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Comprehensive Comparison of Schedulability Tests for Uniprocessor
Rate-Monotonic Scheduling

Abstract—Schedulability conditions are used in real-time sys-
tems to verify the fulfillment of the temporal constraints of
task sets. In this paper, a performance analysis is conducted
for the best-known real-time schedulability conditions that can
be used in online admission control on uni-processor systems
executing under the Rate-Monotonic scheduling policy. Since
Liu and Layland introduced the Rate-Monotonic scheduling
algorithm, many research studies have been conducted on the
schedulability analysis of real-time periodic task sets. However, in
most of the cases, the performance of the proposed schedulability
conditions were compared only against the Liu and Layland test
and not against the remaining schedulability tests. The goal of
this paper is to provide guidelines for system designers in order
to decide which schedulability condition provides better perfor-
mance under different task characteristics. Extensive simulation
experiments were conducted to evaluate the inexact schedulability
conditions and compare their performance and computational
complexity.

Index Terms—Real-Time Systems, Real-Time Task Scheduling,
Rate-Monotonic, Schedulability Test, Uniprocessors

I. INTRODUCTION

In a real-time system, the scheduling algorithm decides an
order of execution of the tasks and the amount of time allowed
to each task in the system so that no task (for hard real-
time systems), or a minimum number of tasks (for soft real-
time systems), misses their deadlines. To verify if a scheduling
policy guarantees the fulfillment of the temporal constraints of
a task set, real-time systems designers use different exact or
inexact schedulability conditions (also known as schedulability
tests). The schedulability condition indicates if a given task
set can be scheduled with a given scheduling algorithm such
that no tasks in the set miss their deadlines. When a new
task is created in a dynamic real-time system, an online
admission control mechanism that uses a schedulability test,
guarantees predictability if the new task is admitted. Examples
of these kind of systems are those with Quality-of-Service
(QoS) requirements, such as multimedia systems [23] [33],
communication services [3][9], and automated flight control
[1]. Other examples are found on the scheduling of real-time
traffic over networks [30][10], or in open systems environ-
ments [19][20].

Exact schedulability tests usually have high time complex-
ities and may not be adequate for online admission control if
the system has a large amount of tasks or a dynamic workload.
In contrast, most of the inexact schedulability tests provide low
complexity sufficient schedulability tests, which are suitable

for use in online admission control mechanisms to decide the
acceptance of the newly arriving tasks in the system. If a
task set does not satisfy a sufficient schedulability test, it is
not known if the task set can be feasibly scheduled using a
given scheduling policy. For this reason, it is important to
determine which inexact schedulability test provides a better
performance, given the specific task set parameters.

The Rate-Monotonic (RM) scheduling algorithm assigns
priorities proportionally to the task activation rates. Many
other scheduling algorithms have been proposed, such as the
Earliest Deadline First (EDF) [26] that allows a better use of
the computational resources. However, since RM introduces
low-computational overhead, is simple to implement and is
predictable, it is widely used on most real-time operating
systems and is supported by most real-time systems standards.

Liu and Layland first introduced the Rate-Monotonic algo-
rithm along with a sufficient schedulability test [26]. They in-
troduced the concept of achievable utilization factor to derive a
low complexity test that is used to determine the schedulability
of independent, periodic and preemptable task sets executed
on one processor. The schedulability test introduced by Liu
and Layland for RM states that a task set will not miss any
deadline if the utilization factor of the task set, defined as
U =

∑n
i=1

Ci
Ti

, is not greater than n(2
1
n − 1), where Ci and Ti

are the computation requirement and period of the task τi,
respectively, and n is the number of tasks. Unfortunately, this
condition fails to identify many schedulable task sets when
the system is heavily loaded.

After Liu and Layland’s seminal work, many researchers,
motivated by the low overhead and simplicity of RM, devel-
oped new tests that improved the test proposed by them. The
improvement on these new tests was due to the introduction
of additional timing parameters in the schedulability analysis,
and in some cases, also to the transformation of the task sets.

When comparing the inexact schedulability conditions, the
problem of evaluating their performance with respect to either
the pessimistic Liu and Layland test or the exact schedulability
test, becomes an important issue. The effectiveness of the
schedulability test is measured in terms of the acceptance
ratio. The higher the acceptance ratio, the better the test, which
means that more tasks sets are schedulable. When the ratio is
equal to one, it means that the schedulability condition finds
as many schedulable task sets as those found by the exact
condition.

Comparing the inexact schedulability conditions, using a
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rigorous analytical approach, is not easy because each schedu-
lability condition considers different task set parameters. Fur-
thermore, some of them are based on algorithms, that is,
transforming the original task set into an equivalent one.
Consequently, the acceptance ratio of a given test is affected by
the characteristics of the task set parameters. For these reasons,
our aim is to evaluate the performance of the schedulability
conditions through extensive simulations.

In this paper, we survey the inexact schedulability con-
ditions that can be used in online admission control when
the system is comprised of periodic and preemptable real-
time tasks, using the Rate-Monotonic scheduling algorithm.
We analyze the best-known inexact schedulability conditions
for one processor that exists in the literature, and conduct
extensive simulation experiments to evaluate and compare
their performance in terms of the acceptance ratio and the
computational complexity. Based on the results provided by
the experimental evaluations, we provide guidelines to help
system designers to decide, given a particular task set param-
eters and load conditions, which schedulability tests provide
better or worst performance, and how they compare with each
other under these different characteristics.

To our knowledge, no previous comparative analysis of the
RM schedulability conditions has been conducted for real-
time scheduling on one processor. Most of the published
schedulability conditions compared their performance only
against the schedulability condition introduced by Liu and
Layland, and just a few of them compared their performance
against any other.

The rest of this document is organized as follows: In
Sections 2 and 3, an overview of the real-time scheduling
theory and schedulability analysis of real-time systems is
introduced. In Section 4, the schedulability conditions for RM
on one processor are introduced, and in Section 5, exten-
sive simulation experiments conducted to test and compare
the performance of the inexact schedulability conditions are
described. Finally, the conclusions appear in Section 6.

II. REAL-TIME SYSTEMS SCHEDULING

A real-time system is composed of several concurrent activ-
ities that are normally implemented as tasks. To schedule these
tasks, real-time operating systems use scheduling algorithms
to decide the order of execution of the tasks and the amount
of time assigned to each task.

Scheduling algorithms of general-purpose operating systems
are non-deterministic because the correctness of the system
does not depend on the order in which every task is executed.
In these operating systems, the scheduler is intended to provide
optimal performance, optimal usage of resources, and fairness
in resource assignment. In contrast, in real-time operating
systems, the scheduler must restrict the non-determinism asso-
ciated with the concurrent system, and must provide the means
to predict the worst-case temporal behavior of the task set.

A real-time scheduling algorithm provides an ordering
policy for the execution of the tasks (as in the non-real-time
scheduling algorithm). A given real-time scheduling algorithm
may produce feasible or infeasible schedules. In a feasible

schedule, every job for a given task set always completes
by its deadline. In contrast, in an infeasible schedule, some
jobs may miss a few of their deadlines. A set of jobs is
schedulable according to a given scheduling algorithm if, when
using the algorithm, the scheduler always produces a feasible
schedule. The criterion used to measure the performance of the
scheduling algorithms for real-time applications is their ability
to find feasible schedules of the given application whenever
such schedules exist. A hard real-time scheduling algorithm is
optimal if, for any feasible task set, it always produces feasible
schedules [27].

The scheduling algorithms can be classified as static and
dynamic. In a static scheduling algorithm, all scheduling
decisions are provided a priori. For a given set of timing
constraints, a table is constructed indicating the starting and
completion times of each task, such that, no task misses its
deadline. This approach is highly predictable, but when the
parameters of the tasks change, the table must be recomputed
and the system restarted.

In dynamic scheduling algorithms, the scheduling decisions
are taken at run-time based on the priorities of the tasks.
These priority values are used to decide the execution order
of the tasks. Priority values can be assigned statically or
dynamically, depending on the dynamic scheduling algorithm.
If static priorities are used, the priority of each task remains
fixed during the complete execution of the system, whereas if
dynamic priorities are used, the priority of a task is allowed
to change at any moment.

As mentioned before, Liu and Layland [26] introduced the
first real-time scheduling algorithms for a single processor
(Rate-Monotonic and Earliest Deadline First), and developed
their corresponding schedulability analysis. RM assigns the
highest priority to the task with the smallest period, and EDF
assigns priorities to the tasks considering the proximity of each
instance of a task with its deadline, so that the task with the
closest relative deadline receives the highest priority. Liu and
Layland demonstrated that RM and EDF are optimal for fixed
and dynamic priority algorithms, respectively.

A. System Model

In this paper, we consider a real-time system composed of
a set of n real-time tasks τ = {τ1, τ2, ..., τn} on one processor
under Rate-Monotonic. A task is usually a thread or a process
within an operating system. The parameters that define a task
τi are: the execution time Ci, the period Ti, and the deadline
Di. We will consider that only periodic tasks can be executed
in the system, and we will consider that Ti = Di. Each periodic
task τi is composed of an infinite sequence of jobs. The period
Ti of the periodic task τi is a fixed time interval between the
release times of consecutive jobs in τi. Its execution time Ci is
the maximum execution time of all the jobs in τi. The period
and execution time of the task τi satisfies that Ti > 0 and
0 < Ci ≤ Ti = Di, (i = 1,..., n). The utilization factor of the
task τi is defined as ui = Ci

Ti
. The utilization factor of the task

set, denoted as U, is the sum of the utilization of the tasks
in the set, that is, U =

∑n
i=1

Ci
Ti

. We will consider that a job
in τi that is released at time t, must complete within Di, that
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is, it must complete within the time interval (t, t+Di]; where
Di is the relative deadline of the task τi. The release time of
the first job in each task τi is called the phase of τi, and is
denoted as θi.

We use H to denote the least common multiple of Ti, for i =
1, 2,..., n. A time interval of length H is called the hyperperiod
of the task set.

In the model used in this paper, the following restrictions
also apply:

A1 The tasks are independent. That is, the arrival of a
job of task τi is not affected by the arrival of any
job of the other task τj 6=i.

A2 It is assumed that all tasks in the system can be
preempted at any time.

A3 The cost of the context switch of the tasks is con-
sidered negligible.

A4 No resources, other than the CPU are shared among
the tasks.

III. SCHEDULABILITY TESTS

A schedulability test defines a mathematical condition that
is used to verify whether the task set meets its temporal
restrictions for a given scheduling algorithm. The inputs of
the test are the temporal parameters of the task set.

