

Well, �nite is an instance of countable, and representable by that exclusion matrix, so it
was taken up as an object worthy of study. Notwithstanding the fact that early examples were
actually based on �nite exclusions, the Notes which close each chapter suggest that the explicit
term was created by Stephen Smale and cite a reference. Well, it couldn't have been as simple
as that, but for those far from the halls of Berkeley, such statements and citations have to
su�ce.

Going ahead with cellular automata, the result is that de Bruijn diagrams contain the keys
to their evolution, although the information gets extracted by labelling the diagram. Hence
one wants to talk about labelled graphs, and the natural entity is actually the dual of the
connection matrix of the shifts of �nite type. But not every graph is a dual, and thereby hangs
a tale.

new books and old articles (15)

The new book now being discussed is "An Introduction to Symbolic Dynamics and Coding"
by Douglas Lind and Brian Marcus, recently published by Cambridge University Press. It is
intended as a textbook, with numerous exercises and a comprehensible level of presentation,
but it is no less a reference work, with its extensive treatment of a wide variety of topics for
which a systematic treatment is di�cult or impossible to �nd elsewhere.

Cellular automata are implicitly included in the subject matter; although the whole width
and breadth of the subject of cellular automata is hardly present, that is only because the
authors' interests and specializations con�ne them to the reversible and conditionally reversible
automata. For that reason, automata theorists will �nd a wealth of material whose existence
they barely suspected.

The previous posting listed the table of contents and summarized the �rst two chapters.
The third chapter is dedicated to so�c systems, where we continue.

Symbolic Dynamics seems to have had a strange history, some of which can be gleaned from
the historical notes at the ends of the chapters, and more of which has to be surmised from
personal experience or alternative reading. Not having much of the source material readily at
hand doesn't help matters either.

The end of the last century saw the culmination of some �elds of study, such as complex
variable theory or classical mechanics, as well as the emergence of new themes such as relativity
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origin, in fact), the result is far more illuminating than oppressive, and stands in marked
contrast to Hedlund's well known style on the one hand, and thousand-page calculus texts
which can be found on the market, at the other extreme. .

Wolfram, in his World Scienti�c reprint collection, introduction to the bibliography, re-
marks: "The cellular automaton literature is diverse not only in content but in origins. Cellu-
lar automata have been invented independently many times, and in many cases, independent
parts of the literature have developed."

Many people see a tradition of cellular automata extending back to von Neumann, but
this book by Lind and Marcus belongs to the lore of mathematical communications theory as
exempli�ed by the work of Shannon, and related to such electrical engineering topics as coding,
error detection and correction, and to an extent, cryptography. These areas have been heavily
in
uenced by Hedlund's exposition of the Shift Dynamical System, which in turn has its roots
in the work of Poincare, Birkho�, and such things as the Ergodic Theorem.

Symbolic dynamicists have rarely resisted the temptation to assert that cellular automata
theory is just a special case (thanks to Hedlund's �rst great theorem) and cellular automatists
have adopted the practice of citing Hedlund's article sight unseen, either out of a feeling that
it is the right thing to do, or because it makes a good marker for Citation Index. So we can
welcome this new book for laying the cards out on the table, where the possible relationships
can be examined and evaluated.

The �rst chapter introduces the basic de�nitions, such as a sequence, a sequence space, and
the relevance of the shift. But even at this very earliest stage, the idea of forbidden blocks
and a shift of �nite type is injected straight into the theory. That brings up the concept of
languages and grammars, and pictorial representations of sequences. De Bruijn diagrams are
here, under the guise of "higher block shifts" as are the "higher power shifts" where the blocks
are contiguous rather than overlapping. The "local map" of cellular automaton theory makes
its appearance as a "sliding block code" together with such variants as expressing the mapping
as a polynomial in a �nite �eld, and the subclass of convolution codes. It is apparent from
the outset that there will be a premium placed on manageable mappings, meaning reversible,
error correctible, and the like.

The second chapter is devoted to the all-important concept of a "shift of �nite type." At
�rst sight, it is both a very simple concept and a very natural one. We haven't actually
seen Hadamard's use of shifts of �nite type to de�ne orbits in a space of constant negative
curvature, but the mathematical literature is not lacking in examples of a similar nature. If
memory serves, higher geometry encounters a similar construction with pedal triangles. Even
the prototypical Cantor Set is de�ned by excluding 1's from the trinary expansion of numbers
which would be sequences taken from the set (0, 1, 2).

A matrix de�nition can be given for a shift of �nite type, so it is not surprising that an
enormous e�ort has been expended on relating properties of the de�ning matrix to properties
of its dynamical system. But the second chapter is only just de�ning the concept; most of its
content consists in discussing properties of graphs, connectivity matrices, and transformations
to which they can be subjected.

"State splitting," which underlies much of the authors' publications and their applications
of coding theory, is introduced here. However, the concept of a dual graph does not seem
to be mentioned, so there may be some roundabout presentations and inconveniences as the
treatment advances. Premonitions of what is to come are found as distinctions begin to be
made between vertex graphs and edge graphs. Nevertheless, let us not lose sight of the fact
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where new exclusions are more numerous than continuations of old exclusions, in a way entirely
consistent with the observation that the periodic repetitions of shorter con�gurations generate
the larger basins of attraction.

To summarize, now that we have some new tables of data, and another point of view (com-
mutation and composition relations among rules), as expressed in the book we were reviewing,
there seems to be motivation to go back and reexamine some of these older results, especially
in the context provided by having studied Hedlund's ideas more carefully than they otherwise
may have been. On the other hand. to complete this series, we need to examine the subshifts
in more detail.

-

new books and old articles (14)

There is another new book which should be of considerable interest to anyone working with
celllular automata theory, even though the title and orientation of the book are totally toward
symbolic dynamics and coding.

Douglas Lind and Brian Marcus

An Introduction to Symbolic Dynamics and Coding

Cambridge University Press 1995

ISBN 0-521-55900-6 (paperback)

ISBN 0-521-55124-2 (hardback)

Chapter 1. Shift Spaces................................23 pages

Chapter 2. Shifts of Finite Type. 30 pages

Chapter 3. Sofic Shifts. 22 pages

Chapter 4. Entropy.....................................26 pages

Chapter 5. Finite-State Codes. 28 pages

Chapter 6. Shifts as Dynamical Systems. 30 pages

Chapter 7. Conjugacy...................................35 pages

Chapter 8. Finite-to-one Codes and Finite Equivalence. 30 pages

Chapter 9. Degrees of Codes and Almost Conjugacy. 27 pages

Chapter 10. Embeddings and Factor Codes.................21 pages

Chapter 11. Realization. 29 pages

Chapter 12. Equal Entropy Factors. 22 pages

Chapter 13. Guide to Advanced Topics....................35 pages

Bibliography 15 pages (approx 380 items)

Cellular automata receive little more than passing references, the most recent of which are
to the proceedings of the �rst Los Alamos conference and the proceedings edited by Demongeot,
Goles and Tchuente (for which they at least spelled the name of the �rst author correctly).
Small wonder, the book being oriented towards endomorphisms and automorphisms of the
Shift, the topic of Hedlund's classical paper.

In spite of that, it really IS a book about cellular automata, and one which ought to be
read by anyone seriously interested in the subject. Not the least of the factors reccommending
it is its expository style; while it is intended as a textbook with numerous examples (its actual

35



is worse, to �rst approximation, these eigenvalues are fairly well determined by the counterim-
age imbalance in the automaton's neighborhood, which is to say, by Langton's parameter.

What seems to have been overlooked in our previous discussions of this subject is the
applicability of Hedlund's third great theorem, even for mappings which are not surjective.
Generally speaking, if the mapping f has a certain multiplicity, and g has another, the composite
fg ought to have the product of the two multiplicities. For surjective mappings, the multiplicity
is uniform making the Welch indices truly multiplicative, and even guaranteeing that both fg
and gf have the same multiplicities. Likewise for the equivalence fh = hg, it would follow that
f and g would have the same multiplicity, at least with nonzero h.

Combinatorially, things don't work out too exactly, as may be seen from the way Rule 18
factors. The boolean function OR has the forbidden word 010, but XOR has none. Rule 252
excludes 010 because the second mapping couldn't make this sequence, no matter what the �rst
mapping may have done. The other way around Rule 18 has the forbidden word 111 (amongst
others); although OR's immediate de�ciencies might have been compensated, new ones seem
to arise. Necessarily so, because one of Hedlund's results is that if a composite mapping is
surjective, the same must be true of the factors, something at which OR fails.

Note that the common sense result would allow the second mapping to heal de�ciencies
in the �rst, which means that either the special environment of cellular automata or the
topological properties of a continuous mapping of a shift conspire to prove the theorem. In
either event, the strong result exists that if a composite is surjective, so are the factors; we
need something weaker for merely continuous maps.

One intermediate possibility is to look at the composite of a surjective map with its uniform
multiplicity and a merely continuous map, with its spectrun of multiplicities. Checking on (2,1)
Rule 18, for example, and coaxing the T-matrices involved a little bit, yields estimates for the
top eigenvalues of the T-matrices for Rule 18 and the (2,1/2) OR which are close enoough to
suggest a relationship.

Does anyone happen to recall the rule for compounding variances for composite distribu-
tions?

Somehow trying to explain a result by both topology and combinatorics seems to end up
without an explanation from either end. Combinatorially, the basic result is not exactly the
uniform multiplicity theorem; instead it is the process by which the theorem is proven, namely
once having counted out all possibilities, remarking that an average cannot surpass a maximum
replaces the usual cardinality argument for �nite sets.

Hedlund's topological proof depends somehow upon the conservation of closed sets by con-
tinuous mappings, so that if the image of a subset is the whole space, it had better have been
the whole subspace in the �rst place. Working that out with deltas and epsilons ought to bring
us back to the combinatorial line of argument.

In the end, considering multiplicity as a multiplicative factor characterizing an automaton
rule, we �nd that it only works with precision when multiplicity is uniform. When the rule
is not surjective, the example of Rule 18 (or, in another context, the Chat�e-Manneville rules)
shows that the dynamics can be much more complicated, as when ease of production of favorite
con�gurations promptly eats up all the raw material from which they arise.

Continuing to speculate on the temporal versus spatial proliferation of ancestors, observe
that since the subset matrix has a constant row-sum, the number of ancestorless con�gurations
multiplies by the state sum with each length increment, so an interesting quantity has to
be the ultimate percentage of orphans. This ratio is �rst established for short con�gurations,
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originally present will seem to survive. Thus "kinks" (parity shifts in the cummulative length
of gaps) will annihilate in pairs at the tops of the large inverted vacant triangles so typical of
the evolution of binary automata, with a frequency which depends on the likelihood of forming
such triangles. Peter Grassberger published many results on the statistical properties of this
particular automaton, beginning for example with

P. Grassberger

"Chaos and Diffusion in Deterministic Cellular Automata,"

Physica 10 D 52-58 (1984),

whose mechanism was elucidated and generalized by Erica Jen

Erica Jen,

"Aperiodicity in One-Dimensional Cellular Automata,"

Physica D 45 3-18 (1990).

Even at the time of the �rst Cellular Automaton Conference, Douglas Lind described the
relation of Rule 18 to a So�c System in

D. A. Lind,

"Application of Ergodic Theory and Sofic Systems to Cellular Automata,"

Physica 10 D 36-44 (1984),

although being able to do so required some knowledge of the actual workings of the au-
tomaton, just as did Jen's analysis.

In the last installment, the formations of membranes was mentioned. A good account of
this and the usage of de Bruijn diagrams in greneral can be found in the article:

Erica Jen,

"Invariant Strings and Pattern-Recognizing

Properties of One-Dimensional Cellular Automata,"

Journal of Statistical Physics 43 243-265 (1986).

There have been innumerable e�orts to interrelate the properties of automata, often with
the intention of �nding a member of a class which is in some sense "soluble," from which to
extrapolate the other members. These attempts include �nding simple transformations as well
as trying to work up a perturbation theory, according to which automata with similar rules
will evolve similarly. Perturbation works best when it conserves as much as possible of the loop
structure of the de Bruijn diagram, failing more severely according to the number of cycles
which are broken.

