
Evaluation Framework for Energy-Aware Multiprocessor
Scheduling in Real-Time Systems

PEDROMEJIA-ALVAREZ∗, DAVIDMONCADA-MADERO†, HAKANAYDIN‡, and ARNOLDO
DIAZ-RAMIREZ§

Multiprocessor and multicore architectures are fast becoming the platform of choice for deploying workloads,
as they have higher computing capabilities and energy efficiency than traditional architectures. In addition to
time constraints, a number of real-time applications are required to operate in systems working with limited
power supplies, which also imposes tight energy constraints on their execution. Therefore, it is desirable for the
system to minimize its energy consumption while still achieving a satisfactory performance. Several energy-
aware scheduling techniques addressing this issue have been proposed over the past few years. Unfortunately,
few aspects of implementation are seldom considered in theoretical work, and only a tiny fraction of these
techniques have been implemented in an actual hardware platform and evaluated by analytical methods. The
work presented in this paper thus attempts to provide a prototyping and evaluation framework in which
energy-aware multiprocessor scheduling algorithms can translate into full-fledged practical realizations, where
their power consumption profiles can be properly measured.

Keywords: Real-Time Systems, Energy Management, Scheduling,Multicore Architectures

1 INTRODUCTION
Energy management has become a major design and operational constraint for electronic devices
working with limited power supplies. This is especially true for embedded real-time systems, whose
performance requirements are often very high and which usually rely on limited energy sources
such as batteries. Systems that are better at managing available energy have a longer lifetime and
are more reliable. They also help to reduce the carbon footprint and lower the power dissipation that
results in heat transfer. Even for systems connected to the power grid, reducing energy consumption
provides significant savings in business costs and alleviates environmental issues.
Over the past two decades, many approaches for managing energy consumption (e.g., through

processor slowdown or shutdown) in a real-time setting have been proposed for the uniprocessor
case. As multiprocessor platforms have become more commonplace, advancements have been
made in scheduling theory for supporting real-time applications such that they could benefit from
improved multiprocessor performance. However, the use of multiple processing units further com-
plicates the management of resources, including energy, and energy-aware real-time multiprocessor
scheduling has begun to attract attention within the real-time research community. Early multi-
processor architectures had processors placed on separate chips, allowing them to independently
switch their operating frequency. As such, the first works focusing on energy management for
real-time systems running on multiprocessor platforms considered hardware models in which the
processors featured per-CPU voltage and frequency scaling capabilities [14, 35, 48]. Subsequent
∗Institution: Departamento de Computacion, CINVESTAV-IPN,Mexico City.
†Institution: Microsoft, Redmond, Wa..
‡Institution: Department of Computer Science, George Mason University, FaixFax Virginia..
§Institution: Instituto Tecnologico de Mexicali, MEXICO..

Authors’ address: Pedro Mejia-Alvarez, pmalvarez@cs.cinvestav.mx; David Moncada-Madero; Hakan Aydin, aydin@cs.gmu.
edu; Arnoldo Diaz-Ramirez, adiaz@itmexicali.edu.mx.

2018. XXXX-XXXX/2018/12-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Mejia-Alvarez P. et al.

generations of multiprocessor systems began packing multiple processing cores onto a single chip,
forcing these to share a common voltage level and run at the same frequency, and research efforts
were devoted to tackling the problem of supporting real-time workloads on platforms constrained
to global frequency scaling [37, 46].
In most cases, the proposed energy-efficient real-time scheduling algorithms (for both the

uniprocessor and multiprocessor cases) are studied using simulations, where the primary objective
is to assess their performance in terms of schedulability and energy consumption. Simulation based
studies are attractive for a number of reasons: insight into the working of a fairly complex system
can be gained relatively quickly and cheaply, and it is easy to identify the most influential factors in
the simulation outcome. In the case of energy-aware real-timemultiprocessor scheduling algorithms,
simulations provide a means for evaluating their energy consumption profile without the need to
procure specialized hardware or measurement instrumentation. Additionally, simulations allow
focusing on the essential aspects of the algorithms by abstracting away certain details that would
complicate the approach, and running a multitude of workloads in a fraction of the time required
to run them on real hardware.
Despite extensive study into energy-efficient techniques in the real-time literature [4, 5], there

seems to be little interest in evaluating them in an actual Real-Time Operating System (RTOS)
running on a real experimental testbed. Studies based solely on simulations have limitations. The
lack of a standardized simulation environment within the real-time community has led researchers
to develop their own simulators, embedding their own set of simplifying assumptions. This makes
it difficult to validate the presented results or to determine the relative performance of the proposed
techniques. In some works, techniques have been derived that presume hardware models with
processors capable of switching to any frequency within a range. Other works assume power
dissipation models, only considering the effect of voltage/frequency on the platform’s overall
energy consumption, and sometimes disregarding the role of static dissipation entirely. Lastly, little
advice is provided regarding problems that arise when the techniques are implemented on real
hardware. Without proper experimental evaluation of the proposed techniques, real performance
risks remain largely unknown.
Specifically, the main contributions of this article are:

• The development of a loosely coupled, generic, reusable component for conferring real-time
scheduling plugins with processor voltage and frequency scaling capabilities and managing
the synchronization of processors with respect to the global voltage and frequency level [4, 5].
• The implementation and empirical comparison of two representative energy-aware real-
time multiprocessor scheduling algorithms designed for platforms where processors are
constrained to a single clock domain. Implementation was carried out in LITMUSRT [9, 12],
an actively developed and supported real-time extension for the Linux kernel.
• A power dissipation measurement methodology for assessing the practical merits of the
implemented algorithms in terms of energy consumption.

The remaining of this article is organized as follows: section 2 provides an overview of the
power management subsystems available in Linux and briefly describes LITMUSRT, as well as the
extension developed for enabling predictable processor frequency adjustments; section 3 describes
LITMUSRTand its extension with a CPUFreq module to perform frequency adjustments at runtime;
section 4 describes the key properties of the energy-aware real-time multiprocessor scheduling
algorithms evaluated within the framework of the case study presented in this article; section 5
presents the methodology followed for conducting the experimental evaluation of the considered
algorithms and discusses the results. Finally, section 6 concludes the article with a few remarks
regarding the goals reached.

, Vol. 1, No. 1, Article . Publication date: December 2018.

Evaluation Framework for Energy-Aware Multiprocessor Scheduling in Real-Time Systems 3

Fig. 1. Overview of the Linux power management infrastructure.

2 ENERGY MANAGEMENT IN OPERATING SYSTEMS
This section provides a comprehensive overview of the power management infrastructure available
within the Linux kernel, which allows Linux to fully exploit the power saving capabilities of the
various platforms upon which it runs. Also, the architecture of the real-time extension for the Linux
kernel behind the evaluations presented in this work, LITMUSRTis described, as well as the design
and implementation of the component allowing LITMUSRT scheduling plugins to mesh with part
of the Linux power management infrastructure.

2.1 Energy Management in Linux
Within the Linux kernel, power management can be divided into two broad categories: system
power management and device power management [34]. System power management is in charge
of transitioning the entire system (or parts of it - the processor, for example) into performance
states or low-power modes, using the CPUFreq and CPUIdle subsystems, among other measures.
Device power management is concerned with placing unused system devices into low-power states.
Figure 1 shows an overview of the performance and low-power states provided by the Linux power
management infrastructure.

2.2 System Power Management
System power management involves moving the entire system into a low-power state, where it
consumes a small amount of power while simultaneously conserving a relatively low response
latency to the user. The system’s power consumption, as well as the overhead incurred in placing
the system back in the active state, depends on the state of the system. As a general rule, in
Dynamic Power Management (DPM) techniques, the deeper the low-power state, the lower the
power consumed by the system, but also, the higher the latency involved [32, 42, 47]. Regardless of
the low-power state the system moves into, the running context is saved to volatile or non-volatile
storage before the system is powered down and subsequently restored when the system is powered
back up, preventing unnecessary shutdown and startup sequences.
The low-power states a system can enter into depend largely on the underlying platform and

hardware architecture. Despite this, at least three states are commonly available: standby, suspend,
and hibernate. Standby halts the processor and moves the devices to a low-power state, saving
moderate power while still retaining a very low response latency – typically less than one second.
Suspend (also known as suspend-to-RAM) places all devices in a deeper sleep state, except for main
memory, which is placed in self-refresh mode so that its contents are not flushed. More time is

, Vol. 1, No. 1, Article . Publication date: December 2018.

4 Mejia-Alvarez P. et al.

Fig. 2. The CPUFreq subsystem architecture.

required to return from suspend than from standby, but the latency still is mildly low at typically
few seconds. Hibernate saves the most power by turning off the entire system after saving its
running context to non-volatile storage (usually to disk). It also incurs the worst latency – around
thirty seconds.
The Linux kernel provides two mechanisms as part of its power management infrastructure

which are voltage and frequency scaling (DVFS) and processor shutdown (DPM). The use of these
two techniques is pivotal in decreasing the platform’s power and energy consumption and limiting
its thermal output, as power dissipation produces heat as a byproduct. DVFS actions are carried
out by the CPUFreq module, whereas DPM transitions are provided by the CPUIdle module.

