
Chapter 8
Human Detection and Tracking in Healthcare
Applications Through the Use of a Network
of Sensors

Arnoldo Díaz-Ramírez, Francisco A. Bonino and Pedro Mejía-Alvarez

Abstract One of the most appealing applications of wireless sensor networks
(WSNs) is in human detection and tracking. The aim of these applications is to
detect if a person is in an area of interest, and to keep track of his location at every
instant of time. In recent years, we have seen a growing interest in the development of
proposals for the use of WSNs in detection and tracking applications for healthcare.
In the particular case of a patient suffering from dementia, it is very important to
detect him and keep track of his location at every time, to avoid that the patient may
enter to a zone of risk without supervision.When an event of interest is detected, such
as wandering, an action may be taken by sending out a notification to the caregiver
personnel. In this chapter, we review the most important proposals regarding the use
of WSNs for human detection and tracking in healthcare applications. Moreover, we
introduce a model for detection of patients suffering from dementia, based on aWSN
that uses binary sensors. The proposed model is able to detect if a patient leaves a
secure zone without supervision, and to emit alerts directed to caregivers.

8.1 Introduction

Human detection and tracking is one of the most attractive fields of application of
Wireless Sensor Networks (WSNs). The nodes of a WSN, known as motes, work
together to monitor the presence of people in the sensed area, and to keep track of
their location as they move. Since the motes have limited resources, an important
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design goal for these applications is to achieve a reliable detection of targets with
minimal resources consumption. Examples of areas where they can be used are
habitat monitoring, surveillance, intruder tracking, and healthcare.

New problems have emerged as a consequence of the fast growth of the urban pop-
ulation experienced during the past few years. Even though people now live longer,
the number of deaths caused by neurodegenerative diseases has grown considerably
[38]. Among them we have Psychiatric Illness, Dementia (of which Alzheimer’s is
the major cause), Parkinson’s disease, and Autism Spectrum disorders [34]. Unfor-
tunately, these diseases are starting earlier and affecting people under 55years.

Most of the brain disorders are chronic and incurable, and may last for years or
decades. Their economic costs are huge. In Europe, the 2010s total estimated cost
was 798 billion euros, of which the 60% was attributable to direct costs and 40% to
lost productivity [15]. For the family members that take care of patients with brain
diseases, it can represent an enormous source of emotional, practical, and financial
burden. As world’s population ages, the healthcare systems may collapse.

Among brain disorders, one of the major health problems is dementia. Dementia
describes a set of symptoms that includes loss ofmemory, mood issues, and problems
with communication and reasoning. The causes of this disease may include a number
of progressive illness that affect behavior and the ability to perform daily activities.
Two of the most common types of dementia are the Alzheimer’s disease and vascular
dementia.

Accordingly to the Alzheimer’s Disease International, 36 million people suffered
from dementia worldwide in 2010, and it is estimated that this numberwill grow to 66
million by 2030, and to 115 million by 2050. Also, nearly two-thirds of these people
live in middle and low-income countries. In addition, the global cost of dementia was
estimated at $604 billionUSD in 2010, and this cost is expected to grow in proportion
to the number of people affected by this disorder [2]. Dementia is the main cause of
dependency in the elderly, since they need constant monitoring, imposing a severe
burden to caregivers.

To address these issues, the use of WSNs to implement ubiquitous systems to
support healthcare activities has been the subject of intense research [1]. To ease
the burden on caregivers, in-home and in-hospital WSN-based applications may
provide continuous patient tracking, medical monitoring, medical data access, and
emergency notifications [43]. In the case of people with cognitive and physical dis-
abilities, the capability of continuous monitoring will increase the chance of early
detection of emergency and risk conditions [24]. In addition to the elderly and patients
with cognitive disorders, the care services for children may also benefit from these
applications.

In this chapter, we review themost important proposals regarding the use ofWSNs
for human detection and tracking in healthcare applications. Moreover, we introduce
a model for detection of patients suffering from dementia, based on a WSN that
uses binary sensors. The proposed model is able to detect if a patient leaves without
supervision a secure zone, and to emit alerts directed to caregivers.

The rest of the chapter is organized as follows. In Sect. 8.2 we briefly discuss the
state of the art of the detection and tracking proposals that use networks of sensors.
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Section8.3 introduces the related work regarding human detection and tracking for
healthcare applications. In Sect. 8.4, the proposed model for detection of patients
suffering from dementia is presented, and in Sect. 8.5 this model is evaluated and the
results are discussed. Finally, Sect. 8.6 is for conclusions.