A test is said to be sufficient in the sense that a task set is
schedulable if it satisfies the test. However, if the task set does
not satisfy the sufficient test, it is not known whether the task
set can be schedulable using that scheduling algorithm. A test
is said to be necessary if all schedulable task sets satisfy the
test. Otherwise, if a given task set satisfies the test, we cannot
say that it is schedulable. Exact tests provide a necessary and
sufficient condition. The inexact schedulability tests provide
only a sufficient (but not necessary) schedulability condition.

Schedulability tests depend on the scheduling algorithm
chosen and the knowledge of the parameters of the task set.
The schedulability test in dynamic scheduling algorithms can
be performed off-line or online. If the test is executed off-line,
there must be complete knowledge of the set of tasks that are
to be executed in the system along with the timing constraints
imposed on every task (e.g., deadlines, precedence restrictions,
execution times) before the execution of the system. In this
case, the arrival of new tasks is not allowed while the system is
executing, and the tasks cannot change their timing constraints.

In contrast, if the scheduling test is performed online, new
arrivals are allowed at any time and the tasks can change
their timing constraints during the execution of the system.
In this test, the scheduler decides dynamically, by means of
an admission control mechanism, if the acceptance of these
new tasks will not cause other tasks to miss their deadlines.

The utilization bound Û , for a given real time scheduling
algorithm, is the value such that any task set, whose utilization
factor is no larger than Û , is schedulable under that scheduling
algorithm. Utilization-based schedulability conditions verify if
the utilization of the task set does not exceed the utilization
bound (that is, U ≤ Û ).

We classify the inexact tests in accordance with the param-
eters used as follows:

• Non-period-aware schedulability conditions. These
schedulability conditions derive the utilization bound
using information about the number of tasks or the
utilization of the tasks in the system. The tests based on
the utilization found in the literature are:
- The Liu and Layland condition (LL) introduced in [26].
- Increasing Period condition (IP) [12].
- Utilization Oriented condition (UO) developed by Y.
Oh et al. [31].

• Period-aware schedulability conditions. Some variants of
the utilization-based conditions use additional informa-
tion from the task set in order to derive the utilization
bound. In these conditions, the value of the periods of the
tasks is included in the analysis. According to the way
they derive their schedulability bounds, these conditions
can be further classified as closed-form period-aware
conditions and non-closed-form period-aware conditions:
- Closed-form period-aware conditions: Period Oriented
(PO) [7], Conditions based on Harmonic Chains [18],
[17], [14] and CRMB [28].
- Non-closed-form period-aware conditions: T-Bound and
R-Bound [22], Algorithms of Chen, Mok and Kuo [8],
Sr and DCT [14], and conditions that use linear pro-
gramming techniques, such as the PSUB [32] and LP
conditions [23].

IV. SCHEDULABILITY CONDITIONS FOR FIXED-PRIORITY
SCHEDULING ON A SINGLE PROCESSOR

In this section, we review the best-known schedulability
conditions found in the literature for Rate-Monotonic on one
processor.

A. Exact Schedulability Conditions for Rate-Monotonic

After Liu and Layland derived the RM scheduling algo-
rithm along with its inexact condition, many necessary and
sufficient tests for RM on one processor have been proposed
[24][15][2][8][6][29][11]. In this section, we will review two
of them.

1) Exact Schedulability Condition Based on Processor’s
Demand (LE): One of the first exact conditions was proposed
by Lehoczky et al. [24]. In this test, the total demand of the
processor time by a job in a critical instant is computed along
with the total demand of the processor time for all the higher
priority tasks. Then, the test checks if this demand can be met
before the deadline of the job. The LE scheduling condition
is formally defined in Theorem 1 [24].

Theorem 1. (LE Condition) Let τ= {τ1,τ2,..., τn} be a task
set with n tasks and T1 ≤ T2 ≤ ... ≤ Tn. τi can be schedulable
under RM if and only if,

Li = min{t ε Si}

(
Wi(t)

t

)
≤ 1 (1)

where
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τi τ1 τ2 τ3 τ4 τ5

Ti 8 16 3 12 48

Ci 1 3 1 2 6

ui 0.125 0.1875 0.333 0.1666 0.125

U 0.125 0.3125 0.6458 0.8124 0.9374

Table I
EXAMPLE TASK SET

Si =

{
kTj | j = 1, . . . , i; k = 1, . . . ,

⌊
Ti
Tj

⌋}
,

Wi(t) =

i∑
j=1

Cj

⌈
t

Tj

⌉
The entire task set can be schedulable under RM if and only

if

L = max{1≤i≤n} Li ≤ 1 (2)

It can be observed that the computational complexity of the
LE condition is pseudo-polynominal [24].

The function Li(t) is monotonically decreasing since

⌈
t
Ti

⌉
t

is strictly decreasing except at a finite set of values called
rate-monotonic scheduling points. When t is a multiple of
one of the periods Tj , for 1 ≤j ≤ i, the function has a local
minimum [24]. Consequently, only a search over these local
minimum values (the multiples of Tj ≤ Ti, 1≤j≤i) is needed,
to determine if τi can meet its deadline.

Example 1. Table I shows a task set τ with five tasks, includ-
ing its timing constraints: Ci, Ti, ui and U =

∑
{j=1,..,i} ui. In

order to verify if this task set is schedulable under the RM
algorithm, we will use the exact LE condition.

We first sort the task set by the ascending period values.
Thus, τ ′1= (3, 1), τ ′2 = (8, 1), τ ′3 = (12, 2), τ ′4 = (16, 3) and τ ′5
= (48, 6). To determine if the task set is schedulable we just
need to check if τ ′5 fulfills its timing constraint. The set of
scheduling points is S5 = {3, 6, 8, 9, 12, 15, 16, 18, 21, 24, 27,
30, 32, 33, 36, 39, 40, 42, 45, 48}.

Task τ ′5 is schedulable if any of the following equations
hold (for Di = Ti):

if W5 (3) = C1 + C2 + C3 + C4 + C5 ≤ T1 13 > 3
or W5 (6) = 2C1 + C2 + C3 + C4 + C5 ≤ 2T1 14 > 6
or W5 (8) = 3C1 + C2 + C3 + C4 + C5 ≤ T2 15 > 8
. . .
or W5 (45) = 15C1 + 6C2 + 4C3 + 3C4 + C5 ≤ 15T1 44 ≤ 45
or W5 (48) = 16C1 + 6C2 + 4C3 + 3C4 + C5 ≤ T5 46 ≤ 48

From the previous analysis, note that W5(t) ≤ t ≤ T5
(t=45 and t=48). Therefore, we can conclude that the task set
shown in Table I is schedulable under the RM algorithm.

2) Exact Schedulability Condition Based on the Task’s
Response Times: Joseph and Pandya introduced an exact
schedulability condition in [15] for fixed priority scheduling.

In this test, the response time of each task ri is obtained, and
if ri ≤ Di, then task τi meets its deadline.

This test starts by obtaining the response time of the highest
priority task, using the following equation:

ri = Ci +
∑

j ε hp(i)

⌈
ri

Tj

⌉
Cj

where hp(i) is the set of tasks with a higher priority than
the task τi. Since ri appears on both sides of the equation, a
possible solution was proposed by Audsley et al. in [2]. The
solution is obtained by the following iterative process:

rn+1
i = Ci +

∑
j ε hp(i)

⌈
rni
Tj

⌉
Cj (3)

Iterations described in Eqn. 3 can start considering r0i=∑i
k=1 Ck. It is easy to note that rn+1

i ≥ rni . If rni ≥ Di,
then task τi will miss its deadline. However, if rn+1

i = rni , the
iterative process will conclude, meaning that τi is schedulable.

The response time analysis has evolved to include offsets,
blocking, fault tolerance, and release jitter [2].

The exact schedulability analysis is time-consuming due to
its high computational complexity. Therefore, it is not suitable
for online schedulability analysis.

B. Liu and Layland (LL) Schedulability Condition

In [26], Liu and Layland defined the critical instant for a
task as the instant at which a request for that task will have
the largest response time, and showed that if all the tasks
meet their deadlines at their critical instants, then the task set
is feasible. The worst-case phasing occurs when θ1 = θ2 = · · ·
= θn (e.g. θi = 0 for all i).

Liu and Layland introduced the concept of utilization factor
in [26] and defined it as the fraction of the processor time spent
in the execution of the task set. Further, they defined that a
task set is said to fully utilize the processor according to a
given scheduling algorithm if the set of tasks can be feasibly
scheduled and that any increase in the execution time of any of
the tasks will make the task set infeasible with respect to that
algorithm. For a given fixed-priority scheduling algorithm, the
least upper bound of the utilization factor is the minimum of
the utilization factors over all the sets of tasks that fully utilize
the processor.

In order to derive the least upper bound for the Rate
Monotonic algorithm, Liu and Layland showed that the worst-
case situation occurs when the task set fully utilizes the
processor, all tasks start simultaneously (that is, at its critical
instant) and the relationship among the periods is such that
∀i = 2, . . . , n T1 < Ti < 2T1. Under this worst-case scenario,
Liu and Layland found the least upper bound by minimizing
the total utilization with respect to the period values.

The Liu and Layland Condition (LL) is formalized in
Theorem 2 [26].

Theorem 2. (LL Condition) A set of tasks τ is schedulable
under the RM algorithm if the following condition is satisfied

U ≤ n(2
1
n − 1) (4)
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Figure 1. Performance of the LL condition

τi Ti Ci ui Ui LL bound

τ1 8 1 0.125 0.1250 1

τ2 16 3 0.1875 0.3125 0.8284

τ3 3 1 0.3333 0.6458 0.7798

τ4 12 2 0.1666 0.8124 0.7568

τ5 48 6 0.1250 0.9374 0.7435

Table II
LL CONDITION APPLIED TO THE TASK SET OF TABLE I

If the condition of Theorem 2 is not satisfied, that is,
U > n(2

1
n − 1), then it is not known whether the task set

is schedulable under Rate-Monotonic.
It is important to note that the LL condition depends only

on the number of tasks in the system [26]. The computational
complexity of the LL condition is O(n).

Fig. 1 shows the processor utilization factor under the LL
schedulability condition. It can be observed that when the
number of tasks tends to infinity, the minimum achievable
utilization factor tends to ln(2) = 0.6931.