2.2.1 The CPUFreq Subsystem. The CPUFreq subsystem [21] enables scaling processor frequencies
at runtime within the Linux kernel. CPUFreq has been available since the 2.6.0 Linux kernel version.
CPUFreq is composedmainly of a set of defined governors and low-level drivers, as shown in Figure 2.
The subsystem complies with the ACPI standard [25], offering an interface to control processor
performance states, or P-States (sometimes also called Operating Performance Points, or OPP).
These power management states are specified by ACPI and translate into voltage and operating
frequency pairs. P-States are numbered according to their associated speed and power levels; higher
P-States represent slower processor speeds and lower power consumption. For example, a P3 state
demands less power and runs more slowly than a P1 state. The number of available P-States is
processor-dependent.
In addition to P-States, the ACPI specification also defines C-States for processor power man-

agement when the system idles. C-States offer an idle processor the ability to turn off unused
components to save power, such as stopping the processor clock and bypassing hardware inter-
rupts. As with P-States, the number and attributes of C-States are specific to the processor. Fully
operational processors run in the C0 state. At higher C-States, the processor moves to deeper sleep
states, and more components are shut down.
CPUFreq governors implement a particular policy for controlling how the processor frequency

and voltage levels are scaled. These are designed with different goals in mind: some governors
deliberately switch to low frequencies in systems with low energy budgets (such as laptops running
on battery power). Others governors focus on short bursts of high processor utilization. It follows

, Vol. 1, No. 1, Article . Publication date: December 2018.

Evaluation Framework for Energy-Aware Multiprocessor Scheduling in Real-Time Systems 5

that selecting the most adequate governor is highly dependent on how the system is optimized,
whether it be for power, for performance, or some other type of hybrid or predictive approach. The
CPUFreq subsystem has four default governors1:

• The performance governor. This governor statically sets the processor speed to the highest
available frequency. As such, it is most useful when the platform is required to operate at peak
performance. Also, transition latency times are nonexistent, since the switching occurs only
once. As a disadvantage, running at top speed for long periods quickly leads to overheating.
• The powersave governor. Similar to the performance governor, with the difference that
this governor sets the processor speed to the lowest available frequency instead. This results
in a great deal of power savings at the expense of a increased execution times. Nevertheless,
using this governor might extend the application completion times beyond energy efficiency,
as running the application for a longer time while consuming less power might lead to more
energy consumption than doing so at faster rates. For example, when the energy-efficient
frequency [3] is higher than the system’s lowest frequency level."
• The ondemand governor. Introduced in the 2.6.10 Linux kernel version, this governor is
one of the first attempts to integrate dynamic frequency scaling with processor utilization
tracking. The ondemand governor automatically selects the highest available frequency when
the average processor load rises above a predefined threshold. Average load estimation is
triggered by the task scheduler. The governor tracks changes in load when a certain period
has elapsed and sets the frequency accordingly.
When the average processor utilization rises above the threshold specified by the user, the
ondemand governor increases the frequency to the maximum allowable value. If the average
processor utilization falls below a second lower bound, the governor decreases the frequency
in steps, setting the processor to run at the next lowest frequency. The governor stops
decreasing the frequency when it hits the minimum allowable value. At predefined intervals,
the current processor utilization is queried and the same procedure is applied to dynamically
adjust the frequency. The governor can optionally reject the utilization contributed by niced
processes2; any processes that run with a positive nice value will not be accounted for when
determining the current processor utilization. In addition, the ondemand governor considers
a tunable parameter that modifies its behavior to save more power by reducing the target
frequency by a specified percentage.
• The conservative governor. Similar to the ondemand governor, the conservative governor
also works by dynamically adjusting frequencies based on average processor utilization.
The difference between the two is that the latter increases and decreases processor speed
more gradually, resulting in a more finely tuned frequency adjustment. The governor was
introduced in the 2.6.12 Linux kernel version.
Unlike the ondemand governor, the conservative governor always adjusts the frequency up
or down in steps. If the average processor utilization rises above a user-defined threshold,
the governor steps up the processor speed to the next highest frequency below or equal to
the maximum value. Correspondingly, the governor steps down the frequency when the
average utilization falls below a second, also user-defined threshold. After each predefined
interval, the current processor utilization is checked and the procedure is repeated. The
utilization contribution of processes with a positive nice value can optionally be ignored

1 CPUFreq actually has five default governors, the fifth of these being the userspace governor. Here the authors focus only
on governors that perform frequency adjustments.
2 Within the Linux kernel task scheduler, processes with large nice values have lower priorities.

, Vol. 1, No. 1, Article . Publication date: December 2018.

6 Mejia-Alvarez P. et al.

when computing overall processor utilization (as in the ondemand governor). Therefore,
niced processes will not cause the processor frequency to increase.