8.2 Target Tracking Based on the Use of a WSN

Target tracking using wireless sensor networks has been the subject of intensive
research in the last decade [9]. AWSN tracking application must periodically collect
sensed data and use it to reconstruct the overall status of the monitored area using
data fusion techniques. The centralized approach is the most commonly used in
target tracking algorithms. In it, when the motes detect an event, they record it, and
rely on a routing protocol to send the relevant and preprocessed information toward
a base station or sink. The sink, which is a device with more resources than the
motes, collects the data received from the sensor nodes, processes it, and takes the
appropriate actions.

The algorithms designed to be used in WSN tracking applications are targeted
for the network and application layers, and may assume a static or a mobile sink
[8]. Regarding the application layer, two approaches have been used: coarse-grained
and fine-grained [25]. Coarse-grained localization uses minimal information, which
can include binary proximity [22] or near-far information [16]. In contrast, fine-
grained approaches use more detailed information and are based on different types
of measurements, such as the received signal strength (RSS) [37], angle of arrival
(AOA) [14, 37], time of arrival (TOA) [35], time difference of arrival (TDOA) [36],
extended Kalman filters (EKF) [30], and hybrid approaches [23, 47].

Concerning coarse-grained localization proposals, in [22] Kim et al. proposed a
target tracking model that relies on the use of binary sensors. Such sensors provide
only 1-bit information regarding the presence or absence of a target in the sensed
area. Past and current sensor outputs are used to determine the trajectory of the target
during small intervals. This trajectory is approximated by a straight line segment. In
[41], Shrivastava et al. analyzed fundamental performance limits of target tracking
using binary proximity sensors, and determined the accuracy with which a target’s
trajectory can be tracked. They introduced a geometric algorithm to derive linear
paths that approximate the trajectory of the target, and they extended their proposal
formultiple target tracking in [42]. TheDynamical Object Tracking (DOT) algorithm
was introduced by Tsaia et al. [44]. It assumes a mobile sink since it was devised
to guide a mobile user to chase a moving target. The motes that detect an intruder
record the event. When the mobile user requires the target location, it sends queries
that are replied by thosemotes that have tracking information, guiding themobile user
until he catches the target. The algorithm uses the knowledge of spatial neighborhood
defined on a planar graph, where the face neighbors are identified by aGabriel Graph.
Bugallo et al. [7] addressed the problem of multiple target tracking using particle
filtering. Under this approach, the algorithms need a very large number of particles
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when the sensed area is moderately large. To face this problem, they partition the
state space of the system into different subspaces, and run a separate particle filter
for each subspace.

In [12], Djuric et al. proposed the use of the auxiliary particle filtering (AFP) and
the cost-reference particle filter (CRPF) algorithms for tracking a single target using
data from binary sensors. The adoptedmodel for sensor measurements was the signal
strength. Vu and Zheng addressed the problem of target detection and tracking using
binary proximity sensors with location uncertainty in [45]. The uncertainty was
modeled as disks of possibly different radius around the nominal positions. They
introduced the concept of order-k max Voronoi Diagrams (VD) that tessellates the
area of interest into regions that are closer to k sensors in the worst case, to determine
the minimum sensing radius needed to ensure worst-case k-coverage. Their work
was extended in [46]. Le and Kaplan [27], proposed a probability hypothesis density
(PHD) filter for multi-target tracking using proximity sensors. This method was able
to estimate the number of targets and localize them regardless the target separation
for sufficient sensor density.

Concerning the fine-grained detection approach, Arora et al. [4] introduced a sur-
veillance system using inexpensive sensor nodes. In their model, intrusion data are
processed locally at each node, and if an anomaly situation is detected, data are shared
with neighboring nodes, and communicated to a gateway with wide area networking
capability. The model considers three user requirements: target detection, classifica-
tion, and tracking. The user may specify the QoS parameters that affect how well the
system detects, classifies, and tracks targets. Sheng andHu proposed a target location
method using microphones in [40]. This method is based on a maximum likelihood
estimation of both the source locations and corresponding acoustic energy readings.
Since this method uses nonlinear optimization, two complementary methods were
proposed to solve this nonlinear optimization problem.

He et al. proposed in [17] a monitoring system for use in military applications,
such as a surveillance system, that is able to operate for long periods of time. Using
magnetic sensors, the system allows a group of cooperating motes to detect and track
the positions of moving vehicles. It is able to tradeoff between energy-awareness and
surveillance performance by adaptively adjusting the sensitivity of the system. Based
on this work, He et al. later developed VigilNet [18], a large-scale real-time WSN
system that allows detecting, tracking, and classifying targets within a reasonable
period of time, while making efficient use of energy. VigilNet is a system designed
for spontaneous military operations in remote areas, where events of interest happen
infrequently and with a short duration, such as intruder-related events. The system is
organized into a layered architecture comprised of higher-level services and lower-
level components. The latter includes time synchronization, localization, and routing,
and forms the basis for implementing the higher-level services, such as aggregation
and power management.