Concentrating more on generalities than on particular mechanisms, the principal charac-
teristic of cellular automata is their basins of attraction, which is to say, the behavior which
they exhibit after a long time, and the route by which that becomes the preferred mode of
operation. Basins of attraction depend for the most part on the distribution of ancestors
for single-generation evolution, con�gurations with many ancestors being the most likely to
become attractors.

The number of ancestors is something which can be estimated from the de Bruijn fragments,
mainly by looking at the comparitive eigenvalues of products of the de Bruijn fragments. What
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are spectrum-conserving operations on the moment matrices. For re
ection, say, we are not
saying that moment matrices are symmetric, only that we get equivalent matrices to go with
equivalent con�gurations.

What should be seen as a much more interesting possibility is that there are other equiv-
alences, such as the one Voorehees uncovered as the background for the Ito relations. This
may not be too hard to prove algebraically, but in the meantime it is possible to compare the
eigenvalues of the T matrix for Ito pairs. A spot check has not revealed any contradictions,
although there is an interesting contrast in the prototype (18; 252) pair in that the pair diagram
of Rule 18 has two connected components yet Rule 252 shows just one component.

Nasu's mapping theorem refers to just one of these components, but the T matrix involves
both. The point needs further contemplation.

new books and old articles (13)

In the process of preparing the way for more abstruse theories of equivalence, perhaps it is
possible to lose sight of some of their simpler aspects. The general de�nition is that two
systems are equivalent if they work the same way both before and after the �rst has been
mapped into the second.

When the working is described by a matrix, such as the sequence matrix in subshifts of
�nite type or the de Bruijn matrix for the evolutiuon of an automaton, and the mapping is
characterized by another matrix, the algebraic formulation of the requirement is that A X =
X B, with A and B as system matrices mapped by X. If X is invertible, the equation can
be rewritten in a more familiar form. If the relationship can not so easily be described by
matrices, then rewrite the equation by composing more abstract functions, creating one of
category theory's commutative diagrams.

Some sleight of hand reveals one possible origin of such an equivalence, namely that A and
B have a mutual factorization wherein A = P Q and B = Q P, for some pair of matrices P
and Q. Just this situation has turned up in one of the books under review, wherein the (2,1)
automaton Rule 18 is a composite of (2,1/2) rules XOR and OR, whilst Rule 252 is the same
composite in reverse order. This is yet another variant on the Ito relation, wherein (126) (252)
= (252)(18), although these are but two of a multitude of transformations serving to relate the
two rules.

That such an intensely studied rule as Number 18 has factors is not so mysterious; that's
the rule that turned up when the automaton was built that way. Although the OR-XOR
combination has been used in several contexts, with the intention that the OR proliferate live
cells (ones in a �eld of zeroes) following which the XOR curtails them, leaving only boundaries.

For (2,1) automata, there is an interesting e�ect, which is built up by observing several
details of the de Bruijn diagram. There are only two links labelled "1" in the diagram, and
they connect two di�erent connected subgraphs which generate only zeroes. One of them is
the self-loop centered on a pair of zeroes, re
ecting the rule's quiescence. The other has a loop
centered on a pair of ones, but it can never be used after the initial generation because the
diagram admits at most two ones in sequence. That leaves a subgraph generating zeroes which
can only create an even number of zeroes, possibly by destroying an isolated pair of ones.

The only way a pair of ones can arise is for a string with an even number of zeroes to
shrink by two cells each generation until all are gone; if that interval itself was generated by
cancelling ones rather than by shrinking a longer interval, only one of whatever pairs were
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were not closed. There was a fair amount of historical evolution and reassessment in their
de�nition and interpretation, which in the end makes them depend on a dual of the kind of
matrix which de�nes subshifts of �nite type, and allows their characterization as the set of all
(bi-in�nite) paths through a labelled graph. This places the theory of so�c systems close to
the theory of cellular automata; in e�ect we still need to relate the de Bruijn matrix of the
cellular automaton to the path matrix of the shft of �nite type whose homeomorphic image is
the so�c system.

From the viewpoint of cellular automaton theory, we need to have a single matrix with
nonnegative integer entries (preferably zeroes and ones) associated with each automaton, such
that equivalence (properly de�ned) between matrices guarantees equivalence between con�g-
urations, and conversely. Until it is labelled by the evolution, there is only one de Bruijn
diagram for each class (k,r) fo cellular automata, leaving its connection matrix inadequate to
the purpose.

Labelling creates the de Bruijn fragments, say A and B for a binary automaton, but then
there are two matrices, not one. There is also an entire family of moment matrices:

D = A+ B

from which the �rst moment, the average number of ancestors, may be obtained. For
D itself, the number of ancestors is constant and uniform, but products of A's and
B's occurring in the non-commutative binomial expansion of (A + B)n tell how many
ancestors each con�guration of length n has.

T = A
A+ B 
B

wherein 
 is the tensor product is the second moment, from which the variance may
be derived. As with the �rst moment, individual terms of Tn describe corresponding
con�gurations, but unlike D, T can distinguish between automata of the same Wolfram
indices (k; r).

S = A
A
 A+ B 
B 
 B and so on.

The higher moments are required to fully distinguish automata, but if surjectivity is the
only information required, it is already provided by T when the variance is zero, giving
another criterion for surjectivity of automata.

Since T is the connection matrix of the pair diagram derived from the de Bruijn diagram,
it can also be used to distinguish injectivity from the di�erent degrees of surjectivity, although
not necessarily by its eigenvalues alone. We should also bear in mind that Nasu's bundle
mapping theorem based on Hedlund's third great theorem only directs us to some level of the
subset diagram, not necessarily the second, and not necessarily the same for the left diagram
as for the right diagram. If the corresponding matrix is chosen from the moment hierarchy, it
should be a better representative of morphisms than any of the other matrices.

One thing which is easy enough to do is check whether the known symmetries preserve the
moment matrices. Re
ection transposes the de Bruijn matrix as well as its fragments, and
transposition is respected by the tensor product. Simultaneous permutation of the arguments
and values of the evolution function, that is, relabelling the states, is also a symmetry of the
de Bruijn matrix, its fragments, and their tensor powers. That leaves the cluster-de�ning
operation, permutation of the values alone, to be accounted for. But that merely permutes the
summands in the sums of tensor powers, and so we �nd that all of the ordinary morphisms
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Wolfram surveyed linear cellular automata looking for characteristic features of their evo-
lution, summarizing part of his insight by describing four Classes. He also noticed that many
automata formed membranes, bounding macrocells within which the evolution had to fall
into cycles because of their �nite extent and �xed boundary conditions. There are shifting
macrocells as well as semipermeable membranes, altogether leaving another specialized class
of automata whose particular properties could be studied in greater detail.

Just as de Bruijn diagrams can be used to calculate periodic con�gurations of a cellular
automaton by looking for the loops, it is also possible to look for unbranching paths which are
bounded by saturated nodes, from which the membranes can be read o�.

That is the result of labelling the paths in the de Bruijn diagram by some boolean function
of the neighborhood cells, such as repetition or shifting. When labelling is done according to
evolution, the usual application of a de Bruijn diagram, the result leads to the Welch indices.
In other words, if multiple continuations from a �xed node all lead to the same evolution, they
de�ne a compatible extension. This can be re�ned into a maximum compatible extension and
so on, as spelled out both by Hedlund and by Nasu.

Hedlund's third great theorem relates the product LMR to the number of nodes in the
de Bruijn diagram, under conditions of surjectivity, but the same ideas still have meaning for
arbitrary automata. When the automaton is supposed to have just two neighbors, and that
number is prime, only one of the triple L,M , R can di�er from 1. If it isM , every con�guration
has M fully (that is, (n � 1)-separated) distinct ancestors. If it is L or R, the automaton is
of a shifting type, but M may still exceed 1 if distinct ancestors nevertheless coalesce when
followed out to the extreme right or extreme left.

Suppose that k(n � 1) is composite, for example 4 given a (4; 1=2) automatom. Maybe
then L = 2, R = 2, still leaving 4 � M � 1; such a possibility is included in Eloranta's
partial mermutivity, and one might even venture to say that is the essence of the concept.
Relative to the previous discussion, it would be the equivalent of partial membranes, taking the
form of moving kinks capable of mutual annihilation or transformation; just the eventualities
comprising Eloranta's second paper.

To continue with the book reviews, the role of subshifts of �nite type or of so�c systems
and their relationship to cellular automata needs to be examined. The de�nitions are easy
enough and it is not hard to guess their motivation. Once Hedlund's �rst great theorem
is examined from the axiomatic topological viewpoint, continuous functions require sets of
sequences derived from a countable list of exclusions. Such a list is readily obtained from the
other characterization of continuous functions, as limits of shifts of extensions of block maps.
In particular, it is the list of paths connecting the full set to the empty set in a subset diagram
derived from the evolution-labelled de Bruijn diagram.

Independently of this, perhaps guided by another class of applications, someone decided
to concentrate on �nite lists of exclusions, generated with the help of an auxiliary matrix, the
connection matrix for a distinctly-node- labelled graph. With an emphasis on endomorphisms
and automorphisme as well as merely continuous functions, the natural consequence was to
relate mappings between sets of sequences to mappings between their de�ning matrix, for which
the principal source of information is the series of articles of R. F. Williams which have already
been mentioned. Much of Williams' work concerns �nding an axiomatic topological de�nition
for shifts of �nite type arising solely from the shift and intersection properties of the open sets
of the topology.

So�c systems met the objection that, in a theory of morphisms, subshifts of �nite type
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central concern is di�erent from cellular automata.
To the extent that they overlap, that is certainly well worth knowing about.

new books and old articles (12)

Date: Sun, 5 May 1996 20:24
To: ca@think.com

To create a background against which to review the new books, we hope to be forgiven for
including certain articles future and articles present to supplement those articles past which
have already been discussed, or whose existence might require mention.

Cristopher Moore <moore@gila.santafe.edu> has announced:

> ...

> \title{Quasi-Linear Cellular Automata} [April 26, 1996]

> ...

> and the other one:

>

> \title{Non-Abelian Cellular Automata} [September 29, 1995]

as well as another which seems to be available at the same place:

\title{Algebraic Properties of the Block

Transformation on Cellular Automata} [October 3, 1995]

Although the abstracts of (at least two of) these articles profess a concern with compu-
tational complexity, examination of the articles themselves would disclose a large variety of
schemes for the symbolic realization of cellular automaton evolution, principally via the exhi-
bition of numerous algebraic systems for which relationships like the binomial theorem hold.
Anyway, they contain a nice exposition of these ideas.

All three of Moore's preprints refer to the following two articles:

Kari Eloranta

Partially permutive cellular automata

Nonlinearity 6 1009-1023 (1993)

Kari Eloranta

Random walks in cellular automata

Nonlinearity 6 1025-1036 (1993)

which are in reality one long article split into shorter pieces. Besides the fact that Eloranta
also uses blocking transformations to reduce the analysis to two-neighbor automata, and makes
some use of the fact that the resultant binary mapping includes many algebraic systems of
interest, our attention is drawn to the relationship between "partial permutivity" and Welch's
indices. The �rst paper is combinarital and introduces subalphabets; the second is concerned
with the statistics of kink di�usion..
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procure Voorhees' book (as well as Wolfram's) and we feel that it will be just about right if
they manage to master its contents.

Well, everyone will have their own environment and background from which to decide
whether to use the book and at what level, so su�ce it to say that it could be a textbook as
well as a reference book.

As a reference work, both the author's own studies and Erica Jen's analyses occupy a
good part of the volume, and invite attention for the details upon which they cast light as
well as the opportunity they o�er to generalize to other automata with diferent state sets and
neighborhoods.