Although some CPUFreq governors rely on information provided by the task scheduler, the
modular and autonomous design of governorsmakes it challenging tomerge the powermanagement
policies they enforce into the task scheduler. The desire to infuse the task scheduler with processor
power management capabilities, particularly processor frequency scaling, has been present for
some time within the Linux community [11]. Indeed, some initial efforts have been made to more
closely link the scheduler to the processors power management infrastructure, paving the way
for a more complete solution. For example, a patch introducing a new CPUFreq governor, labeled
schedutil3 by Wysocki, has recently been merged into the mainline 4.7 Linux kernel release. The
schedutil governor benefits from a callback function that the scheduler uses whenever it computes
its new load average based on the currently scheduled tasks. This simple scheme makes for a much
more precise frequency adjustment.

2.2.2 The CPUIdle Subsystem. When older systems became idle, a low-priority “idle” task running
a busy-wait loop was scheduled until some other task requested service [15]. If the system ran
a light workload with many idle periods, busy-waiting resulted in CPU cycles being burned and
power being drained without any useful work being performed. This situation motivated hardware
architects to equip next-generation platforms with a variety of low-power and idle states to switch
to when there are no jobs. These low-power states (previously mentioned in this section as C-States)
vary in their associated power consumption and entry-exit latency.

Within the Linux kernel, the CPUIdle subsystem [38] was developed for handling low-power
states. Much like the CPUFreq module, CPUIdle offers a generic, hardware independent interface
to handle the different processor idle states, and installs a layer of abstraction between policies
and hardware drivers. Policies, as with CPUFreq, are enforced by governors. Governors implement
the algorithm in charge of selecting the most appropriate idle state for a particular situation. For
instance, a system running a performance-sensitive application (such as video playback) might
not be able to afford staying idle for too long; in this case, the CPUIdle governor should select a
low-latency idle state.

2.3 Device Power Management
Device power management [34] is the other component of the Linux kernel power management
infrastructure. It is concerned with putting peripheral devices into low-power modes at runtime or
when the system itself engages in low-power mode. Borrowing from the ACPI specification, device
power management defines low-power states for peripherals as D-States (ranging from D0 to D3)
as well as a mechanism for controlling those states. Each D-State involves a tradeoff between the
amount of power consumed by the device and how functional it is. As with P- and C-States, higher
D-States represent lower power consumption but more device context lost. All devices implicitly
support D0 (when the device is fully powered) and D3 (when the device is off) states; D1 and D2
are optional.

Device power management is made possible by a new driver model introduced in the 2.5 Linux
kernel version. This new model allows the systems power management infrastructure to interface
with all available device drivers, regardless of which bus or physical device the driver controls.
In addition, the model establishes parent-child relationships between system devices to help sort
out power transition sequencing issues that arise when one driver depends on another. That is,

3 See https://patchwork.kernel.org/patch/8477261.

, Vol. 1, No. 1, Article . Publication date: December 2018.

Evaluation Framework for Energy-Aware Multiprocessor Scheduling in Real-Time Systems 7

before powering down a certain device (parent), the system must first power down its dependents
(children).

3 INCORPORATING ENERGY MANAGEMENT FEATURES IN LITMUSRT

This section provides a brief description of LITMUSRT, a real-time extension for the Linux kernel,
which significantly simplifies the implementation of real-time multiprocessor scheduling policies in
the form of plugins, offers a programming library for developing custom real-time applications, and
provides a kernel overhead measurement toolkit. Then, the development carried out to facilitate
the integration of LITMUSRT and the Linux CPUFreq module is described, which permits the
implemented multiprocessor scheduling plugins to perform frequency adjustments at runtime.

3.1 LITMUSRT

LITMUSRT [9, 12] is a real-time extension for the Linux kernel that aims to provide a useful
experimental platform for applied research into real-time systems assuming realistic conditions.
LITMUSRT was conceived within the real-time systems group of the UNC at Chapel Hill in 2006, and
has been actively maintained and developed ever since (as of 2018). Its main focus is on real-time
multiprocessor scheduling and synchronization algorithms. The current version of LITMUSRT
(2017.1) is built on top of the 4.9.30 Linux kernel release and supports Intel’s 32-bit and 64-bit
x86 architectures, as well as the ARMv6 architecture. LITMUSRT has been embraced in a vast
number of works [7, 8, 10, 22, 23, 27] researching numerous topics including real-time scheduling
on GPUs, mixed-criticality real-time systems, adaptive real-time tasks, real-time scheduling with
semi-partitioned reservations, hierarchical processor affinities, and many others4.