In [30], Lin et al. introduced an EKF-based distributed adaptive multisensor
scheduling scheme for energy efficiency, to improve tracking accuracy. Since more
sensors can achieve better tracking accuracy, the proposed scheduling scheme calcu-
lates the optimal sampling interval, selects the nodes thatwill conform the cluster, and
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designates one of them as the cluster coordinator. The sensor scheduling problem is
formulated as an optimization problem and solved by a sequential three-step heuristic
algorithm. Wang et al. proposed in [47] an approach for target tracking for WSN by
combining maximum likelihood estimation and Kalman filtering using the distance
measurement. The maximum likelihood estimator is used for pre-localization of the
target and measurement conversion. The converted measurement and its associated
noise statistics are then used in a standard Kalman filter for recursive update of the
target state.

A method for RF tomographic tracking of a single target using a wireless sen-
sor network was introduced by Li et al. [29]. RF tomographic imaging involves an
image reconstruction step to estimate target locations. To avoid imaging processing,
the proposed method uses a particle filtering (Sequential Monte Carlo) approach.
In order to reduce the computational complexity of the algorithm, they introduced
a new measurement model that does not pixelize the region of interest. In [49],
Xu et al. addressed the problem of mobile target tracking based on a TOA measure-
ment model. The signals emitted by the mobile target are collected by the sensor
nodes, which records the signal’s time of arrival (TOA). A mobile sensor also emits
signals to allow the motes to collect the needed information to determine its location.
This mobile sensor can also measure signal from the target. In the data fusion center,
a mobile sensor controller directs the mobile sensor toward the target location. To
track a moving target with a mobile sensor, the data fusion center must estimate the
locations of both the target and the mobile sensor. The proposed model accounts for
the measurement noise due to multipath propagation and sensing error. It uses a min-
max approximation approach to estimate the targets location that can be efficiently
solved by means of semidefinite programming (SDP) relaxation.

8.3 Human Detection and Tracking for Healthcare
Applications

As the world’s population ages, there has been a great interest in the development of
ambient intelligence solutions to assist the elderly, particularly, those suffering from
the Alzheimer’s disease and related problems [24]. We can categorize the proposals
regarding human detection and tracking for healthcare as invasive and non-invasive.
In the former, the detection and tracking model considers the use of devices attached
to the target’s body. In contrast, in non-invasive models, the use of these devices is
not required.

Regarding invasive proposals, theAssisted Living Monitoring and Analysis System
(ALMAS), introduced in [33] by Marques et al., extended the concepts and ideas
of the CodeBlue project [31] by incorporating RFID technology, and employing
sophisticated video analysis algorithms for patient location, tracking, andmonitoring.
Wireless transceivers are located throughout the facility (e.g., a geriatric residence),
which communicate with the RFID tags and wearable units worn by the patients to
track and locate them. The video analysis software examines the information that
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is continuously recorded by the video cameras, in order to detect if there is any
anomalous situation, such as when a patient leaves his room toward an unauthorized
area, or if a patient has fallen down.

In [19], the location tracking Ultra Badge system was proposed to be used in a
hospital setting, with the aim of detecting falls and wandering. The system was com-
posed of two subsystems: an ultrasonic radar subsystem, and a wheelchair locator
subsystem. The first one monitors the human head’s position on and around the bed,
in order to detect falls. The second one is used to detect wandering, assuming that
the patient uses a wheelchair. The system consists of embedded ultrasonic receivers,
embedded/wireless ultrasonic emitters (named Ultra Badges), and a WSN that con-
nects receivers and emitters. In [21], Intille et al. introduced PlaceLab, which is part
of the House_n project, and share some of their experiences in regard to construct-
ing and operating the living laboratory. It included the use of hundreds of sensors
deployed in a live in laboratory, in order to research the use of ubiquitous computer
technologies in home settings. The laboratory was designed to support the collec-
tion of rich, multimodal sensor datasets of domestic activity, which are intended
to be shared among researchers working on context-aware ubiquitous computing
technology, preventive healthcare, energy conservation, and education.