Leung and Whitehead, in [25], generalized the results
provided by Liu and Layland and proved that the Deadline
Monotonic (DM) algorithm is optimal for the fixed-priority
scheduling model. In the DM scheduling algorithm, task
deadlines can be smaller than its periods (Di ≤ Ti).

Example 2. After applying the LL condition to the task set
shown in Table I, we can conclude that tasks τ1, τ2, and τ3
can be feasibly scheduled, but adding τ4 and τ5 violates the
LL condition, as shown in Table II.

C. Increasing Period (IP) Schedulability Condition

The IP condition was introduced by Dhall and Liu [12]
and was proposed to be used together with the multiproces-
sor algorithms Rate-Monotonic Next Fit and Rate-Monotonic
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Figure 2. Performance of the IP Condition

First-Fit. In order to determine the tasks that can be assigned
to each processor, the IP condition takes into account both
the utilization of the task set assigned to a processor and the
utilization of the new task. The IP schedulability condition is
defined in Theorem 3 [12]:

Theorem 3. (IP Condition) Let τ = {τ1, τ2, ..., τn} be a set
of n tasks with T1 ≤ T2 ... ≤ Tn and let

Un−1 =

n−1∑
i=1

Ci
Ti
≤ (n− 1)(2

1
(n−1) − 1) (5)

If the following condition is met

un ≤ 2

(
1 +

Un−1

(n− 1)

)−(n−1)

− 1 (6)

then the set of tasks can be feasibly scheduled under the
RM algorithm. When n → ∞, the minimum utilization of
task τn approaches to (2 e−u - 1).

This condition requires an ordering of the periods of the
tasks. Because of this ordering, its complexity is O(n log n).
As can be noticed, this condition is based on the utilization
and the number of tasks in the system.

Fig. 2 shows the performance of the IP condition, where the
utilization of task τn is a function of the (n-1) tasks already
in the system. The different curves illustrate different values
for the number of tasks (n). The area under the curve denotes
the feasibility area for this test.

Example 3. In this example, we will show the performance
of the IP schedulability condition using the task set described
in Table I. To use this condition, tasks must be sorted in the
non-decreasing order of their periods. After applying the IP
condition, we note, in Table III, that while tasks τ3, τ1, τ4 ,
and τ5 are identified as schedulable, the IP condition fails to
identify task τ2 as schedulable.
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τi Ti Ci ui IP bound

τ3 3 1 0.3333 -

τ1 8 1 0.1250 0.5000

τ4 12 2 0.1666 0.3238

τ2 16 3 0.1875 0.1336

τ5 48 6 0.1250 0.1336

Table III
IP CONDITION APPLIED TO THE TASK SET OF TABLE I

D. Period Oriented (PO) Schedulability Condition

Burchard et al. [7] introduced the Period Oriented condition
to be used by the Rate Monotonic Small Tasks (RMST)
and Rate Monotonic General Tasks (RMGT) multiprocessor
algorithms. To be able to use the PO condition, it is necessary
to know the values of the periods of the tasks in the system.
The PO condition is formally defined in Theorem 4 [7]:

Theorem 4. (PO Condition) Given a set of tasks τ= {τ1, τ2,
..., τn}, Si and β are defined as follows:

Si = log2 Ti − blog2 Tic i = 1, . . . , n (7)

and

β = max
1≤i≤n

Si − min
1≤i≤n

Si (8)

(a) if β < (1− 1
n ) and the total utilization satisfies that

U ≤ (n− 1) (2β/(n−1) − 1) + 21−β − 1 (9)

then the task set is schedulable on one processor under RM.

(b) if β ≥ (1− 1
n ) and the total utilization satisfies that

U ≤ n(21/n − 1) (10)

then the task set is schedulable on one processor under RM.
From Eqn. 7 it can be observed that Si is a function that

goes from zero (when the period Ti is a power of two) to one
(when the period Ti is the next power of two), and it measures
the logarithmic distance of the period of task τi from a power
of two (where 0.5 means that the period is logarithmically in
the middle of two powers of two). Therefore, β measures how
logarithmically equidistant the periods of all tasks are from a
power of two. When β = 0, Ti+1= 2αTi ∀ i=1,2,. . ., n; and
∀ α ∈ N, and α > 0.

As β approaches to zero, the utilization bound tends to one,
independent of the number of task. On the other hand, as β
approaches to one, the utilization bound approaches the LL
condition.

A simpler version of Eqn. 9 of the PO condition is defined
in Corollary 1 [7].

Corollary 1. (PO Condition) Given a set of tasks τ= {τ1, τ2,
..., τn} and given β (as defined in Theorem 4), if the total
utilization satisfies that
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U ≤ max{ln 2, 1− β ln 2} (11)

then the task set can be feasibly scheduled on one processor
under RM.

Fig. 3 shows the performance of the PO condition. Each
curve shows, for a given number of tasks, the relationship
between β and the utilization of the task set. The area under
the curve denotes the feasibility area for this test. It can be
observed that when the number of tasks is large and the
value of β = 1, then the minimum achievable utilization is
approximately 69%, similar to the result provided by the LL
condition.

Example 4. The first step on applying the PO condition to the
task set described in Table I involves calculating the Si values
using Eqn. 7, and sorting them in the non-decreasing order.
The obtained values are Si = {S1= 0, S2= 0, S3= 0.5849, S4=
0.5849, S5= 0.5849}, and β = 0.5849 (from Eqn. 8). Because
β < (1 − 1

n
) (0.5848 < 0.8), Corollary 1 can be used to check

the schedulability of the task set. Since 0.9375 > 0.6931, the
PO condition fails to identify the task set as schedulable.

E. Utilization Oriented (UO) Schedulability Condition

Y. Oh et al. [31] introduced a schedulability condition
based on the values of tasks utilization ui. Oh et al. derived
their schedulability condition from the worst-case scenario
identified by Liu and Layland [26], but instead of minimizing
the total utilization with respect to the period values, they
derived their schedulability condition as a function of the
individual task utilization [31].

The UO condition was proposed to be used in the Rate-
Monotonic-First-Fit-Decreasing-Utilization (RM-FFDU) mul-
tiprocessor algorithm and is defined in Theorem 5 [31].

Theorem 5. (UO Condition) Let τ = {τ1,τ2,..., τn−1} be a
task set of (n-1) tasks, feasibly scheduled under RM. A new
task τn can be feasibly scheduled along with the (n-1) tasks
already in the system (on one processor under RM), if the
following condition is met:
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Figure 4. Performance of the UO Condition

Cn
Tn
≤ 2

[
n−1∏
i=1

(1 + ui)

]−1

− 1 (12)

Fig. 4 shows the UO utilization bound for different values
of n, where the x-axis denotes the utilization of the (n-1) tasks
already in the system, and the y-axis denotes the utilization
of task τi. The area under each curve denotes the feasibility
area for this test. Note that this condition takes into account
the number of tasks and the individual utilization of the tasks.
The complexity of this condition is O(n).

Bini et al. [5] introduced the Hyperbolic Bound (HB)
condition, a schedulability test similar to the one provided by
the UO condition. The HB condition is expressed in Theorem
6 [5].

Theorem 6. (HB Condition) Let τ = {τ1,τ2,..., τn} be a set
of n periodic tasks, where each tasks τi is characterized by
a processor utilization ui.. Then, τ is schedulable by the RM
algorithm if

n∏
i=1

(ui + 1) ≤ 2 (13)

It is clear that Eqn. 13 can be derived from Eqn. 12. Bini
et al. extended the HB condition to include resource sharing
and aperiodic servers.

Example 5. After using the UO condition to verify the
schedulability of the task set described in Table I, we find
that tasks τ1, τ2, and τ3 are proved to be schedulable, but the
UO condition fails to identify tasks τ4 and τ5 as schedulable,
as shown in Table IV.

F. T-Bound and R-Bound Schedulability Conditions

Lauzac et al. [21] developed the T-Bound and R-Bound
schedulability conditions to be used as an admission control
for RM scheduling on uniprocessor systems, and extended
their results to be used as an admission control for the mul-
tiprocessor systems. While discussing the LL schedulability

τi Ti Ci ui UO bound

τ3 3 1 0.3333 -

τ1 8 1 0.1250 0.5000

τ4 12 2 0.1666 0.3333

τ2 16 3 0.1875 0.1429

τ5 48 6 0.1250 0.1429

Table IV
UO CONDITION APPLIED TO THE TASK SET OF TABLE I

Algorithm 1 ScaleTaskSet Algorithm
ScaleTaskSet (In: τ , Out: τ ′)
begin

Sort the task set in τ by increasing period;
for (i=1 to n - 1) do

T ′i = Ti 2

⌊
log Tn

Ti

⌋
;

C′i = Ci 2

⌊
log Tn

Ti

⌋
;

Sort the task set in τ ′ by increasing period;
return (τ ′);

end

condition, we noted that the worst-case scenario occurs when
all the tasks start simultaneously and the relationship among
the periods is such that the ratio between any task periods is
less than two. Liu and Layland showed in [26] that under this
scenario, the computation times used to derive the least upper
bound are:

Ci = Ti+1 − Ti (i = 1, . . . , n− 1) and Cn = 2T1 − Tn

If the total utilization U =
∑n
i=1

Ci
Ti

is rewritten using these
computation times, a new schedulability bound for RM can be
derived. This bound is shown in Lemma 1 [21].

Lemma 1. Given a task set τ of m tasks ordered by increasing
periods, and the restriction that the ratio between any task
periods is less than 2, τ is schedulable if

n∑
i=1

Ci

Ti
≤

n−1∑
i=1

[
Ti+1

Ti

]
+ 2

T1

Tn
− n (14)

The T-Bound condition uses the ScaleTaskSet algorithm to
transform the original task set into an equivalent task set where
the ratio between the maximum and minimum periods is less
than 2 (that is, r = Tmax / Tmin < 2). Using this transformed
task set, the condition verifies its schedulability through Eqn.
14. As stated in Lemma 2 [21], if the transformed task set is
feasibly scheduled under RM then the original task set is also
feasible.

Lemma 2. Let τ be a given periodic task set, and let τ ′ be the
transformed task set after applying the ScaleTaskSet algorithm
to τ . If τ ′ is schedulable on one processor under RM, then τ
is also schedulable.