3.1.1 Core Infrastructure. The LITMUSRT architecture follows a modular pattern that decouples
the development of scheduling policies (i.e., plugins) from changes introduced into the Linux kernel
code. This additional code, as well as some reusable components and shared functionality, constitute
the LITMUSRT core infrastructure.
The LITMUSRT core infrastructure installs an additional scheduling class in the Linux sched-

uling hierarchy on top of every other scheduling class (i.e., on top of Linux’s SCHED_FIFO and
SCHED_RR real-time scheduling classes, and the SCHED_NORMAL timesharing scheduling class), al-
lowing LITMUSRT to override Linux’s normal scheduling decisions. However, unlike regular Linux
scheduling classes, the LITMUSRT scheduling class does not actually implement any particular
scheduling policy, delegating all scheduling decisions to the currently active scheduling plugin
instead.
A LITMUSRT task (i.e., a task conforming to the sporadic real-time task model enforced by

LITMUSRT) that is eligible for execution is always scheduled over any regular Linux task. When a
LITMUSRT task is released, it continues to run until it is blocked or preempted by another LITMUSRT
task of higher priority. Regular Linux tasks are treated as best-effort tasks with statically low priority.
If a LITMUSRT task is runnable, no regular Linux task can run until the former becomes unrunnable.
When there are no LITMUSRT tasks, the OS continues scheduling every other task as usual, which
allows the system to act as a normal Linux distribution in the absence of real-time tasks.

The LITMUSRT core infrastructure also provides reusable ready and release queues for managing
the admitted real-time tasks. The ready queue implements the mechanism to order ready jobs,
whereas the release queue implements the mechanism to queue jobs for future time-based releases.
The ready queue is implemented as a binomial heap [45], a tree-like data structure that supports the
merging of two heaps in O(logn) time. The release queue is implemented such that the worst-case
4 Please refer to https://wiki.litmus-rt.org/litmus/Publications for a comprehensive list of publications that use
LITMUSRT as base RTOS.

, Vol. 1, No. 1, Article . Publication date: December 2018.

8 Mejia-Alvarez P. et al.

overhead for releasing multiple jobs simultaneously (e.g., on a hyperperiod boundary) is minimized.
The release queue abstraction maps time instants to heaps, and queues release jobs into the heap
that corresponds to their release time. When it is time for the jobs to be released, the release queue
simply merges the release heap with the ready heap. Both queues are abstracted in the form of a
reusable component known as real-time domain. Depending on the scheduling policy, real-time
domains are private or shared. For example, a partitioned policy (where each processor has its
own ready and release queues) compels each processor to hold its own exclusive real-time domain,
whereas in a global policy, a single real-time domain instance is shared between all processors.

3.1.2 Scheduling Plugins. In LITMUSRT, the actual scheduling decisions are taken by scheduling
plugins, entities living in kernelspace with access to the LITMUSRT core infrastructure. The modular
design of LITMUSRT allows rapid prototyping of new scheduling policies without exposure to the
full complexity of the Linux kernel. LITMUSRT is equipped with a few stock scheduling plugins
to implement particular multiprocessor scheduling policies, including partitioned EDF (P-EDF),
partitioned RM (known within LITMUSRT as partitioned fixed-priority, or P-FP), global EDF (G-EDF),
and clustered EDF (C-EDF).
The LITMUSRT scheduling class invokes the active plugin when a scheduling decision must be

made, e.g., when a job is released or a task must be rescheduled. Before launching any real-time
task, however, the user must select one of the included plugins by means of the setsched utility
(the default scheduling plugin simply defers all scheduling decisions to Linux’s SCHED_NORMAL
scheduling class). Once a LITMUSRT scheduling plugin has been selected, the user can launch
individual sporadic real-time tasks using the rtspin or rt_launch utilities or prepare a sporadic
real-time task to be released at the firing of a signal (with the release_ts utility). When released,
the task is scheduled following the selected multiprocessor scheduling policy until the experiment
is completed. The active scheduling plugin can be switched at runtime by activating another of the
included plugins. However, plugin switching can only occur in the absence of real-time tasks (i.e.,
before a task is configured, or after its execution is complete).

Developing scheduling plugins in LITMUSRT is akin to a certain extent. LITMUSRT offers a plugin
interface consisting of several object-oriented methods that can be grouped by functionality. Some
of these methods handle events that correspond to scheduling points in the scheduling theory, such
as job release, preemption, completion, etc. Other methods relate to initialization, bookkeeping,
and cleanup activities. To modify the behavior of a scheduling plugin in the occurrence of certain
event, the developer must insert the desired behavior within the method responsible for handling
such event. To include a new, custom-made scheduling plugin in a particular LITMUSRT kernel
release, the plugin must be compiled and linked along with the kernel5.

3.2 Extending LITMUSRT with Support for DVFS
Despite being feature-rich, the main LITMUSRT kernel distribution does not yet include (to the best
of the author’s knowledge) any means to control the performance states offered by the Linux power
management infrastructure. This opens up an interesting line of research from which real-time
application developers and researchers alike can benefit. In particular, an experimental platform
based on an open source OS such as Linux, with the capacity to regulate its own energy consumption
while supporting workloads with stringent timing constraints, would allow researchers to validate
their proposals and evaluate their performance on real hardware quickly and cheaply.