Bardram et al. proposed in [6] a set of context-awareness applications and tech-
nologies to be used in hospitals. The proposed system consisted, among other com-
ponents, of an indoor location tracking system that uses the Bluetooth technology,
and a context-aware mobile phone application. The location and tracking systemwas
designed to locate staff, patients, and equipment, using smartphones and Bluetooth
tags.

AlarmNet, introduced in [48] byWood et al., is a system for assisted living and res-
identialmonitoringwhich uses aWSN.AlamNet consists ofwearable body networks,
emplaced wireless sensors, user interfaces, and back-end processing elements. The
body network includes sensors for heart rate, oxygen saturation, and ECG. Emplaced
sensors are deployed in living spaces to sense environmental quality, such as tempera-
ture, dust, and light, or resident activities.Motion and tripwire sensors enable location
tracking. However, it is not explained how the location and tracking processes are
conducted. In [10], Corchado et al. proposedGerAmi, an intelligent environment that
integrates multiagent systems, mobile devices, RFID bracelets, and Wi-Fi technolo-
gies, to facilitate the management and control of geriatric residences. To track the
location of a patient, the signal emitted from the bracelets is used by the ID readers
installed on the doors. The readers forward the data to a controller, which sends a
notification to a system agent that manages and forwards the information to a mobile
device, where the medical staff can identify the patient’s location.

An indoor system for patient tracking and monitoring system was proposed in
[13]. The system is capable of determining the location of a patient, and monitoring
motion activity. In this proposal, patients must carry a mobile node comprised of a
RF transceiver and a 3-axis accelerometer. A localization WSN is used, consisting
of static nodes, placed at known positions throughout a house or geriatric residence.
The mobile nodes transmit a beacon message every 50ms. The static nodes that
receive the message will forward it to the sink, where a localization module runs.
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It uses the number of the received beacon messages per static node that has the same
sequence number to determine which static nodes are in proximity to the mobile
node. Delaunay triangles are used to create a grid of possible regions where the target
could be located. If three static nodes are found to be in proximity, the corresponding
Delaunay triangle is used to determine the position of the patient. A tracking system
for the elderly is proposed by Yan et al. [50]. It is based on a mixed localization
algorithm that relies on sensors attached to the wrist of the patients, and the received
signal indicator (RSI). The system is able to track the location of a patient regardless
of whether or not he is wearing the sensor node.

Armaini et al. proposed in [3] a tracking system based on the combination of
wearable sensors and a video analysis module. The wearable sensor is a mobile
node that is fixed on the belt of the patient. It embeds an Inertial Navigation System
(INS) consisting of gyroscopes, accelerometers, and a compass. Data is fused using
an Extended Kalman Filtering (EKF). Once the wearable node detects the patient’s
location, the corresponding video camera is activated to confirm the presence of the
patient in the predicted area.

Concerning non-invasive proposals, Marco et al. introduced ZUPS in [32], a Zig-
Bee and ultrasound-based positioning system. ZUPS was intended to emit an alarm
when a risky situation is detected, such as wandering. The system uses ZigBee
(radio-frequency) and ultra-sound to measure distances between tags carried by the
patients, and beacons with known locations. Additionally, an accelerometer and a
button are integrated into the devices worn by the patients, to detect falls. A similar
approach was used in [20], where Huang et al. proposed a patient alert system for
fall management. It is a ZigBee-based location awareness and fall detection system
that provides immediate position information to the caregivers as soon as it detects
that a patient fell. Redondi et al. proposed LAURA, the Localization and Ubiquitous
Monitoring of Patients for Healthcare Support in [39], which is an integrated system
based on wireless sensor networks for patient monitoring, localization, and tracking.
In their paper, the authors discuss the two proposed approaches of the localization
and tracking engine. The first one is a centralized implementation, where localization
is executed centrally using the information collected locally. The second approach
is a distributed solution, where the localization is performed at the mobile nodes
and the outcome is delivered to the central controller. The personal localization and
tracking subsystem (PLTS) uses a localization algorithm based on the received signal
strength and the fixed distance between nodes.

In [26], Laoudias et al. discuss the proposal of an architecture which combines
the sensor health state estimation together with fault tolerant localization algorithms,
to be used in a binary WSN. The proposed architecture has three main components.
The Sensor State Estimation component determines the health state of each sensor.
The Localization component uses the information generated by the previous module,
and ignores any information coming fromwhat are thought as faulty sensors. Finally,
the target location estimate is sent to the Smoothing component, which filters the
current location estimate using a particle filter.

As it can be observed, most of the proposals described here require the use of
physical devices attached to the person that is being monitored or tracked, such as
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RFID bracelets. However, patients with dementia tend to reject noticeable gadgets.
For this kind of patients, we need a device-free passive localization [51], which is
able to detect and track persons that do not carry any device.