One example is the classi�cation of automata according to the generators of the Garden
of Eden, namely whether the number of poison words is zero, �nite, linear, or (presumably)
exponential relative to the length of the on�guration. The �rst category corresponds to endo-
morphisms of the full shift, the second to the Subshifts of Finite Type, and the last two to So�c
Systems. As far as we know, this viewpoint relative to symbolic dynamics is not emphasized
in the book nor elsewhere, although it is a logical extension of any study of Hedlund's point of
view. If memory serves, the original motivation had to do with Feigenbaum's scaling theory,
and involves still further considerations such as observing the rates of growth of those ancestors
which actually exist when various kinds of boundary conditions are imposed.

When it comes to calculating ancestors, various techniques exist and have likewise had
varying approaches and reasons for studying them. Regular Algebra o�ers some interesting
symbolic calculations, not to mention the theory of factors and considerably more machinery.
There are also numerical matrices, which form semigroups, with a whole well developed lore
of semigroup theory waiting to be exploited. Voorhees has collected several semigroup tables,
and has called attention to the possibility of having them further illuminate the properties of
their cellular automata.

In practice, after getting considerable attention in the late �fties, including Samuel Eilen-
berg's treatises on monoids, semigroup theory has pretty much faded away from automata
theory. To begin with, it is much more complicated than group theory, which in itself doesn't
o�er much engouragement to anyone who wants to evaluate long group products. But our
recent reading of Hedlund suggests that there is much more to be gained by applying Welch's
theory of indices, particularly when one wants to enumerate the reversible automata. Likewise
Williams' theories of strong and weak equivalence, which has an impact on Voorhees' study of
commutation and rule factorization, should open up a much greater range of equivalences for
cellular automata .

At the time that inquiries were being made about the commutation of rules, there were also
questions from other participants in the cellular automaton discussion group about whether
it would be worthwhile to examine quadratic rules of evolution, considering the success which
the study of linear (more properly, �rst degree) rules. This is another line of inquiry which
has probably still not been exhausted. Voorhees was simply content to split rules into two
parts, going on to concentrate on the linear part, although the splitting provides nice colorful
diagrams. This is a subject which might bear reexamining, due consideration having been
given to the new ideas which have been brought forward.

It remains to discuss the other new book, but to do this properly seems to be going to
require some additional preparation. There is no question that it is an advanced research
monograph, and although applications to cellular automata are promised in its promotional
literature, there seems to be little doubt that the study of subshifts is an entire �eld whose
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long path in the pair diagram has to enter the diagonal; a similar de�nition embodies the other
handedness.

De�niteness allows loops in the pair diagram which do not intersect the diagonal; this is
where totally (n� 1)-separated, bilaterally transitive, and such adjectives enter Hedlund's and
Nasu's theorems. Injectivity says NO loops outside the diagonal, intersecting or not, which
serves to �x the multiplicity M ; from there on there should be no di�culty in applying Hed-
lund's third great theorem. Note that other authors sometimes use the adjectives "separating"
and "closing."

In conclusion, surjectivity admits a variety of multiplicities running from injectivity to a
full complement of counterimages, all with a wide variety of intermediates.

In summary, we have given a variety of arguments favoring the book under review, pointing
out that there are few others treating cellular automata at a comparable theoretical leval.
At the same time, it can hardly be overstated, that so far there has lacked a really elegant
overview of cellular automata theory; for some years this placed it on the videogame level,
where the attitude was "look at this nice fractal pattern I've just now generated!" But we also
tend to get lost on another level, where there are elaborate formulas and theories to list the
nice fractals, but the feeling of much computation (or theorem proving) for little practical gain,
or understanding, remains.

Still, the book is a worthwhile contribution to furthering this understanding and we appre-
ciate the sentiment involved with "My hope is that in describing the little that I have been
able to see, it will encourage others to go further." Maybe that rascal in the front row; maybe
the author himself; let us wait and see.

new books and old articles (11)

Date: Thu, 25 Apr 1996 23:53
To: ca@think.com

Substantially, our review of Burton Voorhees' new book, "Computational Analysis of One-
Dimensional Cellular Automata" published by World Scienti�c in Singapore, with sales o�ces
around the world, has been concluded. Amongst its other virtues, there are few other books
primarily devoted to an exposition of the theory of cellular automata. Others have been
conference proceedings, collections of articles, software or hardware manuals, and so on, and
all have had their merits, but until now there has not been a textbook.

The author proposes it for a Junior level course; we had a discussion of this in our regular
sta� meeting a few days ago. For many years here in Puebla, there was a Sophomore course
called Fortran III, dedicated to graphinf and graphics procedures that we used as a pretext
to develop the theory of cellular automata (and the lcau programs). However, the students
were never expected to do more than know some of the properties of cellular automata and
prepare (or at least understand) the graphics displays. The following years there were courses
on formal language theory and compiler construction in which things like regular expressions,
�nite automata, Chomsky's hierarchy, and the like were presented, giving an opportunity to
look at cellular automata once again. Minsky's book, "Finite and In�nite Machines," or Aho
and Ullman's dragon books were texts at this level.

In the meantime, we have a graduate level course on cellular automata theory in which all
those things are supposed to be known, and the students have been told that they ought to
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as it is in
uenced by a topology in which locally distinct counterimages coalesce in the limit.
At least one will survive, maybe more, and possibly all. This is governed by Hedlund's third
great theorem and the Welch indices. Of these, the left and right indices behave sedately and
multiply under composition. If left and right subset diagrams are constructed, the indices
identify the strata on which the ergodic set of the subset diagram is to be found. Nasu's
theorem, an interpretation of Hedlund's result, assures this.

If the automaton is not surjective, the ergodic set permeates the subset diagram, without
necessarily encompassing all of it. The transients are also important and interesting. Even
though Welch's indices describe the ergodic stratum, the acute observer will notice that Nasu's
theorem describes an inequality, and that the statement of Hedlund's theorem has a proviso
(as it turns out, resulting from and amply justifying all the preliminary attention to degrees
of periodicity, recurrence, and so on).

For observing these details, it is useful to work with something more elaborate than Wol-
fram's (or Voorhees's) (2,1) automata; the Amoroso-Patt example with (2; 3=2) automata gives
the smallest binary instance, although there are some nice examples using (3; 1=2) automata.

Consider the (3; 1=2) automaton 14433, whose rule table is

0 1 2
0 0 2 1
1 0 1 2
2 1 0 2

which is quiescent in all three states, but for which 1* has (02)* and (20)* as counterimages
also. The de Bruijn fragments are row stochastic, so Welch's R index is 1. The re
ected
automaton follows rule 18369, whose subset diagram reveals that L is 3, a level to which
the maximum compatible extensions arrive in two steps, with some dithering. This is also
consistent with the two trees of height 2 rooted on states 0 and 2.

Were LMR = 3, we would conclude that M = 1; but by Nasu's theorem that is only a
lower bound for the multiplicity.

If we now go on to construct the pair diagram and the triple diagram, we �nd some inter-
esting features. The triple diagram exhibits exactly one loop, which means that the quiescent
1 background has three ancestors, and that it is the only such con�guration, which is hardly
uniform multiplicity.

In the pair diagram, there is a subdiagram containing internal loops, from which the di-
agonal has only incoming links. That means that there are some con�gurations (but not all)
which have two ancestors, but there are crucial junctures following which both ancestors must
coincide and continue to coindide thereafter, while running onwards to the right. That means
that there are many con�gurations with two distinct (n� 1)-separated (according to Hedlund)
ancestors, and still others agreeing to the rightwards of some juncture.

If we ask what our dynamical systems theorests have to say about this, we will �nd the
concepts of mergibility and de�niteness.

With respect to the pair diagram, mergible means that the diagonal has no exits to loops.
Thus any su�ciently long path (pair of paths in the de Bruijn diagram) has to have originated
within the diagonal; the minimul such length is an index of mergibility. Alternatively, running
in the other direction, long enough forces the beginning into the diagonal.

De�nitiveness is a closely related concept; it says that there have been no entrances into the
diagonal from loops. Thus (unless there are some completely exterior loops) any su�ciently
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a concentration on binary, �rst neighbor, automata; the same ones StephenWolfram studied so
intensively (and let us not lose sight of the fact thatWolfram was one of the �rst to observe ALL
the automata of a given class rather than just the one which served the moment's purpose).
Additionally, the book gravitates around linear automata, those whose rule of evolution can
be expressed via a multinomial of the �rst degree in variables representing the cells of the
neighborhood.

Within these margins the book contains a wealth of techniques, procedures, and collected
data, this latter dispersed in tables throughout the text and six additional appendices. Between
most chapters there are collections of color plates embodying several of the author's techniques
for visualizing the properties of automata; it is all quite colorful, and even possessed of a certain
abstract beauty.

The reason authors, including Guan and He, or Martin, Odlyzko and Wolfram, amongst
many others, have chosen to work with additive rules, was undoubtedly the perception that
such rules would be susceptible to mathematical analysis while other rules might not be so
easily treated. Nor is there much doubt that they actually obtained a large collection of
results; if formulas for periods, transient lengths, sizes of basins of attraction, did not yield
nice algebraic formulas, they did give closed expressions in terms of Euler's phi function, the
Moebius inversion formula, or what not. Nice number theoretical results.

Unfortunately all of this activity has taken place against a background which has been
better understood by some persons than by others, apparently without there having any single
comprehensive picture. Even now, we can wonder whether it will be necessary to bring di�er-
ential algebra (or �nite di�erence algebra) in the style of Ritt and Kolchin into the picture,
but the large body of knowledge implied by the work of Hedlund and his successors was not
widely disseminated amongst automata theorists, and even those who were aware of the work
may not have been fully aware of its implications.

Speaking more personally, it is only lately that we can even claim to be able to read
Hedlund's articles, and that only as a result of longtime e�orts and a more intensive seminar
lasting months. Obviously others have had advance warning or better preparation, but there
is evidence that even those concepts which have reached across from one �eld to another have
been as fully appreciated as they might have been. Two or three years ago, when the cellular
automaton discussion group was approached by Prof. Voorhees seeking information about
the commutativity of cellular automaton rules, did anyone suspect the relation to Williams'
equivalences, or even think to cite Rhodes' paper? We might have saved him a bit of trouble
if we'd have known these things.

Well, to 
og a dead horse just a little bit more, there is still this question about the number
of counterimages of a surjective cellular automaton map. There are several answers, depending
upon the level at which they are asked. At the local mapping level, there are always k(n� 1),
for k states an neighborhood content n. Mirroring this result in de Bruijn fragments is another
story, but the result is clear and de�nitive enough.

An immediate complication is the fact that the counterimages need not have the same period
as their sequences, although there are limits and divisibility relationships. Therefore it one
works with basins of attraction for periodic automata the fact that these larger counterimages
exist may go unnoticed; the proper interpretation of a Garden-of-Eden result for such automata
should take this into account, just as it should note that there is only a �nite number of the
wider counterimages.

Another complication lies in the transition from local mapping to global mapping, especially
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out, we can decide whether rules compose from the left (category diagrams) or the right (matrix
products). A truly delightful experience awaits the unwary, or at least su�ce it to say that
lcau21 produces a composition table quite unlike the book's Table 4.3.

The reason for noticing this discrepancy results from trying to exploit the fact that Grass-
berger's Rule 18 is a composite of the (2,1/2) or and xor, and that many studies of its behavior
depend on that fact. Rules 126 and 252 also factor, so it is tempting to pick up commuting
triplets by associating terms in a composite (which is not necessarily the only way commutation
can arise).

Generally speaking, textbooks which provide ample tables listing such items as composite
rules and their factors, edge-insensitive, permutive, edge-linear, or other specialized automata,
all serve to aid whomever is searching for patterns and relationships amongst automata. So
we can only praise our author for the tabular information he has provided us. To balance
the compliment with a quibble: "compliment" is when you say something nice to or about a
person; "complement" is when you �ll in the rest of the rule table, or �nish some other undone
task, or in electronics, invert the sign of the signal you're processing (Just as those who live in
glass houses shouldn't throw stones, those who never learned touch typing shouldn't criticize
authors' penmanship, but it's still a temptation).