The ScaleTaskSet algorithm is defined in Algorithm 1 and
the T-Bound condition is formally defined in Theorem 7 [21].
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τi Ti Ci T ′i C′i U ′i T-Bound

τ3 3 1 32 4 0.1250 -

τ1 8 1 32 6 0.3125 1

τ4 12 2 48 16 0.6458 0.8333

τ2 16 3 48 8 0.8124 0.8333

τ5 48 6 48 6 0.9374 0.8333

Table V
T-Bound CONDITION APPLIED TO THE TASK SET OF TABLE I

Theorem 7. (T-Bound Condition) Consider a periodic task set
τ , and let τ ′ be the transformed task set after executing the
ScaleTaskSet algorithm to τ . If Eqn. 14 holds for τ ′, then the
task set τ can be feasibly scheduled on one processor under
RM.

It is important to note that the T-Bound condition uses the
value of the periods T ′1,. . . ,T

′
n, derived by the ScaleTaskSet

algorithm. However, in order to provide an admission control
criterion that does not depend on the periods of all the tasks,
Lauzac et al. [21], [22] derived the R-Bound schedulability
condition, which uses the relationship between the largest
and the smallest period values in the task set. The R-Bound
schedulability condition is defined in Theorem 8 [22].

Theorem 8. (R-Bound Condition) Consider a periodic task
set τ , and let τ ′ be the transformed task set after applying the
ScaleTaskSet algorithm to τ . If,

n∑
i=1

Ci

Ti
≤ (n− 1)(r

1
(n−1) − 1) +

(
2

r

)
− 1 (15)

where r =
T ′n
T ′1

, the task set τ can be feasibly scheduled on
one processor under RM.

Because the T-Bound condition uses more information about
the task set, it outperforms the R-Bound condition. However,
Lauzac et al. showed in [22] that when r is close to one,
the performance of the R-Bound condition is similar to the
performance of the T-Bound condition. The complexity of the
T-Bound and R-Bound conditions is O(n log n).

Example 6. Before applying the T-Bound condition to the task
set described in Table I, we first need to generate a transformed
task set using the ScaleTaskSet algorithm. Then, according to
Theorem 7, if the transformed task set is schedulable under
RM, the former task set is also schedulable. Table V shows
the values of the periods and the execution times of the
transformed tasks. It can be noted that under the T-Bound
condition tasks τ1, τ2, τ3, and τ4 are proved to be schedulable,
whereas the T-Bound condition fails to identify task τ5 as
schedulable.

G. Harmonic Chains (HC) Schedulability Condition

Kuo and Mok [18] extended the results provided by Liu
and Layland [26], by relating the achievable utilization factor

to the number of harmonic chains found in a task set. A
harmonic chain is a list of numbers (periods) wherein each
number divides every number after it [8].

Kuo and Mok [18] developed the Harmonic Chain (HC)
condition, in which a periodic task set τ will find a feasible
schedule if its utilization factor is no larger than k(2

1
k − 1),

where k is the size of the harmonic base of τ .
The harmonic chains found in the task set conform the

harmonic base of a task set. The definition of harmonic base
is described as follows:

Definition 1. (Harmonic Base of τ ) Let S be the set of periods
(positive numbers) of a set of periodic tasks τ . A subset H of
S is said to be a harmonic base of the task set τ if there is a
partition, say Γ, of S into |H| subsets such that:

1. Each member of H is the smallest element in exactly one
member of the partition Γ, and

2. If x and y are two elements in the same member of the
partition Γ, then either x divides y or y divides x.

Each subset in the partition Γ is called a harmonic chain
[18].

In order to explain the HC condition, we will use the
following example:

Let T be a task set where every task is defined as τi =
(Ti, Ci). We have T = { τ1 = (3, 1), τ2 = (5, 1), τ3 = (15, 2),
τ4 = (20, 3), τ5 = (60, 8) }. Let P be the set of periods from
T, such that P = {3,5,15,20,60}. The subset H = {3,5} is a
harmonic base of P because there exists a partition Γ in |H|
subsets, namely Γ = {{3,15}, {5,20,60}}, such that:

(1) each member of H is the smallest single element of
the partition Γ, and

(2) for each par of elements within the partition Γ, one
element divides the other.

The Harmonic Chains condition is formally defined in Theo-
rem 9 [18].

Theorem 9. (HC Condition) Let τ be a set of periodic tasks
and let k be the size of the harmonic base of τ . If the utilization
factor is no larger than k (2

1
k − 1), then τ is schedulable by

a preemptive fixed priority scheduler.

A polynomial time algorithm can solve the problem of
computing the harmonic base of a periodic task set. From
Theorem 9, it can be observed that when the size of the
harmonic base is small, the utilization bound is large. For
instance, for k=1, though the utilization may be as high as
100%, the task set is guaranteed to be schedulable. Note
thatthe HC condition is similar to the LL condition when the
periods of all tasks are relative primes1.

Example 7. The task set described in Table I has two
harmonic chains: Γ = {{8, 16}, {3, 12, 48}}, as shown in
Fig. 5. After applying the HC condition, we concluded that
this condition identifies tasks τ1, τ2, τ3, and τ4 as schedulable,
since their total utilization is not higher than 2 (2

1
2 − 1). Task

τ5 violates the HC condition since
∑5
i=1 ui > 2 (2

1
2 − 1),

therefore, it is not identified as schedulable.

1Two numbers a and b are relative primes if they are non zeros and MCD(a,
b) = 1
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Figure 5. The harmonic chains in the task set described in Table I

H. Root Condition

Kuo et al. [17] developed the Root condition and demon-
strated that a task set can be feasibly scheduled as long as the
utilization of the task set is no larger than R (2

1
R − 1), where

R is the number of roots in the task set. The concept of root
is defined next [18].

Definition 2. Let τ = {τ1,τ2,..., τn} be a periodic task set.
Task τi is a root in τ if there does not exist any task period
in τ , which is larger than and divisible by the period of the
task τi.

In order to explain the concept of root, we will use the
example described in the previous subsection:

Let τ be a task set where every task is defined as τi =
(Ti, Ci). We have τ = { τ1 = (3, 1), τ2 = (5, 1), τ3 = (15, 2),
τ4 = (20, 3), τ5 = (60, 8) }. Let P be the set of periods from
τ , such that, P = {3,5,15,20,60}. The harmonic base of P is Γ
= {{3,15}, {5,20,60}}. From the harmonic base of P we can
observe that 60 is a value such that there does not exist any
task period in P, which is larger than and divisible by 60.

The Root condition is defined in Theorem 10 [17].

Theorem 10. (Root Condition) Suppose that the task set
{τ1,τ2,..., τi−1} is schedulable. Let R be the number of roots
in the task set τ = {τ1,τ2,..., τi−1, τi}. If the total utilization
factor of τ is no larger than R (2

1
R −1), then τ is schedulable.

Because the number of roots could be much less than
the number of tasks, and the size of its harmonic base, it
is expected that the Root condition improves the acceptance
ratio of the LL and HC conditions. This can be observed in
Corollaries 2, 3 and 4 [17].

Corollary 2. Let τ be a set of periodic tasks. If τ is guaranteed
to be scheduled according to the LL condition, then τ is
guaranteed to be scheduled according to the Root condition.

Corollary 3. Let τ be a set of periodic tasks. If τ is guaranteed
to be scheduled according to the HC condition, then τ is
guaranteed to be scheduled according to the Root condition.

Corollary 4. There exists a task set that is guaranteed to be
scheduled according to Root condition, but not according to
the LL and HC conditions.

An important feature of the Root condition is that it was

Algorithm 2 Sr Algorithm
Input: τ = {τi = (Ci, Ti) | 1 ≤ i ≤ n}, where τ is a periodic task set and
Ti ≤ Tj , ∀ i < j;
Output: Task set τ ′ and Φτ (r);
begin

for (i=1 to n) do li = Ti

2dlog(Ti/T1)e ;
sort (l1,l2,. . .,ln) into non-decreasing order and remove

duplicates, let (k1,k2,. . .,ku) be the resulting
sequence;

for (i=1 to n) do put τi into subset πli ;
for (j=1 to u) do U(πkj ) =

∑
τi∈πkj

Ci
Ti

;

compute Φτ (ku) = Φτ (T1);
for (j=u-1 down-to 1) do

Φτ (kj ) = kj+1

kj
Φτ (kj+1)− U(πkj );

find r∗ such that Φτ (r∗) = minr∈{k1,k2,...,ku} Φτ (r);

for (i=1 to n) do T ′i = r∗ · 2blog(Ti/r
∗)c;

return Φτ (r∗) and τ ′;
end

developed to be used incrementally for online admission
control.

Example 8. In this example, we will show the performance of
the Root condition. As described in the previous example, the
task set from Table I has two harmonic chains: Γ = {{8,16},
{3,12,48}}. However, it has only one root, R=48, as shown
in Fig. 5. Therefore, after applying the Root condition, we
observe that tasks τ1, τ2, τ3, τ4, and τ5 are identified as
schedulable, since their total utilization is no larger than 1
( 1 (2

1
1 − 1) ).

I. Sr and DCT Schedulability Conditions

Han and Tyan [14] introduced two polynomial-time
schedulability tests that transform the task periods into a
special pattern where all the periods belong to a single
harmonic chain. According to Theorem 9, when k=1 (which
means there is only one harmonic chain in τ ), the transformed
task set τ ′ is schedulable if its total utilization is less than
or equal to 1. Han and Tyan proved that if τ ′ is schedulable
under RM, then the original task set τ is also schedulable
under RM. The transformed task set τ ′ must satisfy the
Condition 1 [14].

Condition 1. τ ′i ≤ τi, for all i = 1, 2,. . ., n, and τ ′i evenly
divides τ ′i+1, denoted as τ ′i |τ

′
j , (thus, τ ′i ≤ τ ′i+1) for all i =

1, 2,. . ., n.

The schedulability of the transformed task set τ ′ is defined in
Theorem 11 [14].

Theorem 11. Given a task set τ , if there exists another task
set that satisfies Condition 1 and Uτ ′ =

∑n
i=1

Ci
Ti
≤ 1, then τ is

schedulable by RM.