8.4 Architecture of the Proposed System

Healthcare applications may benefit greatly by the use of networks of sensors. For
instance, since it is not necessary the existence of a previous infrastructure (e.g.,
cables) to deploy it, the system may have a high degree of flexibility. Additionally,
they provide the possibility of implementing homogeneous systems by integrating
almost any sensor to the nodes constituting the WSN. This means that using only
the WSN it is possible to detect a large number of events. Also, they allow the
development of ambient intelligence healthcare solutions through the integration of
wireless sensor networkswith pervasive computing, fusion information, and artificial
intelligence techniques.

The aim of the proposed model is to support the care process of patients with
dementia. It is an extension of themodel introduced in [11]. In particular, the objective
of the extendedmodel is to add robustness to the former one, when detecting a patient
leaving a safe location without supervision. The specific objective is to identify if a
patient leaves a room, having arrived there by himself or by someone else, such as a
nurse.

As discussed previously, some proposals that have been published to date also
consider the use of ubiquitous computing to implement healthcare monitoring and
tracking applications. However, most of them include the use of devices attached
to the person that is being monitored, and that are hardly accepted by dementia
patients. Our purpose has been to investigate how to monitor dementia patients using
non-invasive techniques, as the one used in the system discussed in [51] for patient
location, or the one discussed in [5] for falls detection. However, unlike these propos-
als that use the strength of the signal detected by the sensors, we wanted to develop
a simpler solution using inexpensive binary sensors. In addition, the use of binary
sensors reduces the processing overhead, allowing a faster system response. In our
model, the sensors produce binary outputs without the need of filter them to achieve
binary signals.

Non-invasive techniques are helpful when it is not possible or convenient use inva-
sivemethods. Additionally, the proposedmodel can be used together with an invasive
model to improve the system’s performance. It can be used also as a redundant sys-
tem to detect events of interest, in case that the main systems fails. For instance, if
the patient removed the RFID bracelet attached to him.

In order to select the most suitable sensors to successfully detect if a patient
leaves a room, and taking into consideration the results published in the literature, we
conducted several tests using different types of sensors. The choice was made based
on the accuracy in detecting the changes in the environment, and their relationship
with the amount of processing to be given to the output received from the sensor.
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Fig. 8.1 System deployment

Two of the sensors tested showed a very good performance: passive infrared sensors,
and magnetometers.

Passive InfraRed (PIR) sensorsmeasure the infrared light emanating from objects.
They are cheap sensors that detect the presence of heat from an object or body
nearby. They are also capable of detecting the movement of people when a temper-
ature change occurs. Motion detectors usually use PIR sensors. On the other hand,
magnetometers are sensors that detect the change of direction of a magnetic field.
When placed on the doors of the rooms, it is possible to know if they were opened
or closed. However, we require that the system would be able to decide if the door
was opened because someone entered the room, or opened for a person to leave the
room. For this, we propose an algorithm that uses information fusion techniques to
combine the values measured by PIRs and magnetometers, to determine whether a
person enters a room (I ), or leaves a room (O).

Because there are many scenarios to consider for the detection of wander, we
propose another algorithm that combines the measured values of the sensors, and the
events I and O , to determine if a patient leaves a room without authorization. The
system deployment is shown in Fig. 8.1.

8.4.1 Non-invasive Tracking Algorithms

In order to be able to design a WSN-based algorithm to detect when a patient enters
or leaves a room, it was important to understand the relationship between the data
collected by the sensors. To achieve this, we conducted a set of experiments using
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the deployment shown in Fig. 8.1. As it can be observed, a node equipped with a
magnetometer (M) was placed on the door of the room, whereas two nodes using a
PIR sensorwere placed on awall inside the room (P1), and on top of door (P2), outside
the room, respectively. It is important to note that the deployment of the sensors is
important in our model. The PIR sensor placed on the wall (P1) must detect any event
around the room’s door. The second PIR (P2) must sense any movement close to the
door, outside the room. The magnetometer must be able to detect any movement of
the door.

The sensors were activated when an event of interest took place (e.g., motion is
detected in the room). Afterward, they periodically sensed the environment until no
activity was detected. The data collected by the sensors was sent to the sink.