5 Providing detailed instructions for developing new plugins is beyond the scope of this work. Please refer to
http://www.litmus-rt.org/create_plugin/create_plugin.html for a step-by-step guide to implementing a new
LITMUSRT scheduling plugin from scratch.

, Vol. 1, No. 1, Article . Publication date: December 2018.

Evaluation Framework for Energy-Aware Multiprocessor Scheduling in Real-Time Systems 9

Working with LITMUSRT as base RTOS allows reusing several components from its existing
code base, which already implements many of the features required for this research. In addition,
contrary to other patch-based real-time extensions for the Linux kernel, such as [2, 18] - whose
rare adoption by real-time research groups looking for a platform to evaluate their developments
has led maintainers to withdraw their support - LITMUSRT is actively maintained and updated,
offering the ability to continue extending this line of research with further developments while
knowing that support is readily available.
The focus in this research is on the implementation and evaluation of energy-efficient mul-

tiprocessor real-time schedulers with global DVFS capabilities. Indeed, schedulers with these
characteristics are known to be effective at lowering the platforms energy demand [5]. A recurrent
pattern in real-time scheduling algorithms exploiting processor slowdown is to compute the lowest
speed that still guarantees the fulfillment of timing constraints and then adjust the frequency to
the computed value at specific points in the schedule, at job release or completion, for example.

3.2.1 Design. As discussed above, the CPUFreq infrastructure requires the client to invoke their
interface to switch a frequency from a context where both blocking and hardware interrupts are
enabled. Unfortunately, when LITMUSRT scheduling plugins carry out their scheduling decisions
(for job release, preemption, and completion), the kernel is executing code paths that are particularly
sensitive to performance with hardware interrupts disabled. This is contrary to the goal of allowing
the implemented real-time multiprocessor scheduling plugins to perform frequency scaling actions
directly from the scheduling decision handler. However, the problem can be avoided altogether
through a simple scheme.
The approach here presented is similar in nature to the dedicated interrupt handling [9] (some-

times referred to as interrupt shielding) scheme already implemented in LITMUSRT in which a
single processor is reserved as the system processor and becomes solely responsible for system
management tasks, including device and timer interrupt handling. For the purposes of energy
management, the system processor is designated to receive requests and subsequently perform fre-
quency adjustments at runtime. The remaining application processors (which also encompasses the
systems processor) on the platform perform scheduling decisions and submit frequency adjustments
to the processor designated to this activity.
Since application processors carry out job scheduling, they have direct access to the effective

processor requirement (utilization) being requested by the workload. This information is important
to accurately compute the frequency level needed to preserve the feasibility of all processors
(processor feasibility is guaranteed as long as its operating frequency is no smaller than its total
utilization). Application processors convey their load value to the systems processor by means of a
message passing mechanism, where messages are attended to on a first-in first-out basis. Figure 3
shows a conceptual overview of the framework, considering a quad-core multiprocessor platform.
The systems processor itself delegates the actual frequency switching to a kernel-level event

handler specificallymaintained for this purpose. The handler is implemented as a kthread6 scheduled
in the systems processor. The handler operates by constantly switching between the active and
inactive states. When a processor requests a frequency adjustment, the handler is activated and
forwards the application processor’s request to switch the frequency to the CPUFreq driver in use.
When the frequency switching is complete, the handler checks if any other frequency adjustment is
in place. If so, it begins a new transaction with the CPUFreq driver; if not, it returns to the inactive
state. This workflow enables the interface between scheduling plugins and the CPUFreq subsystem,

, Vol. 1, No. 1, Article . Publication date: December 2018.

10 Mejia-Alvarez P. et al.

Fig. 3. High-level overview of frequency scaling in LITMUSRT.

as the delegate (the dedicated kernel thread) carries out the requested frequency switching on
behalf of the requesting application processors from process context.

The event handler arranges frequency scaling requests when they occur concurrently on different
application processors. Specifically, when any two processors attempt to readjust the frequency
to different levels at almost the same time (since it is impossible for the two events to occur at
exactly the same time, given the limited resolution of OSes time tracking mechanisms), the handler
serializes the requests by enacting the first to arrive and queueing the second to arrive. To allow
voltage and frequency levels on the platform to stabilize following an adjustment, a minimum
period of 200 microseconds (or the minimum allowed by the CPUFreq driver in use) is enforced
between any two adjustments. When this period elapses, the handler evaluates if another frequency
adjustment is in place, for instance, if the scheduled task set requires the platform to speed up to
meet timing constraints.

The solution presented draws inspiration from the scheduler design pioneered in [13], in which
coordination between processors is managed by a designated moderator, and from the CPUFreq
governor described in [11], which manages to integrate more closely with the Linux task scheduler
by offering a set of callbacks that the scheduler can invoke. While conceptually simple, this new
element installed between the systems processor and the application processors allows arming
LITMUSRT scheduling plugins with CPUFreq governor-like capabilities.