To summarize today's discussion, chapter 4 describes idempotence, Ito's relationships, and
existence (including symmetry properties) of constellations, something far greater than clus-
ters, constructable using the author's generalization of Ito's, Grassberger's, and similar, ob-
servations. By their formulation, constellations tend to share invariants such as entropies (or
whatever appropriate interpretation of the Perron eigenvalue) which in turn creates similarities
in their patterns of evolution.

new books and old articles (10)

Date: Mon, 22 Apr 1996 23:33:17
To: ca@think.com

Someone looking for a textbook on cellular automata theory, which treats the theory on
its own merits wherein the underlying lattice is a fundamental part of the topic rather than
appendage to the theory of �nite automata, would do well to consider Burton Voorhees' "Com-
putational Analysis of One-Dimensional Cellular Automata" which we have been discussing.
As his preface says, "The actual mathematics used is not hard, and the material should be
available to anyone with a junior level university background, and a certain degree of mathe-
matical maturity." Matrices are for multiplying but not diagonalizing, the only �nite �eld is a
boolean algebra and the algebra never mentions Galois theory explicitly, but there IS a contour
integral in theorem 5.13.

Text book or not, it is one of the few places where the "advanced" theory of cellular
automata may be found, meaning the use of the de Bruijn diagram for deriving properties of
automata, concern with ancestors, the Garden of Eden, surjectivity and injectivity, and all
those aspects which go beyond the mere phenomonology of observing evolution and compiling
statistics about it. Aside from the one chapter on time series and some discussion of entropy,
the book makes no attempt to relate automata theory to statistical mechanics, which is a whole
�eld for investigation in its own right.

On the other hand, it strongly re
ects the research interests of its author, which accounts for
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P. Grassberger,

"New mechanism for deterministic diffusion,"

Physical Review A 28 3666-3667 (1983).

However, the book skips over a step in this saga, because it seems to have been Voorhees
himself [bibliography 5] who noticed that Ito's coding from one rule to the next could be
accomplished by a cellular automaton, whose rule was 252. Anyway, the idea was born that
there were constellations of cellular automaton rules with related properties. Of course, that
was based on empirical studies of a variety of automata as much as from any theoretical
expectations, gaining strength as more and more theoretical underpinnings were discovered.

It is also true that it is possible to think about commutation amongst rules without con-
necting that with the commutative diagrams of category theory as Williams has done, but the
ideas cannot be very far from one another. Another Voorhees article [bibliography 13, actually
Complex Systems 7 309-326 (1993)] [to also complete bibliography 14: it is now Complex Sys-
tems 8 151-159 (1994)] refers to similar concepts circulating in Hedlund's circles, originating
with

E. Coven, G. Hedlund and F. Rhodes,

"The commuting block maps problem,"

Transactions of the American Mathematical Society 249 113-138 (1979)

Here we have an interesting cycle, in which persons interested in mathematical communica-
tion theory and dynamical systems, thinking of composite mappings as cascaded shift registers,
got interested in how their order of connection could a�ect the �nal result, taking up �rst de-
gree mappings, at least with respect to an edge variable, as a case susceptible to analysis.
Then the book's author, having developed a symbolism adapted for �rst degree mappings,
comes along with a new interpretation [bibliography, 13]. Where will it all end? Not until
Lagrange Interpolation Theory, expecially in �nite �elds, subsumes all these diverse mapping
techniques into a single coherent approach, following which Hedlund's procedure is brought
into play once again, this time for merely continuous mappings, not only the endomprphisms
and automorphisms. And even then it probably won't be all over.

We say "constellations" to distinguish them from clusters as the latter appear in the
Wuensche-Lesser Atlas or Hillman's determination of reversible automata, because they rep-
resent still larger groupings, something which is possible because they are not con�ned to
surjective or injective mappings alone.

Empirical analyses of automata are replete with enumerations of restricted con�gurations
which receive identical treatment with respect to two or more di�erent automata. If any of
those restrictions could be realized by de�ning classes of subshifts, they would thereby become
susceptible to the theories of symbolic dynamics. In a case which will be discussed later on in
more detail, Erica Jen has classi�ed automata according to the size of the generators of the
Garden of Eden - null, �nite, countable, worse - which clearly relates the Subshifts of Finite
Type to the second category.

In actually working with the concepts of Chapter 4, we see how careful and consistent one
must be, between authors and (surprise!) with the same author. There are Wolfram rule
numbers and Perry Rule numbers, re
ecting two possible orderings of the digits in a number.
Then, there is the question as to whether the automaton will be referred to by its christian
name (and, or, xor) or its social security number (6, 12, 14). Once this has been straightened
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of evolution are algebraic conditions for their solubility can be discussed algebraically,
especially for linear and linear inhomogeneous rules.

Reference is made to the original determination of Amoroso and Patt, to Hedlund's
theorems, and to the de Bruijn and Subset diagrams. Some interesting diagrams are
shown which could be used to calculate the products of symbolic de Bruijn diagrams, the
ones which originate from the "vector subset diagram."

new books and old articles (9)

Date: Sat, 20 Apr 1996 21:04:23
To: ca@think.com

In Computational Analysis of One-Dimensional Cellular Automata just published by World
Scienti�c, Burton Voorhees undertakes to "give an introduction to the analysis of cellular
automata (CA) in terms of an approach in which CA rules are viewed as elements of a non-
linear operator algebra, which can be expressed in component form much as ordinary vectors
are in ordinary algebra."

This is a very distinct undertaking from trying to formulate the operations and concepts of
cellular automata theory in terms of matrices insofar as possible, and also from the tradition in
communication and coding theory to work with �nite �elds, recursion relations, and generating
functions. Yet that approach is entirely consistent with with the book's emphasis on rules of
evolution described by �rst degree polynomials while regarding other rules of evolution as
perturbations on this basic theme.

The book contains many tables constructed in furtherance of these ideas, of which the
ones associated with the sections concerning commutators deserve some attention. Relative
to the background expressed in this review's preliminaries, commutators for binary automata
are closely related to Williams' topological conjugacies. In other words, if X any Y are two
rules of cellular automaton evolution, there may be a third rule T for which the composite
two-generation rules XT and TY are the same. The relationship is more familiar when T is
invertible; even so, there is always some degree of equivalence, even at the extreme where T is
zero ("everything is equivalent, almost").

The historical precursor of this relationship is

Hiroyuki Ito,

"Intriguing Properties of Global Structure

in some Classes of Finite Cellular Automata,"

Physica D 31 318-338 (1988).

which worked out basins of attraction for the (2,1) Rule 18 (whose properties had been
extensively investigated by Peter Grassberger) and the Rule 126 whose evolution is closely
similar, just with thicker edges on all the triangles. The resemblance was stronger than that,
plots of the distribution of cycle lengths, size of basins of attraction, and so on, coinciding
almost exactly for the two rules.

Ito worked out a mapping from rule 18 to rule 126, and veri�ed the resemblance between
the rules by detailed alculations of their basins of attraction, which we might do nowadays
with the "A and B matrices," or Voorhees' d0 and d1. Ito credits Grassberger with the reverse
mapping, published in
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10. the Garden of Eden

11. time series simulation

12. surjectivity of cellular automata rules
The �nal four chapters concern more general issues, still for one dimension, but not
con�ned exclusively to additive rules. Generally speaking, it is known that there is a
strong imbalance in the number of counterimages for di�erent con�gurations, as well as
in their propagation backwards in time. Most often, either zeroes or ones will dominate,
the e�ect growing more and more pronounced as longer con�gurations are examined, and
as they are followed further backward in time. Of course, this is just the counterpart of
the concentration and formation of basins of attraction seen in forward evolution.

Sometimes uniform stretches lose out, yielding their popularity to con�gurations of simple
periood, such as alternating zeroes and ones. There is a community of rules for which
simple periodicity dominates, but there are still minorities of rules in which the dominance
passes to longer periods with more complicated unit cells. Finally there is a realm in
which absolute democracy, in the form of Hedlund's second great theorem, the one about
uniform multiplicity, prevails.

Chapter 9 introduces another specialty of the author's, which he calls the basic matrix.
Instead of creating the connectivity matrix of the de Bruijn diagram by placing a 1 where
the partial neighborhoods can overlap, or of creating a symbolic matrix by placing the
image cell at that location instead of a 1, this time the links tell whether there exists a
neighborhood of double length, which starts with the row index, but which evolves into
the column index.

Trying to multiply such matrices would imply a tower of neighborhoods such that paths in
the connection matrix would describe consecutive initial segments of the members of the
tower, as successive generations evolve. But this is not the use to which these matrices are
put; rather longer and longer segments are followed through a single generation, yielding
a sequence of matrices with fractal structure, supposing that indices are mapped into
"decimals" the same way they were in earlier chapters. Samples for �fteen di�erent (2,1)
rules are shown with the help of another collection of color plates.

Quite a few questions can be asked about the Garden of Eden. One arises from relating
periodic con�gurations to arbitrary con�gurations, even without going into all the pe-
riodicity re�nements which characterize symbolic dynamics. The simplest complication
arises when a counterimage has a longer period than that of the lattice of the con�gura-
tion. When rules aren't surjective, there is still characterizing growth rates, and growth
rates subject to a variety of constraints.

Another possible question is: what are the rules exhibiting prescribed "poison words" or
groups of poison words. This is like characterizing subshifts, and is altogether complicated
by the fact that it is hard to create a subset diagram to order, in the way that it can be
done for boolean properties of the de Bruijn diagram.

Chapter 11 ventures into the arena of time sequences for an automaton, as distinguished
from spatial distributions. Interesting results exist.

The book concludes with a discussion of surjectivity, to be found in Chapter 12, a topic
of interest for discovering reversible cellular automata; particularly so when the rules
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Family relationships include factoring rules, enbedding them in larger neighborhoods,
and restricting the neighborhood. The rule algebra of chapter 2 has the de�ning of rule
commutativity as one of its goals, something which is also one of the author's specialties,
explained at greater length in chapter 4, and which probably has additional relevant
interpretation in terms of William's commutative diagrams.

The study of �xed points and cycles comprising the third chapter has an elegant formu-
lation in terms of de Bruijn diagrams, something about which Erica Jen was amongst the
�rst to publish. In fact there is much reference to her detailed classi�cation of (2,1/2)
and (2,1) automata, much of it in terms of recursion relations and number theory.

5. additive rules I. basic analysis

6. additive rules II. cycle structure and entropy

7. additive rules III. computation of predecessors

8. the binary di�erence rule
The middle part of the book is devoted to explicit calculations, as they can be carried
out over the boolean �eld GF(2). Thus, Shannon's canonical form for boolean algebras
is replaced by the nearly identical Lagrange interpolation basis for the �eld, exclusive or
replacing the inclusive or as the algebra's sum.

Chapter 5 introduces a technique for visualizing the additivity, or lack thereof, as intro-
duced in Chapter 2. It produces something similar to the plaid diagram, but it displays,
for the one-sided shift, whether or not con�gurations i and j obey f(i+j) = f(i) + f(j).
Since this all depends upon whether neighborhoods themselves obey this property, the
result is a nice fractal picture, in the topology of the shift. For the (2,1) automata, �fteen
color plates (the other one is identically zero) illustrate nontrivial "obstruction classes;"
the ways in which rules depart from additivity.

Periodic additive rules admit matrix representation for the evolution of rings of cells; typ-
ically by circulant matrices whose eigenvalues are described by Tchebyche� polynomials
and whose eigenvectors form discrete Fourier transform matrices, although the results
eventually need to be referred to a �nite �eld. The author and others have made such
analyses. Whether or not the rules are injective is always interesting, to which Hed-
lund's third great theorem concerning the Welch indices, is relevant. Although periodic
con�gurations have periodic ancestors, those periods do not always coincide.

Running forward in time lends interest to knowing the onset of periodicity, the height,
lea�ness, and convergence ratios of the tree of evolution, its description by such measures
as entropy, and related data. It is no less interesting to run backward in time, obtaining
the same information in terms of ancestors. In the process Langton's parameter lambda
is encountered, not to mention all of the interesting results in Wuensche and Lesser's
Atlas.