An important observation from the analysis of the data obtained from the exper-
iments, is that it is possible to differentiate the event of a person entering the room
(I ), from the event of a person leaving the room (O), using the values recorded
from the sensors. To illustrate this, Fig. 8.2 shows the data collected from the sen-
sors when a person enters the room, and later when a person leaves the room. We
can observe that in the former case, we first got data from the magnetometer, fol-
lowed by data received from both M and P1 sensors, and finally data from the P1
sensor. In contrast, in the later case we first received data from the P1 sensor, fol-
lowed by data received from both M and P1 sensors, and finally we received data
from the magnetometer, and also from the P1 sensor if a person stays in the room.
Using the above relationships between the values measured by the sensors as a func-
tion of the time, it was possible to design an algorithm based on information fusion
techniques, to determine the type of event occurred (i.e., I or O).

In our model, St represents a sample recorded by a sensor node, where t is the
time when the event was detected. S ∈ (M, P), where M is a sample recorder by the

Fig. 8.2 Values measured by the sensor when a person enters and leaves a room
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magnetometer, and P by the PIR sensor on the wall of the room, which are the only
sensors needed to detect either I and O events. The events of interest are: I , a person
entering the room, and O , a person leaving the room. For instance, considering the
behavior of an I event, and assuming, without loss of generality, that the event starts
at t = 1, and that the sampling period T is 1 second, the event can be represented as:

I = (M1, M2, . . . , Mi , Pj , Mi+1, Pj+1, . . . , Mk, Pk+1, . . . , Pn−1, Pn).

As it can be observed, the event takes place in the interval (1, n). The magne-
tometer detects activity in the interval (1, k), whereas the PIR sensor detects it in
the interval ( j, n). During the interval (i, k), we have that the time elapsed between
two consecutive samples, named t , satisfies the relationship 0 ≤ t ≤ T . We call
intersection the interval (i, k). The samples St are stored in a sliding window W of
size ws.

The characteristics of the patients can vary depending on the age, type of disease,
among other things. Also, the conditions of the rooms vary considerably in size,
distribution, weight, and orientation of the doors, just to name a few. Because of
this reason, the proposed model requires a training stage, to determine the values of
parameters of interest of the events that are used by the algorithm. The parameters
of interest are: the mean and standard deviation of the number of samples of the
I and O events, named S̄I , σSI , S̄O , and σSO , respectively. Also, the mean and
standard deviation of the number of samples collected by the magnetometer before
the intersection in an I event, M̄I and σMI , respectively; the mean and standard
deviation of the number of samples collected by the PIR sensor after the intersection
in an I event, P̄I andσPI , respectively; themean and standard deviation of the number
of samples collected by the PIR sensor before the intersection in a O event, P̄O and
σPO , respectively; and the mean and standard deviation of the number of samples
collected by the magnetometer sensor after the intersection in a O event, M̄O and
σMO , respectively. Finally, the threshold values T MI , T MO , T PI , and T Po, which
are of the maximum number of samples recorded by the magnetometer and PIR
sensors, and their respective standard deviations, before and after an intersection, for
both events. To obtain these parameters, data is collected in the training stage, from
the I and O events, for each patient and a room.

When the nodes discover activity, they send the collected data to the sink, where
each sample is stored in the sliding window. The algorithm detects the beginning of
an event when the time elapsed between two consecutive samples is equal or less
than T . The event finishes when the previous condition is not satisfied, or when the
number of samples is large enough to conclude that an event of interest has taken
place. To determine if an event I or O has taken place, the following expression is
used,

E = 1 −
∣
∣N S − S̄E

∣
∣

λ · σSE

, (8.1)
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where N S is the number of samples of the event, and λ is a constant. If E ≥ 0, the
algorithm concludes that an event has occurred.

The N S parameter is the sumof the number of samples before, during and after the
intersection. In the former and latter cases, if the number of samples are greater than
a threshold, then the threshold value is used. The mean and the standard deviation of
the number of samples can be used as a threshold value. The algorithm is described
in Fig. 8.3. It can be observed that the function event() is used to determine the
type of event, which can be I , or O .

For instance, consider the case of the I event discussed previously. The algorithm
first receives the data sent by the magnetometer collected in the interval (1, i), fol-
lowed by an intersection (data sent by both nodes) collected in the interval ( j, k),
and finally the data sent by the PIR sensor, collected in the interval (k + 1, n). Then,
it calculates the following, as shown in the algorithm of Fig. 8.3:

• b = ∑i
t=1 Mt if b ≤ M̄I + σMI ; b = M̄I + σMI otherwise;

• m = ∑k
t= j St ;

• l = ∑n
t=k+1 Pt if l ≤ P̄I + σPI ; l = P̄I + σPI otherwise; and• N S = b + m + l.