In order to apply the results provided by Theorem 11, the
problem is, given a task set τ , how to find (in polynomial time)
another task set that satisfies Condition 1 and whose utilization
Uτ ′ is as small as possible. Han and Tyan proposed, in [14],
the Sr and DCT algorithms to find such τ ′.
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τi Ti Ci T ′i C′i u′i U ′i

τ3 3 1 3 1 0.3333 0.3333

τ1 8 1 6 1 0.1666 0.5000

τ4 12 2 12 2 0.1666 0.6667

τ2 16 3 12 3 0.2500 0.9167

τ5 48 6 48 6 0.1250 1.0417

Table VI
Sr AND DCT CONDITIONS APPLIED TO THE TASK SET OF TABLE I

1) Sr Algorithm: The first algorithm proposed is called
the Sr algorithm (Specialization Operation). In this algorithm,
each period Ti of the task set τ is transformed into another
period T ′i = r · 2blog(Ti/r)c, where r is a real number chosen
from the range (T1

2 , T1]. Because T ′i ≤ Ti for all i and T ′i |T
′
j

for all i < j, the transformed period values belong to a single
harmonic chain. Furthermore, because T ′i ≤ Ti for all i, we
have that Uτ ′ =

∑n
i=1

C′i
T ′i
≥ Uτ =

∑n
i=1

Ci
Ti

. To minimize the
total utilization increase 4 = Uτ ′−Uτ , the value of r should be
carefully chosen. The Sr algorithm, reproduced in Algorithm
2, finds the best value for r, and then derives the new periods
T ′i , for all i, using the best r.

The Sr algorithm first computes li = Ti/2
dlog(Ti/T1)e, for 1

≤i ≤n, where T1
2
< li ≤ T1, naming k1 < k2 < . . . < ku,

u ≤ n, the sorted sequence of l′is with duplicates removed.
Because li = Ti, we know that ku = T1. The sequence
{k1, k2, . . . , ku} is called the special base of τ . The value of r
that minimizes the total utilization increase 4, denoted by r∗,
can always be found in the special base. The total utilization
of the task set τ ′ with its periods {T ′1, T ′2, . . . , T ′n} specialized
from {T1, T2, . . . , Tn} with respect to r, is called Φτ (r),
and Φ∗τ = Φτ (r∗) = min{T12 <r≤T1}Φτ (r). The algorithm
computes Φτ (kj) for all kj in the special base of τ , and then
selects the one that results in the minimum value of Φτ (kj),
and uses that kj as the value of r in the specialization oper-
ation. This specialization operation provides the periods for
the transformed task set that belongs to a single fundamental
frequency. Then, the utilization of the transformed task set is
computed and if it is less than or equal to 1, the task set is
schedulable. The complexity of the Sr condition is O(n log n).

Example 9. In this example, we will show the performance
of the Sr schedulability condition. The first step in the Sr
algorithm is to find the li values to obtain the special base of
r. After computing the li values and removing duplicates, we
have k1 = 2 and k2 = 3. Next, we need to find the value
of r∗ using Φ∗τ = Φτ (r∗) = min{T12 <r≤T1} Φτ (r) such that
the total utilization increase is minimized. We observe that
Φτ (k1) = 1.25 and Φτ (k2) = 1.0417, and therefore the value of
r∗ to be used is r∗ = 3. Once the r∗ value is found, we use
it in the specialization operation to generate the transformed
task set τ ′, which is shown in Table VI. It can be observed
from Table VI that tasks τ1, τ2, τ3, and τ4 are identified as
schedulable, since their total utilization is no larger than 1.

Algorithm 3 DCT Algorithm
Input: τ = {τi = (Ci, Ti) | 1 ≤ i ≤ n}, where τ is a periodic task set and
Ti ≤ Tj , ∀ i < j;
Output: Task set τ ′;
begin

min_f = -1; min_utilization=∞;
for (f =1 to n) do {

Zf = Tf ;
for (i=f +1 to n) do Zi = Zi−1 ·

⌊
Ti
Zi−1

⌋
;

for (i=f -1 down-to 1) do Zi =
Zi+1⌈
Zi+1
Ti

⌉ ;

utilization =
∑n
i=1

Ci
Zi

;
if utilization < min_utilization then

min_utilization = utilization;
min_f = f;
for (i=1 to n) do T ′i = Zi;

endif
}

end

However, task τ5 is not identified as schedulable by the Sr
condition since U ′5 > 1.

2) DCT Algorithm: The second algorithm proposed by Han
and Tyan in [14] is called the DCT algorithm. The idea behind
the DCT algorithm is the following. For each f, 1 ≤ f ≤ n,
T ′f = Tf , and recursively, Ti, for each i > f, is transformed to
the largest integral multiple of T ′i−1 that is less than or equal
to Ti. That is,

T ′i = T ′i−1 ·
⌊
Ti
T ′i−1

⌋
, for i = f + 1, f + 2, . . . , n (16)

Similarly, Ti, for i < f, is recursively transformed to the
largest divisor of T ′i+1 that is less than or equal to Ti. That is,

T ′i =
T ′i+1⌈
T ′i+1

Ti

⌉ , for i = f − 1, f − 2, . . . , 1 (17)

The value of f that results in the minimum utilization
increase will be the final index of Ti whose transformed value
of T ′i will be fixed at Ti. The DCT algorithm is described in
Algorithm 3. The complexity of the DCT condition is O(n2).

Example 10. In this example, we will show the performance
of the DCT schedulability condition. After applying the DCT
algorithm to the task set shown in Table I, we found that when
f=3, a minimum utilization increase = 1.0417 is obtained,
which corresponds to the transformed task set τ ′ shown in
Table VI. Using Theorem 11 to verify the feasibility of this
task set, we conclude that tasks τ1, τ2, τ3, and τ4 are proved to
be schedulable, since their total utilization is no larger than 1.
However, task τ5 is not identified as schedulable by the DCT
condition since U ′5 > 1. It can be observed that for the task
set described in Table I, the Sr and DCT conditions produce
identical results.

Han and Tyan showed in [14] that the DCT condition pro-
vides a better performance than the Sr condition. Han extended
the DCT and Sr conditions to be used in the multiframe task
model in [13].



11

Algorithm 4 Algorithm 1 of Chen, Mok, and Kuo
Input: TaskPeriod[n] in non-decreasing order;
Output: Utilization bound U ;
var NewPeriod: array[1. . .n] of integer;
begin
U = 1;
for (i=2 to n) do
begin

for (j=1 to i) do
NewPeriod[j] = TaskPeriod[j] x

⌊
TakPeriod[i]
TaskPeriod[j]

⌋
;

U
′

=
∑i−1
j=1

NewPeriod[j+1]−NewPeriod[j]
NewPeriod[j]

+
2NewPeriod[1]−NewPeriod[i]

NewPeriod[i]

if U > U ′ then U = U ′;
end
return (U );

end

J. Chen, Mok, and Kuo Algorithms

Chen, Mok, and Kuo [8] developed three polynomial-time
algorithms with the aim to improve the performance of the LL
and HC conditions.

On Algorithm 1 (reproduced in Algorithm 4), a task set τ is
transformed into another task set in which the ratio of any Ti
and Tj (for all i 6=j) is no larger than 2. A new utilization bound
U is calculated for the transformed task set, using Theorem
12 [8]. The task set τ can be feasibly scheduled under RM if
its total utilization is less than or equal to U . The complexity
of the Algorithm 1 condition is O(n2).

Theorem 12. Let τ = {τ1,τ2,..., τn} be a set of periodic task.
Let
−→
T be the array of the periods of the task set. If T1 <

T2 < . . . < Tn < 2T1, then the utilization bound U for the
task set is obtained when,

Ci = Ti+1 − Ti, 1 ≤ i < n (18)

Cn = 2T1 − Tn (19)

U =

n−1∑
i=1

Ti+1 − Ti
Ti

+
2T1 − Tn

Tn
(20)

Example 11. In this example, we will show the performance
of the Algorithm 1 condition. From the task set described
in Table I, we compute the periods of the transformed task
sets and their respective total utilization. Therefore, τ

′

1 = [6,
8] and U ′1 = 0.8333; τ

′

2 = [8,12,12] and U ′2 = 0.8333; τ
′

3 =
[12,15,16,16] and U ′3 = 0.8167; and τ

′

4 = [48,48,48,48,48] and
U ′4 = 1. Since the minimum of these utilization values is used
as the schedulability bound, we have U

′
= 0.8167; therefore,

tasks τ1, τ2, τ3, and τ4 can be schedulable. The Algorithm
1 condition fails to identify task τ5 as schedulable because
U
′
> U .

The second algorithm proposed by Chen, Mok, and Kuo
[8] is named Algorithm 2, and it is not included in our
comparison. This algorithm introduce a strategy to compute,
with higher efficiency, the size of the harmonic base from a
set of tasks, which is better than the bound obtained using the
HC condition. The complexity of the Algorithm 2 condition is

Algorithm 5 Algorithm 3 of Chen, Mok, and Kuo
Input: TaskPeriod[n] in non-decreasing order;
Output: Utilization bound U ;
var TaskPeriod1: array[1. . .n] of integer;

[reduced task pattern]
TaskPeriod2: array[1. . .n] of integer;

[further reduced task pattern]
begin
U = 1;
for (i=1 to n) do

TaskPeriod1 = reduced task pattern
of TaskPeriod, in non-decreasing order;

TaskPeriod2 = task pattern from TaskPeriod1
with T =

⌊
Ti
T

⌋
· T for each element T,

in non-decreasing order;
U ′ = utilization factor calculated

from TaskPeriod2 using
Theorem 12;

if U > U ′ then U = U ′;
end for
return (U );

end

O(n2). The Algorithm 2 condition is based on Lemma 3 and
Lemma 4 [8].

Chen et al. proved in [8] that there is a smallest m, 1 ≤ m ≤
n, and an array

−→
T m = [T1, T2 . . . , Tm] with total utilization

U
′
, reduced from

−→
T (the array of periods of the task set),

such that U
′ ≤ U .

Lemma 3. Let U = Um. If Ti divides Tj , 1 ≤
i ≤ j ≤ m, then U of

−→
T equals U of

−→
T ′ =

[T1, T2, . . . , Ti−1, Ti+1, . . . , Tn].

The definition of Lemma 4 is given next.

Lemma 4. Let U = Um. Consider Tj and Tk in
−→
T m, tm =

tjTj + rj = tkTk + rk. If tjTj ≤ tkTk and ek ≤ αjkej , then
U is equal to the minimum utilization factor of all extreme
task sets

−→
T ′ = [T1, T2, . . . , Tki−1, Tk+1, . . . , Tn].

The Algorithm 3 condition is an improvement on the Al-
gorithm 2 condition. In this condition,

−→
T reduced is a reduced

array from
−→
T where some periods are deleted according to

Lemma 3. Then, all the extreme task sets of
−→
T reduced are

generated. The utilization bound provided by the Algorithm 3
condition is equal to the minimum utilization factor of all the
extreme task sets of

−→
T reduced. The Algorithm 3 condition is

described in Algorithm 5. The complexity of the Algorithm 3
condition is O(n3).