For linear rules, the same opportunity exists to use linear algebra, recursion relations,
and �nite �eld theory to calculate ancestors that was used for the calculation of evolution.
Additionally, the subset diagram and symbolic de Bruijn matrices can be used.

Chapter 8 is dedicated to the bellwether of all additive binary rules, the exclusive or.

9. computation of preimages
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product from which some coordinates have been ignored. We see that this is a necessary
feature of such rules; it would be interesting if a Fredkin factorization or something similar
could actually be exhibited for all reversible rules.

new books and old articles (8)

Date: Wed, 17 Apr 1996 22:33:55
To: ca@think.com

Of the two books, Voorhees' Computational Analysis of One-Dimensional Cellular Au-
tomata by World Scienti�c would be more suitable as a textbook, while Nasu's Textile Systems
for Endomprphisms and Automorphisms of the Shift from the American Mathematical Society
is essentially an advanced research monograph. Both are neatly prepared, apparently from
TeX prepared by the author in Nasu's case, and something akin to ChiWriter for Voorhees'
book. In either case, the mathematical text seems to have been meticulously prepared, yet
both contain one or two idiosyncracies which either referees or some copy editor ought to have
detected: Nasu's use of "weaved" where "woven" would probably be more gramatically cor-
rect, and Voorhees' pluralization of -x words using -icies. If there are ever second printings,
electronic correction of these anomalies should be a triviality.

As described in its announcement, Voorhees' book has twelve chapters, six appendices,
and a bibliography (of 89 items), all for a total of 275 pages. Part of the introduction is a
bibliography of fourteen of the author's own papers, whose subject matter is consistent with
the book's emphasis on one- dimensional automata of Wolfram's type type (2,1), and with
additive rules at that. This is a realm for which reasonably explicit calculations are possible,
from which concrete results can be used to treat the topics of the last chapters, wherein
surjectivity, injectivity, and the calculation of ancestors are considered.

There are many diagrams, illustrations, and tables, including the compilation of results in
the appendices. In keeping with its possible use as a textbook, each chapter has a handful
(that is, ten or so) of exercises. The book breaks down more or less according to the following
lines:

1. operator algebra of cellular automata

2. cellular automata arithmetic

3. �xed points and cycles

4. commutation of CA rules
The preliminary portion of the book sets out the usual de�nitions for cellular automata,
with explicit reference to Hedlund's �rst great theorem. In so doing, the author prefers
to work with either the one-sided shift or with periodic sequences; even so, machinery is
required to center neighborhoods, especially to facilitate describing composite rules.

One of the author's specialties has been to work with a sort of algebra of automaton rules,
which is part of more extensive e�orts to deduce family relationships amongst automata.
This algebra foresees giving additive (and linear homogeneous) rules a privleged position
amongst all rules, in no small part due to an intention to use linear algebra over �nite
�elds or else integers modulo n to study their evolution.
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from the left and right subset diagrams (sets of subsets, no less) and counting theorems which
Hedlund states and Nasu reiterates.

The counting theorems produce inequalities, which become equalities when shifts are bilat-
erally transitive. What does this mean? It can be spotted rather quickly in the pair diagram.
Reversibility, or automorphism, once the subset diagram has veri�ed surjectivity, requires that
there be no loops in the subset diagram outside the diagonal. There may be transients, whose
length and handedness can be related to Welch's indices, but no loops.

Mere surjectivity, or endomprphism, allows additional loops outside the diagonal, which cor-
respond to Hedlund's "totally (n-1)-separated shifts," but there is another possibility wherein
the diagonal connects unilaterally to an exterior graph. That would mean, say, that from some
point onward, counterimages which extended uniquely to the left, could diverge to the right,
even while precluded from ever rejoining. Apparently this is a combination in which the Welch
product LR attains its maximum value k(2r), yet the multiplicity M is still larger than 1. So
the quibbles in the theorems are actually to be taken seriously.

Someonewho would like to check this out with an actual example might examine the (4; 1=2)
cellular automaton CBAD1670, whose rule table is

0 0 3 1
2 1 1 0
1 3 2 2
3 2 0 3

The rule has been planned to be fully quiescent in all its states; for reversible automata
there is such a rule in every cluster, which need not hold for automata which are merely
endomorphisms.

Examining con�gurations with spatial period 2, some of them lack ancestors of period 2,
but rather the least period of the ancestor is 4. Examining either the pair diagram or the subset
diagram shows that the phase between two such ancestors can slip exactly once, without any
chance of recovering it again.

The left, or in-link, subset diagram (seen by examining the re
ected rule E127B4D8) has
Welch index L = 1, given that the unit classes are closed under in-linkage, whilst the right, or
out-link, subset diagram has Welch index R = 4, given that the full set can be reached from
the unit classes. Which means that it is a single-point image of the de Bruijn diagram.

Knowing that there is a fully quiescent rule in each cluster of a reversible rule, and using
Nasu's theorem about the tree rooted on each quiescent node, the de Bruijn diagrams, or
equivalently, the rule tables, for reversible r = 1=2 automata can almost be written down by
inspection - especially when the number of states is a prime number. Endomorphisms are
more complicated - think that only 0 is quiescent for (2,1) XOR - and the possible values
of Welch's M must be considered - but there is much less to enumerate while searching for
endomorphisms than there would be in considering all possible rules, even after insisting on
uniform multiplicity.

When the state set has composite order, even when the automaton is reversible, it is possible
to split the indices between the two sides. Nasu's diagrams for Amoroso and Patt's reversible
(2,3/2) automaton show the factorization 8 = 4*2; programs available nowadays permit the
construction of many more examples.

The importance of the indices can be seen in another respect; anyone who has used Fredkin's
scheme for constructing reversible automata will have noticed that it depends on a cartesian
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that they have always been easy to understand. Partly this is due to their origins, in which
sequences arose from other circumstances, such the iteration of a mapping or the solution of
a di�erential equation. To bring understanding to sequences originating haphazardly, for all
that was apparent, many kinds of periodicity were invented starting with strict periodicity, but
eventually extending to recurrent, which meant that sometime, no matter how long it took,
any given combination was bound to repeat, and then again, and again ... .

For that reason, Hedlund examines various backward and forward periodicities, with the
intention of seeing how they are treated by the hierarchy of mappings which he distinguishes
- continuous, surjective, reversible. Meanwhile, studies of subshifts take up a similar range of
concepts, not always with the same vocabulary, and varying somewhat from author to author.

Were it not for concrete results, there wouldn't be much reason for theorists of cellular
automata to pay too much attention to all the classi�cation. But not only are there de�nite
results, their counterparts in automata theory have often been overlooked, or were simply
unknown. For example, much of the theory of reversible automata has lacked the bene�t of
the insight which symbolic dynamics could have provided.

By now, the basic theorem that cellular automata are the manifestations of continuous
mappings of the shift is quite generally known and often cited. Circumstances surrounding
the next result, uniform multiplicity of surjective mappings, are fairly murky, even though the
result is also widely known. The di�culty arises in explaining how multiple counterimages can
be guaranteed and yet only one of them is evident when the automaton is reversible.

The answer that they are indistinguishable in the limit is somewhat misleading, because
unless the causes of indistinguishability are evident within a �nite and calculably small distance,
they will never occur. In other terms, it is all a matter of boundary conditions, and the rate
at which their in
uence diminishes - either almost at once or never.

Still, as Richard Feynman is reputed to have once said, in giving a "physical" reason for
numberical instabilities in the solution of di�erential equations, "You can't hide heat!" For
reversible automata, the aphorism seems to be that you can hide multiple counterimages, but
you can't ever get rid of them in their entirely, absolutely, completely ... .

This brings us to Welch's indices, de�ned for surjective mappings, and Nasu's theorem that
their subset diagram contains an image of the de Bruijn diagram. It is instructive to work this
out, and to observe that although it is an image, it is not always the same.

The subset diagram reveals the Garden of Eden in its entirity, but still it is not nearly as
convenient for ascertaining actual counterimages. From its de�nition, if there is a path in the
subset diagram, there are corresponding paths in the base diagram such that every point in
the head subset has a path connecting it to some point in the tail subset, but not necessarily
in the opposite direction. Consequently unravelling the actual path is just as much work as
constructing the diagram in the �rst place. One solution to the problem is to de�ne a "vector
subset diargam;" another is to work with symbolic connectivity matrices, but that is another
discussion for another time.

The uniform multiplicity theorem has its consequences for the subset diagram, This shows
up in de�ning the "maximal compatible extensions" which feature in the de�nitions of Welch's
indices, by creating a structure of ideals in the subset diagram (a fancy way of saying that
the extensions of maximally compatible subsets are maximal). Paths in the base diagram,
which always exist on account of surjectivity, must thread their way through the subsets in
the subset diagram; they can coalesce, but never in any way creating too many paths with the
same labelling. The result is a series of requirements for the intersections of the ergodic sets
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that UB = AU with the discrepancy in dimensions being absorbed by zero eigenvalues and
associated eigenvectors.

It is also possible that neither matrix is supposed to be diagonal, in which case there could
be matrices reducing each to diagonal forms (Lambda) and (Mu), respectively. Then it could
be said that A = UV , whilst B = V U , wherein U and V are variants on the diagonalizers
(essentially multiplied by another diagonal matrix). So there is a kind of equivalence relation,
which Williams calls strong equivalence, wherein two matrices are equivalent if they arise from
the product of two (usually noncomuting) factors, or from a chain of such factorizations. From
this it iseasy to get R and S for which RA = BR and BS = SB.

On the other hand, a little algebraic manipulation provides matrices U and V and an
arbitrary function f for which Rf(A) = f(A)R and f(B)S = Sf(B); often f is simply a
power, yielding Williams' weak equivalence. Unravelling its chain of factors shows that strong
equivalence implies weak equivalence; it is moreover what turns up in the numerical LR method
of diagonalizing matrices, so it is not such a strange concept.

One of Williams' great concerns was whether it worked the other way around, so that once
the powers behaved, a chain of factorizations could be discovered. Given that the factorization
which de�nes a matrix and its dual would lead to a nicely intuitive dual tower, it would be
nice to characterize equivelent shifts-of-�nite-type as those connected by a chain of duality.

Anyway, it is useless to attempt a homomorphism between two shifts if their matrices do
not have at least one eigenvalue in common; moreover for reasons having to do with positivity,
at least one of the pairs had better be the largest, Perron, eigenvalue.

Working with automata which are known to be reversible, just as with those without
Garden of Eden, there is ample opportunity to factor the matrices in the de Bruijn diagram,
because of the property in each fragment that there are just as many links as nodes. Of course,
the links may be numbered any way that one wishes, leading to an ambiguity according to the
permutation group for the links. This is something to be borne in mind for the later discussion.

This review of symbolic dynamics has been undertaken for the bearing it might have for
the description of the two new books; it is essentially material which we have just recently
studied in detail, in spite of having known about it for several years. O�ine correspondence
with David Hillman was instrumental in calling our attention to the signi�cance of Williams'
series of papers. At the same time, the improved versatility of nxlcau as we learn better how to
use its graphics facilities has allowed checking such things as the relation of Welch's indices to
the subset and pair diagrams. Mainly we can now save on paper what could only be watched
on the screen in the DOS version.

The approach to these questions which we have previously used has already been explained
in detail during the course of the review of Wuensche and Lesser's "Atlas" so there does not
seem to be much reason to go over it again, except as it may be needed in discussing speci�c
details. That viewpoint worked directly from the trinity of graphs, using tensor powers of the
de Bruijn fragments to deduce properties of the automaton.

new books and old articles (7)

Date: Tue, 16 Apr 1996 23:35:55
To: ca@think.com

The background articles which we have reviewed are classics, but that does not mean
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Naturally it is a temptation to study possible relationships between subshifts, especially
automorphisms and endomprphisms, just as Hedlund did for the full shift. The results do not
seem to be quite as conclusive, there being numerous articles devoted to the subject and its
variant. The most comprehensive seems to be

R. F. Williams,

"Classification of subshifts of finite type,"

Annals of Mathematics 98 120-153 (1973),

with Errata ibid 99 380-381 (1974).

which depends upon the previous

R. F. Williams,

"Classification of one-dimensional attractors,"

in: Global Analysis,

Proceedings of Symposia in Pure Mathematics, volume 14

American Mathematical Society, Providence, Rhode Island

pages 341-361 (1970),

which in turn harks back to the still earlier

R. F. Williams,

One-dimensional non-wandering sets

Topology 6 473-487 (1967).