3.2.2 Implementation. Implementation for the systems processor side of the workflow described
above is abstracted in a single reusable component attached to the LITMUSRT core infrastructure.
The component contains a simple API to LITMUSRT scheduling plugin running on application
processors, which is used to perform various operations. The component implements four main
operations, which are intended to be used in specific contexts:
6 Kernel threads [31] (often referred to as kernel daemons, or simply kthreads) are standard processes provided by the Linux
kernel useful for carrying out some operations in the background. They are standard processes living in kernel space, with
the main difference between these and regular processes being that kernel threads do not have an address space. The Linux
kernel employs kernel threads for various purposes, ranging from data synchronization of RAM to helping the scheduler to
distribute processes among CPUs to managing deferred actions.

, Vol. 1, No. 1, Article . Publication date: December 2018.

Evaluation Framework for Energy-Aware Multiprocessor Scheduling in Real-Time Systems 11

• rt_dvfs_init(), which instantiates and initializes the kernel-level event handler at system
boot time;
• rt_dvfs_update_cpu_load(), through which application processors communicate changes
in their processor load (arising, for instance, from workload variability) to the systems
processor;
• rt_dvfs_issue_freq_update(), through which application processors request frequency
adjustments to the systems processor; and
• rt_dvfs_exit(), which disposes of the kernel thread and carries out cleanup actions when
the system is shut down.

The event handler implements the main logic behind frequency switching by means of the
rt_dvfs_task_func() function, although this procedure is not part of the API. Instead of sending
a specific frequency level when requesting a frequency update, application processors pass their
actual processor load to the event handler, which in return computes the most appropriate frequency
level for the platform (e.g., the frequency level, which preserves the feasibility of the processor with
the highest load). The event handler has exclusive access to a few pieces of code that define the
state of the system with respect to operational frequency. For instance, the event handler retrieves
frequency values from a lookup table, mapping operating frequency to processor load. It also keeps
track of the platform’s current operational frequency to avoid unnecessary frequency transitions
when the current and the target frequency levels coincide, as well as the time of the last frequency
transition in order to determine if enough time has elapsed. Communication between application
processors and the event handler implementing frequency scaling is established through a first-in
first-out (FIFO) buffer, which is protected from concurrent writes by a set of per-CPU locks. Each
message passed to the systems processor (i.e., written to the FIFO buffer) includes the requester’s
ID and the time that the message was sent.

4 CASE STUDY: ENERGY-AWARE MULTIPROCESSOR SCHEDULING ALGORITHMS
This and subsequent sections report on a case study that demonstrates how the energy manage-
ment framework presented in Sections 2 and 3 can be applied to the evaluation of energy-aware
multiprocessor scheduling algorithms. This section is devoted to describing the energy-saving
mechanisms employed by algorithms EDF(k) and CVFS, which serve as the objects under study.
The strategy followed by these algorithms is to select the lowest operating frequency at which

tasks can be executed without risking missing their deadlines. As mentioned previously, reducing
the platform’s operating frequency (and its corresponding supply voltage) yields a significant
reduction in its energy consumption, while simultaneously increasing the execution of tasks. Thus,
the operating frequency must be carefully selected in order to avoid prolonging tasks beyond their
deadlines.

We emphasize that our objective in this paper is not undertaking a comprehensive experimental
valuation of existing energy-aware multiprocessor scheduling algorithms – there is a large number
of representative algorithms that have been surveyed in recent research articles (e.g., [5]). We put
our efforts in implementing at the Litmus kernel two well-known algorithms EDF(k) and CVFS as
a proof of concept for the testbed that we developed. We hope that our testbed will form a basis
for the kernel-level evaluation and implementation of many other energy-aware multiprocessing
scheduling algorithms.

4.1 EDF(k)

EDF(k) [26] is a priority-driven multiprocessor scheduling algorithm designed to overcome inherent
limitations of G-EDF scheduling. EDF(k) performs better than EDF in that it can schedule all task

, Vol. 1, No. 1, Article . Publication date: December 2018.