Theorem 13. Let
−→
T = [T1, T2, . . . , Tn]. U = minni=1 U

′
i , 1 ≤

i ≤ n, where U ′i is the minimum utilization factor of all
extreme task sets of the reduced array

−→
T ′ = [T1, T2, . . . , Ti].

Example 12. In this example, we will show the performance
of the Algorithm 3 condition. From the task set described in
Table I, we have

−→
T = [3, 8, 12, 16, 48]. The reduced task

set is
−→
T reduced = [3, 8]. Transforming the reduced task set

into a further reduced task sets by using the Algorithm 3 and
calculating its utilization using Theorem 12, we obtain the
minimum utilization factor of the extreme task set as U =
0.8333, which means that the task set comprised of tasks τ1,
τ2, τ3, and τ4 is identified as schedulable. However, if task τ5
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is included, the task set is not schedulable since U ′5 > U .

K. CRMB Schedulability Condition

Lu et al. introduced the Conditional RM Bound (CRMB)
schedulability condition in [28]. This condition extends the
results provided by Lauzac et al. in [22] by using the relative
period values in the task set.

Lauzac et al. showed in [22] that the schedulability bound
used by the R-Bound condition is ln r + 2/r - 1 when the
number of tasks approaches to infinity. If z1 is the smallest
period ratio in the task set and is defined as z1= T1/Tn = 1/r,
the schedulability bound can be rewritten as 2z1 - ln z1- 1.

Using the same worst-case scenario identified by Liu and
Layland [26], where Ti < 2T1, and defining z2 as the largest
period ratio in the task set (that is, z2 = Tn−1/Tn), Lu et al.
[28] improved the schedulability bound provided by Lauzac
et al. to 2z1 + 1/z2 + (ln z2 − ln z1) - 2.

In order to derive a schedulability bound for the case when
some period values are less than or equal to Tn/2, Lu et al.
defined the virtual period of a task [28].

Definition 3. (Virtual Period) A virtual period of τi, denoted
by vi, is the ready time of the critical job of τi. That is, vi =⌊
Tn
Ti

⌋
Ti

where a critical job is defined as:

Definition 4. (Critical Jobs) The critical jobs are defined
specifically at time Tn, the largest period in a task set. At
Tn, the current jobs of all tasks, excluding J1,n, are called
the critical jobs of the system. Note that every task except τn
has a critical job, and that the critical jobs are identified at
time Tn.

The smallest and the largest values among all virtual peri-
ods, z1 and z2, respectively, must be redefined in order to be
used for the general case. These values are defined as follows:

z1 = min
1≤i≤n−1

{
vi
Tn

}
(21)

z2 = max
1≤i≤n−1

{
vi
Tn

}
(22)

The values of z1 and z2 are then used to derive the schedu-
lability bound for the general case. The CRMB schedulability
condition is formally defined in Theorem 14 [28] .

Theorem 14. (CRMB Condition) Let τ be a task set with
n periodic tasks. Suppose z1 = min1≤i≤n−1

{
vi
Tn

}
and

z2 = max1≤i≤n−1

{
vi
Tn

}
. Then τ is RM schedulable if U ≤

CB(z1,z2) = 2z1 + 1
z2

+ (ln z2 − ln z1)− 2.

The CRMB schedulability condition achieves a higher
schedulability bound if the difference between z1 and z2 is
small. For instance, when the period values belong to a single
harmonic chain, z1 = z2 = 1, the CRMB bound is 1. In [28], Lu
et al. introduced a system design methodology to explore and
adjust task periods using the CRMB schedulability condition,
in order to achieve a higher utilization bound.

Example 13. In this example, we will show the performance
of the CRMB schedulability condition using the task set of
Table I. First, we need to obtain the virtual period values
of the task set described in Table I. In this case, all tasks
have virtual periods equal to their real periods. Next, we find
the z1 and z2 values, where z1 = 1 and z2 = 1. Using
Theorem 14, we obtain that CB(z1,z2) = 1. Therefore, the task
set τ described in Table I can be feasibly scheduled under
RM according to the CRMB schedulability condition, since
U = 0.9375 ≤ CB(z1, z2) = 1.

Using z1 and z2 values, Lu et al. derived, in [29], an exact
test for RM on one processor. The complexity of the CRMB
schedulability condition is O(n).

L. LP Schedulability Conditions

Lee et al. [23] introduced two linear programming formu-
lations for calculating the utilization bounds for a given set
of period options (T1, T2, . . . , Tk), where k is the number of
period options (1 ≤ k ≤ n) in the set, the periods of the tasks
are (T1, T2, . . . , Tn), and Ti < Tj for all i<j.

These schedulability conditions have a high computational
complexity, and therefore, are not practical in online admis-
sion control. However, according to Lee et al. [23], these
schedulability conditions are suitable for use in many practical
real-time applications, in which the finite set of frequencies
(periods) corresponds to the predetermined QoS options that
the applications can choose, as in the audio and control
applications. Thus, the utilization bound can be calculated off-
line using the finite set of periods, and then a QoS manager
can use this bound online to determine the schedulability of
the dynamically arriving task.

The first of the schedulability conditions, introduced in [23],
is called exact linear programming formulation (LpExact con-
dition). The second one, called approximated linear program-
ming formulation (LpApprox), proposes a simpler formulation
and is almost as accurate as the exact linear programming
formulation. The experimental evaluation conducted in [23]
showed that the LpExact condition outperforms the LpApprox
condition. The complexity of the LP schedulability conditions
is exponential [16].

1) Exact Linear Programming Formulation (LpExact): In
order to calculate the tight bound U∗bound, the tight level-
i bounds U∗boundi (1 ≤ i ≤ k) need to be calculated first.
U∗bound provides the system-level bound, whereas the level-i
bound U∗boundi provides the schedulability bound of only the
level-i task τi that uses the period Ti. U∗boundi is called tight
level-i bound, that is formally defined in Theorem 15 [23].

Theorem 15. The minimum utilization U∗ =
∑i
j=1

Cj
Tj

among
those of all level-i barely schedulable task sets is the tight
level-i bound U∗boundi .

To calculate the level-i bound, all possible combinations of
the execution times that make the task set barely schedulable
are considered. A task set is barely schedulable if it is
schedulable with the given execution time values, but a slight
increment in any of its execution times makes the task set
unschedulable. If a task set is level-i barely schedulable,
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the level-i task τi is schedulable, and the processor is fully
utilized by the level-i and the higher priority tasks during the
interval [0, Ti]. It is possible to formulate a linear programming
problem using a finite number of constraints. These constraints
check the processor time demand only at the arrival times of
the task instances (since the demand of the processor time
changes only at those times) to determine the execution time
values that make the level-i task set barely schedulable and to
obtain its schedulability bound. The optimization problem to
calculate the level-i bound U∗boundi is formulated in Theorem
16 [23].

Theorem 16. The tight level-i bound U∗boundi is the solution
for the following linear programming problem, where Tj , 1 ≤
j ≤ i are fixed coefficients and Cj , 1 ≤ j ≤ i are free
variables,

U∗boundi = Minimize

i∑
j=1

Cj
Tj

(23)

Subject to
i−1∑
j=1

⌈
Ti
Tj

⌉
Cj + Ci = Ti (24)

i−1∑
j=1

⌈
ta
Tj

⌉
Cj + Ci ≥ ta, 1 ≤ a ≤M (25)

where ta, 1 ≤ a ≤ M are the series of all the arrival
instants of the higher priority tasks in [0,Ti].

Theorem 16 assures only the schedulability of the level-i
task τi. The tight system-level bound U∗bound is given by the
minimum of the level-i bounds, as stated in Theorem 17 [23].

Theorem 17. (LpExact Condition) The minimum of the tight
level-i (1 ≤ i ≤ k) bounds, that is, minki=1 U

∗bound
i , is the

tight (largest sufficient) system-level U∗bound.

Example 14. In this example, we will show the performance
of the LpExact schedulability condition using the task set of
Table I. To use these conditions, we first sort the tasks by
a non-decreasing order of their period values. To illustrate
the LpExact condition, Fig. 6 shows the linear programming
problem formulation for U∗bound3 . Using Theorem 16 we
obtain all level-i bounds, that is, U∗bound1 = 1, U∗bound2 = 0.9167,
U∗bound3 = 0.875, U∗bound4 = 0.875, and U∗bound5 = 1. According to
Theorem 17, the system-level bound U∗bound is equal to 0.875.
Since the total utilization of τ is greater than U∗bound, the
LpExact condition fails to identify the task set τ as schedulable
under RM.

2) Approximate Linear Programming Formulation (LpAp-
prox): The main drawback of the exact linear programming
formulation is its complexity. With a large number of period
options, there can be a very large number of arrival instants
resulting in a huge number of constraints.

In the LpExact condition, most of the constraints are used
to check the processor time demand at all arrival instants to
avoid the potential idle times. However, the idle times tend to
occur late in the interval [0,Ti] when the processor is heavily
loaded. This means that checking only at the last arrival of

Minimize

U∗bound3 = C1/3 + C2/8 + C3/12;

Subject to
4 C1 + 2 C2 + 1 C3 = 12; (1)
1 C1 + 1 C2 + 1 C3 >= 3; (2)
2 C1 + 1 C2 + 1 C3 >= 6; (3)
3 C1 + 2 C2 + 1 C3 >= 9; (4)
3 C1 + 1 C2 + 1 C3 >= 8; (5)

Figure 6. LP Formulation Problem for U∗bound3

each task before t=Ti can avoid most of the potential idle
times. The LpApprox condition just checks those last arrival
times, resulting in a simpler linear programming formulation.
This approximated formulation has only one constraint at each
level and thus, the total number of constraints used to calculate
the level-i bound U boundi is i, as can be observed in Theorem
18 [23].

Theorem 18. The solution for the following linear program-
ming problem, U boundi , is a sufficient level-i bound.

U boundi = Minimize

i∑
j=1

Cj
Tj

(26)

Subject to

i−1∑
j=1

⌈
Ti
Tj

⌉
Cj + Ci = Ti (27)

i−1∑
j=1


⌊
Ti
Ta

⌋
Ta

Tj

Cj + Ci ≥
⌊
Ti
Ta

⌋
Ta, 1 ≤ a ≤M (28)

where
⌊
Ti
Ta

⌋
Ta, 1 ≤ a ≤ i− 1 is the last arrival instant of

task τa before Ti.