All three articles contain an abundance of category-theory diagrams. Much of that is caused
by relating one-sided shifts to two sided shifts, and more is due to situating the derivations
in the abstract realm of mappings between topological partitions. Basically, the idea is that
equivalences between shifts should correspond to equivalences between their de�ning matrices.
One complication is that the matrices have positive integer elements, possibly just zeroes and
ones, and they are rarely symmetric. Thus the Jordan form may be non-trivial, and the
equivalences ought to be expressed by the same class of matrix. Even avoiding inverses by
making A equivalent to B via the mapping R by demanding AR = RB, there are questions of
algebraic propriety.

The principal determinant of the equivalence between subshifts seems to be their entropy,
which can be de�ned topologically, measure theoretically, or algebraically, as the (logarithm
of the) largest, or Perron eigenvalue of the matrix from which they derive. Unfortunately,
that alone does not su�ce; more of the Jordan canonical form being needed, with restrictions
caused by the admissible matrix elements.

The �nal items on the list of Nasu's publications in Part (4) also contain discussions of
mappings between Shifts of Finite Type, as well as between So�c Systems.

For our immediate purposes, the interesting information to be derived from these articles
is their reliance on an old property which one learns while studying linear algebra or numerical
analysis, but then forgets for lack of an apparent application. The usual de�nition of equiv-
alence between matrices A and B is that some matrix U satis�es the equation B = U�1AU ,
commonly exhibited when B is a diagonal matrix. Something of the sort still works when A
and B are square matrices of di�erent dimensionalities; for rectangular U it is still possible
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for solving systems of symbolic equations. In particular, Conway's factors describe how se-
quences can begin or end, this relates to dieals in the regular algebra, and to the ideas of
de�nitiveness and mergibility. These associations need to be explored with greater care. The
book is

J. H. Conway

Regular Algebra and Finite Machines

Chapman and Hall, Ltd. (1971).

ISBN 412 10620 5

the reference to Backhouse and Carr�e is

R. C. Backhouse and B. A. Carr\'e

'Regular Algebra Applied to Path-finding Problems'

Journal of the Institute for Mathematics and its Applications

15 161-186 (1975).

Finally, we need to comment on the relationship of Shifts of Finite Type to So�c Systems.
Finite Type makes the structure of a subshift depend on the characteristics of one single matrix,
whereas either several matrices (one for each label), or a system of labelling, is necessary to
discuss Flows in a Labelled Graph. With Finite Type two birds are killed with one stone by
insisting that the vertices ARE the labels (or at least wounded, through the byzantine device
of using an extended alphabet). So�c Systems resolve the problem by passing to the dual
graph (in e�ect, putting primes on repeated vertices), but that adds an inconvenient extra
endomprphism to the discussion. Whatever the reason, the literature fails to clarify this point.

new books and old articles (6)

Date: Thu, 11 Apr 1996 22:42:51
To: ca@think.com

It is nearly time to take up with the new books, but it may be worth a �nal look at a
few more background articles. The role of Shifts of Finite Type and So�c Systems in cellular
automata theory is still not entirely clear, mainly because they seem to have arisen from other
interests.

In the process of topologizing symbol sequences, continuous functions distinguish certain
subshifts, namely those which can be the images of the full shift; On the one hand this charac-
terizes cellular automata as having the continuous functions for their rules of evolution, while
on the other, subshifts which exclude a countable list of words show up as the resultant images
under continuous maps.

There is already a relationship between language theory and cellular automata, wherein
languages de�ne the admissible sequences so that their transformation by the evolution of
the cellular automaton can be studied; some recent articles are devoted to this exact issue.
For whatever reasons, students of di�erential equation theory, among others, decided to use
sequences de�ned by paths in a certain kind of graph whose connectivity matrix de�nes the
exclusions. Having found that the resulting class was not closed under homomorphism, they
decided to close it by introducing so�c systems; essentially beginning with the dual of the
matrix from which subshifts of �nite type were taken.
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Further connectivity properties concern whether or not paths exist between pairs of points,
and in which directions. Naturally, when one constructs a derived graph, questions of exten-
sibility and connectivity transfer to the derivative; for example �nding a leaf in some subset
makes that subset a leaf, but there are others - for example when the subset contains some but
not all of the outwardly linked nodes of a woud-be counterimage.

The subset diagram has its own connectivity matrix, whose powers can be used to discover
exactly which words generate the Garden of Eden, and what their lengths are. It is a more
subtle operation to enumerate the ancestors of those paths which actually have ancestors,
which is why the "vector subset diagram" was invented, and why Nasu sometimes ties paths
to an origin.

Absent the Garden of Eden, the evolution rule is a candidate for endomprphism, at which
point Welch's indices come into play, as well as Nasu's observation that [his portion of] the
subset diagram is "well de�ned" (as an image of the de Bruijn diagram). Subset size (car-
dinality, to be more formal) strati�es the subset diagram, the indices state which level (yea,
each index unto its own handedness); there is also an interesting intersection property relating
subsets of the left extensions and those of the right extensions.

There is nothing in the subset diagram which could not have been taken directly from the
de Bruijn diagram, but somehow its use seems to clarify the exposition markedly. The same
could be said of the pair diagram, which is the third member of the trinity.

By de�nition, the pair diagram is constructed from the cartesian product of two copies of
the vertex set of its base diagram, pairs being linked when both members are linked. If the
graph is to be labelled, the label of a pair link is the common label of its coordinates (other
labellings are possible, but that is another matter, and gives di�erent graphs). Much the same
graph arises when unordered pairs are used instead of ordered peirs, but in either event, the
diagonal is (isomorphic to) a copy of the base diagram.

When evolution labels the pair diagram, the existence of paths outside the diagonal implies
distinct ancestors. Transients and connectivity in the pair diagram are a consequence of the
same qualities in the base diagram, but now a pair can lose linkage when the coordinates behave
di�erently. Note also that the pair diagram is vaguely part of the subset diagram, except that
it loses linkages whereas they would move to a di�erent level in the subset diagram. All of
Hedlund's discussions concerning (n-1)-separatedness can be read as descriptions of the pair
diagram.

Usually the pair diagram is consulted after having used the subset diagram to characterize
the Garden of Eden; its emptiness assures the existence of paths in the pair diagram, so the
interesting questions concern whether or not a path includes the diagonal.

Paths which contain loops cannot intersect the diagonal without being wholly contained,
otherwise counting all possibilities would show a violation of the uniform multiplicity theorem.
This is Hedlund's case of total (n-1)-separation. This is also related to mergibility - eventually
sequences forget how they began, but only if those which could extend inde�nitely in either
direction have been excluded [Nasu's theorem 5 (2)].

That leaves transients which have nowhere else to go (or come from) except the diagonal,
which [theorem 5 (1)] recognizes as de�nitivity. Similar distinctions, with variant vocabularies,
are to be found in other articles dealing with symbolic dynamics.

Besides the approach from Symbolic Dynamics, much of what is nevessary to understand
one dimensional cellular automata can be found in John Conway's book, "Regular Algebra,"
particularly if it is supplemented by a paper of Backhouse and Carr'e dealing with procedures
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The last two portions of this series described the contents of Hedlund's often cited article,
which is sometimes taken as a theoretical basis for cellular automata theory, and Nasu's �rst
article whose graph theoretical orientation contrasts with the topological approach of Hedlund.
There remains to be discussed Williams articles on the classi�cation of Shifts of Finite Type.
Before then, it might be well to describe the graph theoretical basis of the subject.

It has been convenient to call the basic structure a de Bruijn diagram, even though a similar
structure was introduced contemporaneously for similar purposes by I. J. Good, both dating
from 1946. The ideas apparently had an earlier history, and one cannot help wondering whether
the concepts had cryptographic overtones. Shannon's noiseless channel had a similar diagram.
Our awareness of the diagrams was a resut of their inclusion in Golomb's book on shift register
theory, where they serve to describe the progression of overlapping segments while stepping
through a long symbol sequence.

In the realm of one dimensional cellular automata, considerable information can be read
directly from properly labelled de Bruijn diagrams, especially when the nodes are sequences
just one short of a full neighborhood of cells so that the links join those which overlap, thereby
representing complete neighborhoods. Not only neighborhoods, but any of their whole panoply
of boolean functions, can be used to label the links, themselves directed arcs because the
direction of overlap matters. Labelling the links by the cell into which the neighborhood
evolves is especially useful for the reversed attribute of singling out ancestors, which is the
implicit relationship to be deduced from Hedlund's article and explicitly spelled out in Nasu's.

By now this relationship is reasonably well known, not the least for having been mentioned
regularly in CA-Mail discussions. Two extensions of the diagram are important for developing
the theory, namely the subset diagram and the pair diagram. The former is a standard con-
struction in automata theory, used for giving a systematic answer to the question of whether
the original diagram does or does not contain a given labelled path. The unit classes for the
subsets are the individual nodes of the de Bruijn diagram, subset linkage being de�ned by
linking the subset to the union of the linkages in the base diagram and assigning them the
same labels.

The subset diagram serves at least two purposes. First, linkage in the base diagram is not a
function because nodes may have multiple out-links, so the subset diagram is a covering space
in which linkage is functional, and it might be surmised that it is the least extension having
this property. In passing, let it be noted that there are really two subset diagrams, according
to whether in-links or out-links are functionalized. Both Hedlund and Nasu enjoy formalizing
this symmetry by stating "vector" theorems, but that is a question of style.

Second, the diagram systematizes the search for a path; since it is functional it is only
necessary to check paths leading from the full set to the empty set (having exploited the polite
mathematical �ction that no-link is a yes-link to the empty set). Its use also avoids having to
use the mathematical circumlocution "non-deterministic automaton," but of course there are
also drawbacks. One of them is the huge size of the subset diagram, since it grows exponentially
with the size of the base diagram. As Voorhees points out and Nasu obtains by not formally
mentioning the subset diagram, only a small part of it may be needed in practice.

For any graph, it is customary to discuss a series of connectivity attributes. Nodes laking
in-links are leaves (those lacking outlets are rootlets?), which can be extended recursively to
those successor nodes having incoming paths of bounded length. That leaves a residue of nodes
whose paths can be arbitrarily prolonged in one direction, the other, both, or neither. For a
�nite graph, unlimited continuation implies loops.
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as a "bundle graph." There are actually two graphs, depending on whether union is
taken with respect to in links or out links. The important results are that paths for
surjective automata are unique between endpoints in the de Bruijn diagram and generally
Hedlund's equivalences hold, even in a more general graph theoretical case depending only
on uniformity of indegrees and outdegrees.

Welch's indices and maximal compatible extensions are related to the subset diagrams;
when the automaton map is an endomorphism, the important results are that all contin-
uations from maximal nodes are maximal, there is a maximal node above each and every
unit class, and their level in the subset diagram is given by the L or R indices. TYhe
important Theorem 1 asserts that the diagram in the subset graph is well de�ned (an
image of the de Bruijn diagram) just exactly when dealing with an endomprphism.

4. CsubF-surjective local maps
Finally, the consequences of quiescence at in�nity are examined, and summarized in
theorem 2. Some trees are required.

5. Mergible local maps

6. De�nite local maps
Even after the subset diagram has been mastered, there seems to be a problem in dealing
with the pair diagram. Thus treatments of the shift tend to go into details of which
sequences are called closing, resolving, merging, separating, de�nitie, and so on. Once the
pair diagram has been constructed from the de Bruijn diagram, it is necessary to examine
its transients, connected components, and the relation of all them to the diagonal; the
Welch indices have something to do with the length of transients, just as they relate to
levels in the subset diagram. The pair diagram is not used here.