To determine if an I event has occurred, the algorithm evaluates the following expres-
sion:

EI = 1 −
∣
∣N S − S̄I

∣
∣

λ · σSI

. (8.2)

Finally, if EI ≥ 0, the algorithm concludes that an I event occurred.
The second algorithm uses the temporal relationship maintained by the order in

which the sensors are activated, when someone leaves a room without supervision.
Through various experiments, it was observed that this is the occurrence of events,
or a change of states in the environment in a particular order. For instance, when a
patient leaves a room, he first performs an activity within it (such as walking), later
the door is opened, and finally, there is no activity in the room. We assume that only
authorized individuals can enter the room through a security mechanism. The state
machine (SM) shown in Fig. 8.4 depicts the proposed algorithm.

The SM has five states representing changes in the patient’s environment. State
0 represents that the room is empty, while State 4 represents a patient left the room
without supervision. States 1, 2, and 3 are transitional states, and represent: one
or two people entered the room, another person entered the room with the patient
inside, and that a person has left the room leaving inside the patient, respectively.
State changes may occur as a consequence of the events produced by the sensor
measurements, evaluated as a function of time. The events that cause state changes
are: I , representing an input is detected; O , representing that an output was detected;
P1, which means that the PIR sensor placed on the wall detects activity in the room;
N1, which represents a period of inactivity inside the room, P2, which means that
the PIR sensor placed on the door detects activity outside the room; and finally N2,
which represents no activity is detected outside the room. In our former model [11],
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/* Input: St , samples collected by sensors,
conformed of a timestamp (ts) and node id. */

/* Output: e, type of event (I, O, P, or N) */
while (true) do

i=b=m=l=0;
b node id = l node id = NULL;
w[i]=St ;
i++;
w[i]=St ;
while ( w[i].ts - w[i-1].ts ≤T ) do

b node id = w[i].id;
b = 2;
i++;
w[i]=St ;
while [ ( w[i].ts - w[i-1].ts ≤T ) and

(w[i].id == w[i-1].id) ] do
b++;
i++;
w[i]=St ;

m = 1;
i++;
w[i]=St ;
while [ ( w[i].ts - w[i-1].ts ≤T ) and
!( w[i].id == w[i-1].id == w[i-2].id ) ] do
if(w[i].lastElement.id == P2)

m++;
i++;
w[i]=St ;

l = 1;
i++;
w[i]=St ;
if(b node id == INPUT)

b threshold = b thresholdInput;
l threshold = l thresholdInput;

else
b threshold = b thresholdOutput;
l threshold = l thresholdOutput;

while [ ( w[i].ts - w[i-1].ts ≤T ) and
(l ≤l threshold) ] do

l node id = w[i].id;
l++;
i++;
w[i]=St ;

if (b ¿ b threshold)
b = l threshold;

e = event(b, m, l, b node id, l node id); // using Eqn. 1
send event(e);

i++;
w[i]=St ;

Fig. 8.3 Algorithm 1
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Fig. 8.4 State machine

it was difficult to detect the transition fromState1 to State2, and fromState2 to State0.
The inclusion of the PIR outside the room’s door enables a more accurate detection
of these cases. Additionally, the model is able to detect a patient leaving the room
even when there are people standing or moving outside the patient’s room.

We restricted our model to the scenarios described above since they represent
common situations in geriatric residences, or at home, where family members take
care of a person affected by the Alzheimer’s disease. In these cases, the patient is
under constant supervision, with the exception of special situations. For instance,
when the patient goes to sleep, or when the caregiver is busy preparing meal. Our
model is aimed to be used in these and similar cases. Otherwise, the system can be
deactivated. It is important to note that our model is able to distinguish whether the
patient or caregivers are leaving the room.

On the other hand, if the proposed system is deployed to be used in different
scenarios, some minor modifications to the proposed algorithm are required, and
perhaps it would be necessary the addition of more sensors. It is important to note
that our purpose has been to show that is possible to define a non-invasive method
to detect events of interest, using inexpensive binary sensors.

8.5 Evaluation

The proposed algorithms were evaluated using a room with only one access, and
simulating various activity scenarios. We implemented a prototype of the proposed
model and conducted a series of experiments to evaluate it.
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To implement the prototype, the nodes used were equipped with two types of
sensors. One was the PIR sensor, which can detect people’s movement through the
energy they emit. The PIR sensor used has a maximum radial detection distance
(straight ahead) of 7m, and a detection angle of 100◦. The second PIR sensor was
placed on the outside wall of the room, above the door. The other sensor used was
the magnetometer, which detects the change in the magnetic field direction. This
sensor is used in conjunction with a magnet integrated in the door, to detect when it
is opened.