As in the tight system-level, a sufficient system-level bound
can be found by taking the minimum of the level-i bounds, as
expressed in Theorem 19 [23].

Theorem 19. (LpApprox Condition) The minimum of the
sufficient level-i (1 ≤ i ≤ k) bounds, that is, minki=1 U

bound
i ,

is the sufficient system-level U bound.

Example 15. In this example, we will show the performance
of the LpApprox schedulability condition using the task set
shown in Table I. Fig. 6 shows the linear programming
problem formulation for U bound3 . However, unlike the exact
formulation that uses all the constraints shown in Fig. 6, the
LpApprox condition only uses the constraints 1, 4, and 5. Using
Theorem 16, we obtain all level-i bounds, that is, Ubound1 = 1,
Ubound2 = 0.9167, Ubound3 = 0.875, Ubound4 = 0.875, and Ubound5 = 1.
According to Theorem 18, the system-level bound U bound is
equal to 0.875. Since the total utilization of τ is greater than
U bound, the LpApprox condition fails to identify the task set
τ as schedulable under RM.
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Condition Utilization Bound Complexity

LL U ≤ n(2
1
n − 1) O(n)

IP un ≤ 2
(
1 +

Un−1
(n−1)

)−(n−1)
− 1 O(n log n)

PO U ≤ (n− 1)(2β/(n−1) − 1) + 21−β − 1 O(n log n)

UO, HB U ≤ 2
[∏n−1

i=1 (1 + ui)
]−1
− 1 O(n)

T-Bound U ≤
∑n−1
i=1

[
T ′i+1

T ′
i

]
+ 2

T ′i
T ′n
− n O(n log n)

R-Bound U ≤ (n− 1)(r
1

(n−1) − 1) +
(

2
r

)
− 1 O(n log n)

HC U ≤ k (2
1
k − 1) O(n

5
2 )

Root U ≤ R (2
1
R − 1) O(n2)

Sr non closed-form O(n log n)

DCT non closed-form O(n2)

Alg 1 non closed-form O(n2)

Alg 2 non closed-form O(n2)

Alg 3 non closed-form O(n3)

CRMB U ≤ 2z1 + 1
z2

+ (ln z2 − ln z1)− 2 O(n)

LpExact Linear programming exponential

LpApprox Linear programming exponential

Table VII
COMPARISON OF THE RM INEXACT SCHEDULABILITY CONDITIONS

M. Characteristics of the Schedulability Conditions

A summary of the inexact schedulability conditions for
RM on one processor, discussed in this section, is shown
in Table VII. It can be noted that the LP and Algorithm 3
schedulability conditions have the highest complexity, whereas
the LL, UO, and CRMB schedulability conditions have the
lowest complexity.

V. EVALUATION RESULTS

To evaluate the performance of the inexact schedulability
conditions discussed in this paper, we tested every condition
using a sample s of task sets that are schedulable under rate
monotonic. We define the acceptance ratio ρ of a schedulabil-
ity condition SC for a sample s, as the ratio of the number of
tasks identified as schedulable by the schedulability condition
and the total number of task sets:

ρs(SC) =
number of task sets accepted by SC

total number of task sets
∗ 100 (29)

Since all task sets in s are schedulable under RM, an exact
condition will have an acceptance ratio equal to 100. If ρs(SC)
approaches 100, then the performance of SC approaches the
performance of the exact test for s.

With the purpose of evaluating the performance of the
schedulability conditions under different characteristics of the
task sets, we conducted our experiments using four different
schemes of generation of the task sets in s.

The solution of the linear programming problems formu-
lated by the LpExact condition was obtained using the lp_solve
package [4].

A. Performance as a function of the number of tasks

The goal of this experiment was to evaluate the performance
of the schedulability conditions as a function of the number
of tasks. We generated eleven samples of task sets denoted
as N2, N3, . . . , N12. Each sample Nm was conformed by
1,000 sets of m tasks. The total utilization of each task set
and the periods of the tasks were uniformly distributed in the
range [0.7, 0.95] and [100, 500], respectively. The maximum
utilization of each task, denoted by α, followed a uniform
distribution in the range [0.01, 0.3]. The execution times of
the tasks were generated with values 1 ≤ Ci ≤ αTi. Figs.
7, 8, and 9 show the acceptance ratios obtained as a function
of the number of tasks for these conditions in their respective
groups.

Fig. 7 shows the acceptance ratios obtained for the closed-
form non-period-aware schedulability conditions. For these
conditions, the performance decreases rapidly as the number of
tasks increases. For each number of tasks, the acceptance ratios
always satisfy the relation ρN (UO) > ρN (IP ) > ρN (LL).
This result is a consequence of the amount of timing informa-
tion of the tasks used by each of the schedulability conditions.
It is important to note that the improvement achieved by these
conditions with respect to the LL condition is marginal (that
is, smaller than 8%).

Fig. 8 shows the acceptance ratios obtained for the closed-
form period-aware schedulability conditions where we also
included the UO and LL conditions.

From this experiment, it can be observed that the PO and
the CRMB are the conditions with better performance for small
number of tasks (m<4). However, for m>4, only the PO and
the UO conditions showed some performance improvement
over the LL condition (less than 4%). These poor results can
be explained by the fact that this experiment was designed
without considering any relationship among the periods of the
tasks, and since these conditions include the period in their
analysis, it is clear that they cannot take advantage of this
extra information.

Fig. 9 shows the acceptance ratios obtained for the non-
closed-form period-aware schedulability conditions, where we
also included the PO condition and the LL condition. Due to
the differences in the approaches used to derive their schedula-
bility bounds and their resulting behaviors, these schedulability
conditions can be differentiated as follows:
• Schedulability condition based on linear programming.

The LpExact schedulability condition has the second best
acceptance ratio for very small task sets (for m < 4, only
lower than that of the DCT condition). For the larger task
sets (that is, m ≥ 4), its performance decreases faster
than the performance of the DCT and the Algorithm 1
conditions, showing the third best acceptance ratio among
all non-closed-form period-aware conditions. However, it
is important to recall that the computational complexity
of this condition is exponential.
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Figure 7. Acceptance ratio of the non-period-aware schedulability conditions
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Figure 8. Acceptance ratio of the closed-form schedulability conditions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 2  3  4  5  6  7  8  9  10  11  12

A
cc

ep
ta

nc
e 

R
at

io
 (

ρ N
(S

C
))

Number of tasks (m)

LL
PO

T-Bound
DCT
Alg1
Alg3

lpExact

Figure 9. Acceptance ratio of the non-closed-form schedulability conditions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.7  0.75  0.8  0.85  0.9  0.95

A
cc

ep
ta

nc
e 

R
at

io
 (

ρ U
(S

C
))

Utilization of task sets (υ)

LL
IP

UO

Figure 10. Acceptance ratio of the non-period-aware schedulability condi-
tions

• Schedulability conditions based on the transformation of
the original task set (T-Bound, Algorithm 1, Algorithm 3
and DCT). It can be noted from Fig. 9 that for every num-
ber of tasks, the acceptance ratio of these schedulability
conditions was substantially better than the acceptance
ratio of the closed-form schedulability conditions. The
DCT condition showed the best performance among all
non-closed-form period-aware conditions for m<6, with a
clear improvement over the performance of the Algorithm
1 condition. However, for large number of tasks, their
performance tended to be similar. On the other hand, the
performance of the Algorithm 1 was always better than
that of the Algorithm 3 and the T-Bound conditions. The
Algorithm 3 and the T-Bound conditions always obtained
very similar performances, at least 6% better than the LL
condition for large number of tasks.

B. Performance as a function of the total utilization of task
sets

The goal of this experiment was to evaluate the performance
of the schedulability conditions as a function of the total
utilization of the task sets. We generated several samples of
task sets denoted as Uυ , where the total utilization υ of each
sample was set to 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95. The
maximum utilization of each task, denoted by α, followed a
uniform distribution in the range [0.01, 0.3]. Each sample Uυ
was conformed by 1,000 task sets. The periods of the tasks
were uniformly distributed in the range [100, 500] and the
execution times of the tasks were generated with values 1 ≤
Ci ≤ αTi. The number of tasks was uniformly distributed in
the range [2,9]. Figs. 10, 11, and 12 show the acceptance ratios
obtained as a function of the utilization of the task sets for the
schedulability conditions.

Fig. 10 shows the acceptance ratios obtained for the closed-
form non-period-aware schedulability conditions. We can ob-
serve that the acceptance ratios of these conditions satisfy
the relation ρU (UO) > ρU (IP) > ρU (LL). The performance
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Figure 11. Acceptance ratio of the closed-form period-aware schedulability
conditions

of theUO is clearly better than the IP and the LL conditions
in the range 0.7 < υ < 0.8.

Fig. 11 shows the acceptance ratios obtained for the closed-
form period-aware schedulability conditions, where we also
included the UO and the LL conditions. We can observe from
Fig. 11 that the PO condition showed the best performance
among the closed-form period-aware conditions for υ < 0.8,
improving upon the LL condition for all values of υ. For
υ ≥ 0.75, the CRMB condition showed an acceptance ratio
similar or better than the PO condition. However, the accep-
tance ratio of the CRMB condition was poorer than that of the
LL condition for υ = 0.7. The HC and the Root conditions
showed similar acceptance ratios as that of the LL condition
for all the values of υ.

Fig. 12 shows the acceptance ratios obtained for the non-
closed-form period-aware schedulability conditions, where we
also included the PO and the LL conditions. We can observe
from Fig. 12 that all non-closed-form conditions showed
a significant performance improvement with respect to the
closed-form conditions, and that the DCT condition yielded the
best acceptance ratio among all the non-closed-form period-
aware conditions. When compared with the other conditions,
the DCT condition showed an increasingly better performance
when the utilization of the task sets increased.

The Algorithm 1 and the LpExact conditions also showed
a good performance, even improving on the DCT condition
for υ ≤ 0.75. However, their performance decreased rapidly
as the utilization of the task sets increased.

The Algorithm 3 and the T-Bound conditions showed the
worst performance among all the non-closed-form conditions,
with results close to the PO condition for υ ≥ 0.85.