Bibliography of 20 items

new books and old articles (5)

Date: Tue, 9 Apr 1996 23:24:52
To: ca@think.com

Cellular automata theory has a history beginning with von Neumann's universal constructor
and Moore's Gardem of Eden theorem, continuing with attempts at classi�cation, organiza-
tion, and simpli�cation, and eventually attracting widespread public notoriety with Martin
Gardner's publication of Conway's "Game of Life" in Scienti�c American.

Some years later, Wolfram's simulation experiments with a minicomputer and the construc-
tion of the CAM series originated by To�oli revived the subject by allowing people to visualize
the workings of cellular automata on a large scale, and compare the results with models which
had grown up in other �elds, such as the Zhabotinsky reactions or lattice gasses.

Somewhere along the line, especially for one dimensional automata, realization grew that
the subject matter was really the study of sequences in labelled, directed graphs, and that there
already existed a venerable tradition amongst those mathematicians concerned with the shift
dynamical system. Somehow, the dynamicists seem not to have known about graphs, graph
theorists about automata, nor automatists about dynamics. Indeed, the not-knowing-graph
strongly resembles K3.

11



Masakazu Nasu

"Local Maps Inducing Surjective Global Maps of

One-Dimensional Tessellation Automata"

Mathematical Systems Theory, 11 327-351 (1978).

Masakazu Nasu

"Indecomposable Local Maps of Tesselation Automata"

Mathematical Systems Theory, 13 81-93 (1979).

Masakazu Nasu

"An interconnection of local maps inducing onto global maps"

Discrete Applied Mathematics 2 125-150 (1980).

Masakazu Nasu

"Uniformly finite-to-one and onto extensions of homomorphisms

between strongly connected graphs"

Discrete Mathematics 39 171-197 (1982).

Masakazu Nasu

"Constant-to-one and onto global maps of homomorphisms

between strongly connected graphs"

Ergodic Theory and Dynamical Systems 3 387-413 (1983).

Masakazu Nasu

"An invariant for bounded-to-one factor maps between

transitive sofic subshifts"

Ergodic Theory and Dynamical Systems 5 89-105 (1985).

Masakazu Nasu

"Topological conjugacy for sofic systems"

Ergodic Theory and Dynamical Systems 6 265-280 (1986).

The �rst of this series is a good place to begin, because that is where the useful de�nitions
and concepts can be found. The article runs 25 pages, which includes six sections and six
theorems.

1. Introduction
the author cites nine references which are traditional cellular automaton theory from
the sixties or early seventies, plus Hedlund's article. Promising a graphical and �nite-
automata-theoretical approach, he then summarizes the remainder of the article.

2. Preliminaries
a list of de�nitions and the citation of three theorems from the literature, including a
comprehensive one on uniform multiplicity including its rami�cations on con�gurations
quiescent at in�nity. The section ends with some graph-theoretic de�nitions.

3. Bundle-Graphs and lambda-Bundle-Graphs
after calling the de Bruijn diagram a "string graph," the subset diagram is introduced
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Bibliography of 28 items

In summary, we have a very long and detailled article, with results of basic importance
for cellular automata theory as well as the Shift Dynamical Systems to which it is addressed.
Topology is thoroughly interwoven with the presentation, which nevertheless ought to be sepa-
rable, leaving results derived strictly from automata concepts. The next article to be reviewd,
by Nasu, accomplishes this to a great extent.

The article has its small quota of misprints but mercifully, they do not mislead, as such
blemishes often do.

new books and old articles (4)

Date: Sun, 7 Apr 1996 18:28
To: ca@think.com

Hedlund's paper on endomprphisms and automorphisms of the Shift dynamical system
establishes a role for cellular automata although no mention is made of the fact; the connection
seems to have been established only after the study of cellular automata gained independent
popularity. In fact, merely continuous mappings received considerably less attention than
endomorphisms, characterized by the uniform multiplicity theorem andWelch's index theorem,
and the automorphism which were an interesting, albeit complicated, special case.

In spite of the meticulous care evident in the paper's presentation, the result seems cum-
bersome, and lacks motivation. Why, for example, are (n-1)-blocks and (n-1)-separation so
important? From another point of view we know that these are the shift registers to which
de Bruijn diagrams apply. Can the author have developed such a complicated theory without
knowing that?

Another interesting observation is that it is assumed that neighborhoods have odd length,
although that does not a�ect any results; nevertheless it would have changed a notation which
is otherwise spelled out in such exquisite detail.

Other authors have wanted examples of subshifts, settling, for whatever reasons, on the
so-called Subshifts of Finite Type. Someone may have had an actual application in mind;
there was already an analogy with Markov chains in probability theory.

Alternatively, it may have been due to the temptation arising when the abstract de�nition
of the topology of the Shift was consulted and countable exclusions were encountered, to
settle for �nite exclusion instead. Choosing a matrix to show exclusions focussed attention
on that particular matrix, notwithstanding its constituting a less than ideal representative; a
de�ciency eventually repaired by the invention of So�c systems. The whole prolonged episode
should confer humility on those who think that Hedlund's article was actually a precursor of
cellular automata theory. It may well have been, but if so, the route must have been devious.

The model of Subshifts as Flows in a Labelled Graph had an early proponent in

Roland Fischer

Sofic Systems and Graphs

Monatshefte fuer Mathematik 80 179-186 (1975)

but ideas along that line seem to have been most thoroughly elaborated by Masakazu Nasu
in a series of more than half a dozen papers dating from the late seventies and early eighties.
Some of them are:
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9. A Fundamental Property of Inverses

this section is developed without the use of de Bruijn diagrams and their pair diagrams,
so it establishes by topology and the examination of counterimages the requirement that
paths outside the diagonal of the pair diagram should remain there.

(4 pages)

10. Inverse [sic] of Recurrent Points are (n-1)-Separated

the preceding section takes account of recurrency. (3 pages)

11. Almost all Points Have the Same Number of Inverses

before stage (1) reaches stage (2), and before limits have been taken, uniform multiplicity
prevails. (2 1/2 pages)

12. Invariance of Properties under phi inverse When phi in E(S)

taking the limit loses (or coalesces) some counterimages, but this varies according to
periodicity or recurrence properties (4 pages)

13. Compositions

de�nition and properties of composites (1 page)

14. Maximal Compatible Extensions

The mechanism by which multiplicity may be lost, examined in detail but with the bene�t
of neither the de bruijn nor the subset diagram. Welch's indices.

(4 1/2 pages)

15. L(fg) = L(f)L(g) and R(fg) = R(f)R(g)

the indices are multiplicative by composition (1 page)

16. Cross-Sections of the Mappings f[in�nity]

how to avoid losing multiplicity, in very topological terms. (6 pages)

17. Converse of Theorem 6.7

keeping the full multiplicity (1 page)

18. Roots of Powers of the Shift

an application of the index theorem (1 page)

19. Polynomial Mappings

de�ning mappings by polynomials in Z/(prime) (1 page)

20. Another Property of the Groups A(S) and A(S)/Sigma(S)

the author emphasizes the complexity of the automorphism group of the shift (two ele-
ments whose product is of in�nite order, as well as containing all permutation groups).

(1 1/2 pages)
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reversible. Perhaps these results have not been applied to automata theory as much as they
should be.

Naturally the article consists of much more than the three theorems mentioned. Some idea
of its organization and orientation can be seen from the sequence of section headings:

Introduction

de�nitions, antecedents, overview (2 pages)

1. Bisequence Space and the Shift Dynamical System

basic de�nitions (1/2 page)

2. Subdynamical Systems of (X(S),sigma) and their Characterization

more de�nitions and their topological implications (1 page)

3. A Class of Mappings which Commute with the Shift

The section in which a construction that can be seen as equivalent to de�ning a cellular
automaton is introduced; in three stages it produces the shift-commiting continuous
functions.

1) the local map

2) right-extended to one-sided sequences

3) left translated to encompass two-sided sequences.

Giving each of these three stages their due creates gives a not insigni�cant complexity to
treatments of the Shift. (2 pages)

4. Properties of F[in�nity](S,1)

Several details concerning permutations, the uncountable multiplicity of counterimages,
and restrictions for automata of neighborhood-length 1. (1 page)

5. Multiplicities of the Mappings f[m] and f[in�nity]

various results on the cardinalities of counterimages including the �niteness-and-uniform-
multiplicity theorem for surjective mappings (endomorphisms).

(6 pages)

6. Existence Theorems for the Classes A(S), E(S), and Phi(S)

existence and strict inclusion running from automorphism through endomprohism to
simple continuity is established by examples. (6 pages)

7. Classi�cation of Points of (X(S),sigma)

a classi�cation, charasteristic of symbolic dynamics, of periodicities and near periodicities
(4 pages)

8. Invariance of Properties of (X(S),sigma) under phi in Phi(S) and under phi inverse.

the behavior of this menangerie with respect to image and counterimage (3 pages)
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this in mind enables an appreciation of fractal graphs and plaid diagrams, and leads to a
clearer style of exposition by clearing away whatever uncertainty there might have been that
the con�gurations of automata are somehow real numbers in disguise.

new books and old articles (3)

Date: Fri, 5 Apr 1996 22:23:27
To: ca@think.com

The paper

G.A. Hedlund,

"Endomorphisms and Automorphisms of the Shift Dynamical System,"

Mathematical Systems Theory 4 320-375 (1969).

is frequently cited in the celular automaton literature in spite of the fact that it is a topo-
logical article culminating a long series of investigations arising out of celestial mechanics and
di�erential equation theory. The reason for this is that the central object of discussion - con-
tinuous maps of symbolic sequences - turns out to coincide exactly with cellular automata;
moreover the discussion of endomprphisms and automorphisms resolves many of the questions
which could be asked about reversible automata. Similarly not emphasized in the paper, there
is a signi�cant overlap with mathematical communication theory. Indeed the whole article
re
ects an austerity and style of mathematical exposition characteristic of the author.

Over �fty pages in length, the paper is divided into twenty sections, each one of which
could be the subject of a day or two of study in a seminar. At that, a background in topology
and real analysis is required; given the origins of the subject it is not surprising that there is a
heavy emphasis on the topology of the real numbers, sometimes obscuring di�erences between
that topology and the topology of sequences.

For cellular automata theory, this style of argument has two consequences. The �rst is
that a cleaner separation between topology and the combinatorial arguments, as the author
describes them, might have made the presentation more understandable. The second is an
overwhelming emphasis on periodicity and varying degrees of near periodicity which are of
minor concern for automata therory. This would be a greater annoyance were it not for the
fact that later on, if iteration of the automaton's evolution operator replaces or supplements
the shift operator, such aspects assume a much greater importance.

For all the article's detail, three of its theorems contain the essence of its applicability to
cellular automata theory:

After working up from local maps to the one-sided shift to the two-sided shift, Theorem
3.4 (Curtis, Hedlund, Lyndon) asserts that continuous, shift-commuting maps of the full shift
are none other than the evolutionary rules of cellular automata.

The fundamental result is Theorem 5.4, which equates surjectivity with uniform (and �nite)
multiplicity. The theorem requires careful understanding, to know how the accounting can
change while passing from the local map to the global map.

Following some ideas attributed to L. R. Welch, Theorem 14.9 reveals which sheep have
strayed from the fold and where they have gone. The indices L, M, and R carry this information,
moreover are multiplicative under composition, and have a bearing on which automata are
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when cuts will su�ce, but is necessary if confusion in symbolic dynamics is to be avoided.
In mentioning topologies, or at least distances, it should be mentioned that there is still

another which has importance for cellular automata, and that the Hamming distance, which
simply counts the number of discrepant terms in two patterns which might otherwise match.
Mostly it is used to compare neighborhoods and rule de�nitions, which are �nite in extent,
whereas including a divisor which might tend to zero is reserved for such things as con�gura-
tions, which in principle are in�nite.

Turning to the book at hand, Voorhees begins with some sample automata from Wolfram's
(2,1) domain (to which the book is primarily devoted), with graphs of their rule of evolution,
having previously decided to code con�gurations as binary numbers. The graphs appear to
be perfectly jagged, notwithstanding Hedlund's theorem that these are the continuous shift-
commuting functions for symbolic dynamics.