The WSN was composed of four nodes. Three of them used an IRIS hardware
platform, which was programmed using the nesC language and the TinyOS operat-
ing system [28]. These nodes have a MTS300CA board, one of them containing a
magnetometer and two of them containing PIR sensors. The third node was used as
a sink, and was connected to a personal computer via an interface board MIB520.

We used a DYP-ME003 model PIR sensor. It is a digital sensor that has a true
output when someone enters to its detection area. The PIR sensor output depends on
the electric current in its power source. This implies that, when the magnitude of the
current decreases, so it does the magnitude of the high level output of the PIR sensor.

To increase the lifetime of the PIR sensor node, and for a more certainty in
its measurements, the PIR sensor was connected to an LM741C model operational
amplifier (Opamp), which is connected using a magnitude comparator configuration.
The amplifier output was connected to a MDA300CA board. This connection is
illustrated in Fig. 8.5. Note that the values of resistors connected have 10 K�, and
Vcc = 5VDC.

We conducted a set of controlled experiments to evaluate our first algorithm.
The goal of this set of experiments was to corroborate whether the algorithm was
able to detect a person entering and leaving the room. From the training stage, we
obtained the following parameters values: S̄I = 18.45, σSI = 1.67, S̄O = 21.9, and

Fig. 8.5 PIR sensor connected to aMDA300CA board
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Table 8.1 Results obtained
from the evaluation of event I

λ Detected False negatives

1 13 7

1.1 13 7

1.2 14 6

1.3 14 6

1.4 14 6

1.5 15 5

1.6 15 5

1.7 17 3

1.8 17 3

1.9 18 2

2 18 2

Table 8.2 Results obtained
from the evaluation of event O

λ Detected False negatives

1 13 7

1.1 13 7

1.2 13 7

1.3 16 4

1.4 16 4

1.5 16 4

1.6 18 2

1.7 18 2

1.8 18 2

1.9 19 1

2 19 1

σSO = 1.12.We performed 20 experiments of a person entering a room, and 20 more
leaving the room, in the training process. The results of the algorithms evaluation for
the events I and O are shown in Tables8.1 and 8.2, respectively. It can be observed
that the algorithm showed a good performance for λ ≥ 1.8.

Next, we wanted to evaluate if our model was able to detect when a patient leaves
a room without supervision. In order to do that, we conducted series of controlled
experiments using diverse scenarios, recreating real situations of patients in a health-
care residence. The scenarios that we evaluated were: (a) the patient arrives alone to
the room, and leaves the room by himself; (b) the patient is accompanied to the room
and leaves it alone; (c) the patient enters the room alone, and leaves it with the help
of an authorized person; and (d) the patient arrives and leaves the room accompanied
by a person. We conducted 20 experiments of each scenario. In these experiments,
we used λ = 2. Table8.3 shows the obtained results from the experiments. As we
can observe, the proposed algorithm showed a very good rate of detection of the
events of interest. As we can observe from Table8.3, scenario d showed the worst
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Table 8.3 Evaluation of the
second algorithm

Scenario Rate of detection (%)

a 90

b 80

c 80

d 70

detection rate. This is because the parameters of the system were obtained from
the training stage considering only one person, and in this scenario two people are
involved: the patient and the caregiver. A change in the parameters (e.g., a larger λ)
may provide a better detection rate.

8.6 Conclusions

The fast urban population growth and the aging of the world population are impos-
ing a heavy burden in the government’s healthcare and financial systems. One of
the major health problems of the elderly is dementia. Dementia is the main cause
of dependency in older people, since they need constant supervision. Alzheimer’s
disease and vascular dementia are the most common types of dementia. The use of
sensors of networks to assist the elderly has been a subject of intensive research
in recent years. In this chapter, we reviewed some of the most important proposals
regarding the use of wireless sensor networks for target tracking. Also, we discussed
some of the proposals published to date about human detection and tracking for
healthcare applications.

We introduced a pervasive computing model, based on the use of a WSN, to
support the activities of assistance and monitoring of patients with dementia. Using
high-availability and low-cost binary sensors, the proposed model has been designed
to detect in real-time when the patient enters a secure zone, and to emit alerts if he
leaves it. Particularly, we proposed two algorithms to determine if a patient leaves a
roomwithout supervision, assuming the use of aWSNequippedwith passive infrared
sensors and magnetometers. The evaluation of the proposed algorithms showed that
they are able to detect efficiently when a patient leaves a room without supervision.
In addition, the proposed model can detect events in more complex scenarios with
minor modifications and the addition of more sensors.
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