C. Performance as a function of the period ratio

The goal of this experiment was to evaluate the performance
of the schedulability conditions as a function of the period
ratio. We define the period ratio as the ratio of the maximum
and minimum period values in a task set. We generated several
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Figure 12. Acceptance ratio of the non-closed-form period-aware schedula-
bility conditions

samples Rλ, where λ is a constant with values in the range
[1, 8] used to derive the periods of the tasks. For each task
set, we randomly generated an initial period value T1 in the
range [100, 300]. After T1 was generated, the periods of the
remaining tasks were generated in the range T1 ≤ Ti ≤ λ ∗
T1. The total utilization of every sample and the maximum
utilization α of each task followed a uniform distribution in the
range [0.7, 0.95] and [0.01, 0.3], respectively. The execution
times of the tasks were generated with values in the range 1 ≤
Ci ≤ αTi. The number of tasks was uniformly distributed in
the range [2,9]. Every sample Rλ was composed of 1,000 task
sets. Figs. 13, 14, and 15 show the performance as a function
of the period ratio for the schedulability conditions.

Fig. 13 shows the acceptance ratios obtained for the closed-
form non-period-aware schedulability conditions. It can be
noted that for all the values of λ, the acceptance ratios satisfy
the relation ρR(UO) > ρR(IP) > ρR(LL). The UO condition
showed the best acceptance ratio among these conditions, with
a small performance improvement with respect to the IP and
the LL conditions, whereas these two conditions (IP and LL)
yielded similar acceptance ratios. It is important to note that all
closed-form non-period-aware conditions showed a constant
acceptance ratio for all the values of λ.

Fig. 14 shows the acceptance ratios obtained for the closed-
form period-aware schedulability conditions, where we also
included the UO and the LL conditions. We can observe
that all the closed-form period-aware schedulability conditions
yielded an acceptance ratio of 100 for λ = 1. In addition, all
of them decreased their performance sharply for the interval
1 < λ < 2, and for λ > 2, their performance was constant
with the small variations.

The PO condition was the best or second best of all the
closed-form period-aware conditions for all values of λ. The
CRMB condition showed the best performance among all the
closed-form period-aware conditions for λ ≤ 1.5. However,
its performance was the worst of all the closed-form period-
aware conditions for λ = 2, but improved for λ > 2, being
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Figure 13. Acceptance ratio of the closed-form non-period-aware schedula-
bility conditions
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Figure 14. Acceptance ratio of the closed-form period-aware schedulability
conditions

among the best conditions for λ ≥ 4.5. Finally, the Root and
the HC conditions showed a performance similar to that of the
LL condition for all values of λ.

Fig. 15 shows the acceptance ratios obtained for the non
closed-form schedulability conditions, where we also included
the PO and LL conditions. From Fig. 15, we can observe
that all non-closed-form conditions clearly outperformed the
remaining conditions.

The DCT condition showed the best acceptance ratio among
the non-closed-form schedulability conditions for all the values
of λ. It should be noted that for λ < 1.5, the acceptance ratio
of the DCT condition is almost equal to 100. On the other
hand, forλ > 2, its acceptance ratio is almost constant.

The Algorithm 1, the Algorithm 3, and the T-Bound con-
ditions showed a fairly good performance for small λ values
(λ ≤ 1.2). These three conditions showed identical acceptance
ratios for λ < 2. This can be explained by the fact that they
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Figure 15. Acceptance ratio of the non-closed-form schedulability conditions
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Figure 16. Acceptance ratio of the closed-form non-period-aware schedula-
bility conditions

transform the original task set into another task set where all
period values satisfy the relation Tmax/Tmin< 2. However, for
λ > 2, ρR(Algorithm 1) > ρR(Algorithm 3) ≥ ρR(T-Bound),
and for λ > 1.5, the Algorithm 1 condition showed the second
best acceptance ratio among all the conditions.

The LpExact condition showed a good performance for
the small values of λ (λ ≤ 1.2), whereas for λ > 1.5, its
acceptance ratio was the third best among all the schedulability
conditions.

It is important to note that the acceptance ratios of all the
conditions remain stable for λ > 2.

D. Performance as a function of tasks in the harmonic chain

The objective of this experiment was to evaluate the per-
formance of the schedulability conditions as a function of the
percentage of tasks that are part of a harmonic chain. We
generated nine samples of task sets HCk conformed by 1,000
task sets, where k is a value in the range [20, 100] that denotes
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Figure 17. Acceptance ratio of the closed-form period-aware schedulability
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Figure 18. Acceptance ratio of the non-closed-form period-aware schedula-
bility conditions

the percentage of tasks that are part of the harmonic chain.
Only one harmonic chain in every task set was generated.
The utilization of every sample and the maximum utilization
α of each task was uniformly distributed in the range [0.7,
0.95] and [0.01, 0.30], respectively. The execution times of
the tasks were generated with values 1 ≤ Ci ≤ αTi. The
number of tasks was uniformly distributed in the range [5,9].

The period values of the tasks were generated as follows.
The initial period T1 was obtained using a uniform distribution
in the range [20, 100]. Once T1 was derived, the period of each
task was generated using Ti = Ti−1∗f , where f was randomly
generated in the range [2,3], until the defined percentage of
tasks in the harmonic chain was reached. If this percentage was
k<100%, the remaining period values were generated such that
they did not belong to the harmonic chain. Figs. 16, 17, and
18 show the obtained acceptance ratios as a function of the
percentage of tasks that are part of an harmonic chain.

Fig. 16 shows the acceptance ratios obtained for the closed-
form non-period-aware schedulability conditions. We can ob-
serve that their acceptance ratios satisfy the relation ρHC(UO)
> ρHC(IP) > ρHC(LL) for every value of k. The UO condition
is slightly better than the IP and the LL conditions, whereas
the acceptance ratio of the IP and the LL conditions are very
close to each other. From these results, it is clear that none of
these conditions benefit from including tasks that are part of
a harmonic chain.

Fig. 17 shows the acceptance ratios obtained for the closed-
form period-aware schedulability conditions, where we also
included the UO and the LL conditions. We can observe
that in most cases, their acceptance ratios satisfy the relation
ρHC(CRMB) > ρHC(PO) > ρHC(Root) > ρHC(HC). It can be
observed that the CRMB condition had an acceptance ratio
significantly better than that of the remaining closed-form
period-aware conditions, showing an excellent performance
for k≥60. As discussed previously, the acceptance ratio of the
CRMB condition was equal to 100 when all the tasks were in
a harmonic chain. The HC and the Root conditions showed a
very similar performance, only lower than that of the CRMB
condition. The PO condition showed a performance similar to
the HC and the Root conditions for values of k ≤ 50, but
much lower than the HC and the Root conditions for higher
values of k.

Fig. 18 shows the acceptance ratios obtained for the non-
closed-form period-aware schedulability conditions, where we
also included the CRMB and the LL conditions. We can
observe that the DCT condition showed the best performance
among the non-closed-form period-aware conditions. Never-
theless, its performance was not as good as the performance
of CRMB condition for k≥ 50.

The Algorithm 1, the Algorithm 3, and the LpExact con-
ditions showed a similar performance for k≥ 60. However,
the Algorithm 3 and the LpExact conditions showed a lower
acceptance ratio for values of k smaller than 60. The T-
Bound condition showed the worst performance among these
schedulability conditions. It is interesting to note that the DCT,
Algorithm 1, Algorithm 3, LpExact, and CRMB conditions
yielded an acceptance ratio equal or close to 100 for k=100.

E. Comparison of Performances of the Schedulability Condi-
tions

A comparison of the relative performance of the inexact
schedulability conditions for RM on one processor is shown in
Table VIII. The aim of this comparison is to summarize the re-
sults of the experiments conducted in this section. Designers of
real-time applications can use the comparison shown in Table
VIII to determine which schedulability condition may be used
in certain situations, taking into account the characteristics of
the task set.

It can be noted that the non-closed-form period-aware
conditions yield better performance than the closed-form con-
ditions.

VI. CONCLUSIONS AND FUTURE WORK

Many real-time applications demand efficient and low-cost
schedulability tests for online admission control. In this paper,
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Characteristics Performance

of task sets Good Average Poor

Small number DCT PO, CRMB, T-Bound, LL, IP, UO,

of tasks (m≤4) Alg1, Alg3, LpExact HC, Root

Large number DCT, Alg1 Alg3, T-Bound, LL, IP, UO, HC,

of tasks (m>7) LpExact Root, PO, CRMB

Small utilization of Alg1, DCT, Alg3, T-Bound, LL, IP, UO, PO,

task sets (U≤ 0.8) LpExact Root, HC, CRMB

Large utilization of DCT Alg1, LpExact LL, IP, UO, HC, Root

task sets (U>0.8) PO, CRMB, Alg3

Small period ratio DCT CRMB, Alg1, Alg3, LL, IP, UO, HC,

(λ ≤ 1.5) T-Bound, LpExact Root, PO,

Large period ratio DCT, Alg1 Alg3, T-Bound, LL, IP, UO,HC, Root

(λ > 1.5) LpExact CRMB, PO

All tasks in DCT, CRMB, Alg3 PO, T-Bound, LL, IP, UO,

a single hc Alg1, HC, Root ,

LpExact

Large number of tasks CRMB, DCT Alg3, Alg1, LpExact, LL, IP, UO,

in hc (k≥ 80%) HC, Root, T-Bound, PO,

Small number of tasks DCT, Alg1 Alg3, T-Bound, HC, Root ,PO, LL

in hc (80% > k ≥ 20%) LpExact IP, UO, CRMB

Table VIII
RELATIVE PERFORMANCE OF THE RM INEXACT SCHEDULABILITY CONDITIONS

we surveyed the best-known exact and inexact schedulability
conditions for Rate Monotonic executing on one processor.
Extensive simulation experiments were conducted to evaluate
the performance and computational complexity of the inex-
act schedulability tests. In our simulation experiments, the
schedulability tests were evaluated for different number of
tasks, utilization factors, and different period ratios. Additional
experiments were conducted considering task sets with har-
monics chains.

The comparative analysis done in this paper showed that for
all the experiments conducted, the schedulability conditions
using the non-closed-forms schedulability tests derive a better
performance than those that use the closed-forms schedulabil-
ity tests.

Among all the non-closed-form schedulability conditions,
we observed that, in general, the DCT condition showed the
best performance. This performance can be explained by the
fact that the DCT condition transforms the period set into
another period set where all the tasks belong to a single
harmonic chain.

We believe that the decision of choosing one schedulability
test over another for a particular real-time application should
not depend only on its performance; it should also be take
into consideration the characteristics of the tasks and their
computational complexity.

As part of our future research, we plan to extend this study
to include schedulability tests for aperiodic, resource-sharing
tasks, and multiple processors.
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