But wait! the discrepancy between the topologies means that the graph has to be much
wilder looking to the left than it does looking to the right, and in fact there ought to be a
semi-continuity proceeding to the right.

There is a detail which is much harder to see in the graphs of Figures 1.2, which is occa-
sioned by the existence of Garden of Eden con�gurations, which means that not only are there
certain numbers which cannot be values of a given rule of evolution, but they exclude intervals
corresponding to numbers where they are an initial segment.

In other places a related diagram can be found, even though it would not be a graph. The
plaid diagram, in which Arnol'd's cat map, or Smale's horseshoes can be found, represents the
right half of a doubly in�nite sequence along the x-axis and the left half, in reverse order, along
the y-axis so that the points of the unit square represent con�gurations. The Shift maps this
square in a way which looks anything but continuous until the proper topology is consulted,
and clusters of points representing a collection of initial con�gurations can be followed as the
cellular automaton evolves. The plaid arises from observing excluded bands. Unfortunately it
would require four dimensions to render the full graph the way Voorhees shows it for semiin�nite
con�gurations.

Naturally one of the reasons for presenting such graphs is to expose their delicate fractal
intricacies, something which the �gures of the book reveal quite nicely. Graphs have to be
carefully drawn and reproduced for all the details to endure close scrutiny; even so, the Garden
of Eden, or a lack thereof, does not show up too clearly unless the graph can sustain a rather
high degree of magni�cation.

There is always a question of what to put in a book, and what to leave out. That is why it
is nice to have a handy computer program available, to go on beyond the contents of the book.
The graphs shown fall in the Wolfram Class III, and IV is missing from (2,1), but ought this
to leave Classes I and II without representation? If memory serves, ther have been attempts
to Fourier transform, and even Walsh transform, graphs of this nature. But memory does not
divulge the results, so maybe someone else knows.

Still, this is just refers to the beginning of the book, still leaveing the main business of this
review, namely to compare Hedlund's approach with Wolfram's (to pick two representative
names out of a hat) while, at the same time, giving an overview of both the books and the
approaches.

To summarize today's discussion | the topology of cellular automata resembles the topol-
ogy of the real numbers, but it is �ner [close(automata] implies close(real) but not conversely]
because it distinguishes sequences that would be considered equal, as real numbers. Bearing
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new books and old articles (2)

Date: Thu, 4 Apr 1996 09:43
To: ca@think.com

The books in question are Voorhees Computational Analysis ... and Nasu's Textiles ... ;
the articles are Hedlund's Endomorphisms and Automorphisms ... and Nasu's Local Maps ...
. To this list ought to be added R. F. Williams' "Classi�cation of subshifts of �nite type ,"
Annals of Mathematics 98 120-153 (1973) with Errata ibid 99 380-381 (1974).

Having remarked that cellular automata theory embodies two rather separate traditions,
perhaps some explanation ought to be given for combining them; but that is easy enough to
do | the theory of the shift dynamical system long ago gave some pretty de�nite answers to
questions which still seem to be somewhat open in automata theory, while in the meantime
automata theory has yielded a wealth of empirical information which never seems to have
been suspected, let alone contemplated, by the dynamicists. Reviewing books on the subject
probably ought to take this into account.

In referring to Hedlund, a considerable amount of topology is encountered. But it is a
strange kind of topology, which brings up some interesting doubts about the history of topol-
ogy; apparently the "Bourbaki" approach dates back to Poincare. That approach is to be dis-
tinguished from the delta-and-epsilon methodology which one has learnt from Hardy's "Pure
Mathematics," for example.

One of the criticisms of Bourbaki that we used to hear was that it consisted of incredible
generalities of which the only known example was the real number system. Well, that just
isn't true, and the Shift Dynamical System provides at least one other. The literature provides
numerous examples of confusion between the two, both in di�erential equation theory and in
cellular automata theory. That is entirely aside from the fact that the topologists have thought
up all kinds of strange limits, periodicity conditions, and pathologies.

To make the point in concrete terms: the real line, even con�ned to the interval 0-1,
depends on real number topology, derived from a metric de�ned by di�erences. The topology
of sequences depends on the degree to which the sequences agree | from the beginning for one
sided sequences, or in the middle for two-sided sequences. One way to get this is to take the
reciprocal of the length of the largest common stretch of agreement as the distance for a metric
topology. Sometimes the symbols are taken as integers modulo k, the sequences are treated
as k-nary (not decimal) fractions, and the distance is the size of the last signi�cant �gure at
which agreement occurs. That makes it easy to develop a nice graph.

The formal approach is to give the symbol set the discrete topology and then give sequences
the cartesian product topology taken from the symbol sets. This is NOT the real number
topology, even though school children are led to think that real numbers are just in�nitely long
decimals. Salvaging that view is sort of like explaining the easter bunny; in both cases reality
is found to be somewhat more complicated than expected.

For real analysis and advanced calculus, mathematicians turn to Dedekind cuts and de�ne
real numbers as equivalence classes of �nite decimals (rationals), but to practice symbolic
dynamics, it is better to keep the sequences and understand that the mapping from sequences
(arithmetic without carry) to real numbers (arithmetic with carry) is not as continuous as one
would like, and to make the most of it. Thus, two long decimals which are close as sequences are
close as real numbers, but some real numbers are close even though their decimal expansions
(in the dyadic topology) are not. Exploring this correspondence is usually not undertaken
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Totally distinct from this were some of the ideas which Henri Poincare put forward to
make some sense of the n-body problem, celestial mechanics, and the solution of di�erential
equations in general. One of their consequences was the growth of the subject called Symbolic
Dynamics, one of whose major proponents in the early part of the century was G.D. Birkho�
and some of his associates. Later on, G.A Hedlund devoted many, perhaps most, of his years
to formalizing the topic, including the Americal Mathematical Society publication with that
title.

As time went on, his approach became even more abstract, culminating in the document
which is frequently cited in the cellular automaton literature, "Endomorphisms and Automor-
phisms of the Shift Dynamical System" published in Mathematical Systems Theory 4 320-375
(1969). Ten years in preparation according to the text, it is not an easy paper for non-specialists
to read, placing it somethat on a par with von Neumann's "Foundations of QuantumMechanics
" in that regard.

Hedlund's manner of approach has much in common with communication theory in the
tradition of Shannon, so its e�ects are rather noticeable in areas which have to do with cryp-
tography and signalling, as well as the more traditional area of its origins, namely di�erential
equation theory. Stephen Smale has been pretty much at the center of the latter, whereas
the former apparently had its in
uence in such places as the Signal Corps laboratories at Fort
Monmouth, some of whose employees seem to have eventually returned to Japan.

It might be an interesting project to try to untangle all the in
uences and cross in
u-
ences, but for present purposes su�ce it to say that cellular automata and symbolic dynamics
were evolved by workers who were substantially unaware of each other. The discom�ture of
Lewis Carrol's intrepid band of snark hunters seems to have been matched in recent times by
whomever has tried to come to grips with Curtis, Hedlund, and Lyndon's Theorem 3.4.

Whereas Hedlund seems to have been content to topologize sequence space in order to
describe its continuous functions and their rami�cations, others seem to have wanted concrete
examples, leading to the concept of Shifts of Finite type, a line pursued by William Parry
from the University of Warwick, and its elaboration into So�c Systems, by Benjamin Weiss
and others. Most of this work is an inextricable mixture of topology, measure theory, and just
plain combinatorics. Yet those who work with cellular automata theory see it as little more
than the theory of "all paths through a maze" based on hardly more than the theory of regular
expressions, if you will.

Here, a central reference is Masakazu Nasu's "Local Maps Inducing Surjective Global Maps
of One-Dimensional Tessellation Automata" which also appeared in Mathematical Systems
Theory, 11 327-351 (1978). While referring constantly to Hedlund, the exposition is neverthe-
less based on graphs; concretely, the de Bruijn diagram, the subset diagram, and the "vector
subset diagram" which seems to bear on the subset diagram in much the same way that so�c
systems relate to shifts of �nite type.

Although our intention here is to review these two new books, the foregoing commentary
should emphasize our conviction that creating a su�ciently detailled analysis practically re-
quires going back and reconstructing automata theory from the ground up, bearing in mind
that whatever merit is to be found in the topological and measure theoretic versions, the situ-
ation is analogous to the plight of a little girl in a family I once knew where English, German
and Italian were spoken with equal 
uency: "Dear, Please DON'T mix your languages!"

For next time, the topic will be a survey of Hedlund's article, the one referenced above.
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new books and old articles (1)

Date: Mon, 1 Apr 1996 22:13:09
To: ca@think.com

From time to time the question comes up, what is a good book to read on cellular au-
tomata? There aren't too many of them - Wolfram's World Scienti�c book (now reprinted),
the proceedings of the 1989 CA conference, the manual for the CAM's, and maybe one or two
others. Various suggestions are listed in the CA-Mail FAQ's.

Six weeks or so ago Burton Voorhees <burt@cs.athabascau.ca> announced:

> Subject: New CA Book From World Scientific

>

> Computational Analysis of One-Dimensional Cellular Automata

> By Burton H. Voorhees

> Recently published by World Scientific. ...

> [that's ISBN 981-02-2221-1]

> [... extract from the preface followed by the table of contents ...]

Those whose memory reaches a bit further back will recall that the book

Textile Systems for Endomprphisms and Automorphisms of the Shift

By Masakazu Nasu

Memoirs of the Americal Nathematical Society # 546

ISBN 0-8218-2606-9

was also suggested, on the level of "to be published" by an earlier correspondent. Both of
these items are now available, and we are in the process of reading them, �nally having bought
copies. Of course, the two books are rather di�erent, the latter being much more specialized.

Voorhees has summarized a considerable part of his own work during past years, placing
emphasis on linear rules of evolution and the classi�cation of one dimensional automata. But
so also has Nasu, who has carried one- dimensional automata into two-dimensions, considering
both the spatial shift operator and the temporal evolution by an automaton rule. Previous
treatments of the Shift dynamical system have tended to concentrate on the shift operator
alone.

Nevertheless, the reading of a book on cellular automata is not an activity to be undertaken
lightly, the reason for this being that the subject is far more complicated than appears at �rst
sight. These two books exemplify the con
uence of two widely separated traditions; those
currents have not at all developed in isolation from one another, but it would appear that the
practitioners of the two specialties tend to have rather di�erent skills and interests.

Cellular Automata seem to be an outgrowth of the theory of ordinary automata with
roots in the work of von Neumann and his universal constructor, but drawing on the ideas of
McCulloch and Pitts, the lore of language theory and especially regular expressions, and the
emerging role of iteratitive arrays as electronic circuits became smaller and cheaper. If the
invention of the Garden of Eden was not intended to refute universal construction, that was
nevertheless the philosophical interpretation that arose for a time. Just a few words hardly do
justice to a whole line of investigation, but it does not hurt to think of formal language theory,
automated pattern recognition, the theory of relays, electrical circuits, and neurophysiology as
topics which grew into a theory of automata.
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New books and old articles

Harold V. McIntosh
Departamento de Aplicaci�on de Microcomputadoras

Instituto de Ciencias, Universidad Aut�onoma de Puebla
Apartado Postal 461, (72000) Puebla, Puebla, Mxico

January 29, 1998

Abstract

The collection of commentaries on the book:Computational Analysis of One-Dimensional
Cellular Automata, By Burton H. Voorhees, published by World Scienti�c. 1996 (ISBN
981-02-2221-1) and old articles:Endomorphisms and Automorphisms of the Shift Dynami-
cal System" published in Mathematical Systems Theory 4 320-375 (1969) and Textile Sys-
tems for Endomprphisms and Automorphisms of the Shift, by Masakazu Nasu, Memoirs
of the Americal Nathematical Society No. 546, ISBN 0-8218-2606-9 which were posted on
CA-MAIL during April and June, 1996, is reproduced with the correction of misspellings
and adaptation to TeX format. Citations to some of the references mentioned have been
included.
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