12 Mejia-Alvarez P. et al.

sets schedulable by EDF, in addition to some other task sets that EDF may fail to schedule. It was
first proposed by Goossens et al. [26] and later revisited by Nlis [36], the latter having developed
an offline technique for determining the lowest processor frequency at which the workload can be
executed across all processors without compromising feasibility.
The idea behind EDF(k) is to isolate high- and low-demand tasks from each other, as their

interaction leads to losses in performance for EDF in a multiprocessor setting, a situation informally
known as the Dhall effect [20]. EDF(k) splits the set of tasks into k subsets, 1 ≤ k ≤ m, of “privileged”
and non-privileged tasks. Priorities (privileges) are assigned according to task utilization; the (k −1)
highest-utilization tasks are assigned the highest priorities (and are, therefore, privileged), whereas
the remaining (n − k + 1) tasks are assigned regular EDF priorities. Privileged tasks are then
dispatched to their own dedicated processor, devoting (m − k + 1) processors to non-privileged
tasks.
Task sets composed of a mix of relatively few high-utilization tasks and many low-utilization

tasks are somewhat more easily supported by EDF(k). In the worst case, however, EDF(k) either
degenerates into G-EDF (when k = 1) or acts as a rather unbalanced instance of P-EDF (when
k = m, which implies that (m − 1) processors are occupied by a single privileged task and one
processor is left for the remaining tasks).

Suppose that tasks in a sporadic real-time task set τ are indexed non-increasingly by utilization
(i.e., for all i, 1 ≤ i < n,ui ≥ ui+1). Let τ (k) = {τk , τk+1, . . . , τn} denote τ without the (k − 1)
highest-utilization tasks. According to the procedure devised in [36], τ is schedulable by EDF(k) on
anm-processor platform running at normalized speed s7 if

s ≥ max
{
u1,uk +

U (τ (k+1))

m − k + 1

}
(1)

The lowest value for s can be identified iteratively by finding the smallest value from all those
computed by Expression 1 for k between 1 andm. Hence, the procedure’s time complexity is O(m).

4.2 CVFS
The Coordinated Voltage and Frequency Scaling (CVFS) [19] energy-aware multiprocessor scheduling
algorithm is optimized for platforms on which processors share the same supply voltage and
operating frequency. It explicitly addresses the single clock domain restriction to which processing
cores within a single chip are constrained by setting the operating frequency of the entire platform
to the highest level requested from among all cores. Furthermore, the algorithm benefits from
under-utilization of the platform, in the form of both unused processor capacity and idle periods
resulting from early task completions.

For a multiprocessor platform with global DVFS capabilities, CVFS consistently sets the shared
operating speed s to the maximum processor share requested from all active processing units.
Specifically, for a given sporadic real-time task setτ = {τ1, τ2, . . . , τn} partitioned across a computing
platform π = {π1, π2, . . . , πm}, let ψi denote the subset of tasks from τ allocated to processor πi .
Let the processor utilization (load) requested for processor πi by ψi be given by Ui =

∑
τj ∈ψi uj .

Assuming the EDF scheduling scheme, which is optimal for the uniprocessor case, CVFS preserves
the feasibility of all active processing units by setting the operating frequency of the platform to
f = max{Ui } · fmax, which can be regarded as a static frequency selection, in the sense that the
frequency is adjusted according to the worst-case computation requirement of the supported task
set.

7The normalized speed s is defined as the ratio of the current frequency to the maximum frequency

, Vol. 1, No. 1, Article . Publication date: December 2018.

Evaluation Framework for Energy-Aware Multiprocessor Scheduling in Real-Time Systems 13

CVFS further benefits from the observation that jobs of tasks in a sporadic real-time task set
usually use much less than their worst-case time allotment at runtime. To exploit this situation,
CVFS builds upon the well-known cycle-conserving EDF (cc-EDF) [40] algorithm, adapting it to
multiprocessor environments with global DVFS capabilities. Like cc-EDF, CVFS enforces several
runtime energy management rules for maintaining an accurate utilization estimation and reducing
the frequency even further:
• In order to avoid compromising workload feasibility when a job τ kj is released, a conservative
assumption is made by resetting the utilization due to τ kj to its worst-case, that is Cj

Tj
.

• When a job τ kj is complete, the actual amount of processor cycles cc j consumed by the job is
compared to its worst-case specification. Any unused cycles allocated to τ kj are reclaimed by
setting their utilizations to cc j

Tj
.

At any of these two scheduling events, the global frequency of the platform is readjusted according
to the updated processor utilization requirements.

CVFS is further driven by the fact that some processing cores will operate at a higher frequency
than that required to guarantee workload feasibility, since all cores are constrained to the same
global operating frequency level. CVFS exploits this fact through a runtime optimization to refine
the load estimation. The working principle is as follows: a job completing a certain amount of work
at a high frequency during a predefined interval can be seen as equivalent to completing a smaller
amount of work at a lower frequency in the same amount of time. In other words, CVFS regards the
completion of a job on a core whose utilization is smaller than the largest job on the platform as
an early completion, which allows lowering the core’s effective utilization and (conceivably) the
platform’s frequency.

Specifically, suppose that a jobτ kj allocated to coreπi executes inp contiguous chunks {e1, e2, . . . , ep }.
Let atx be the amount of time consumed by τ kj during chunk ex (see Figure 4). The total workload
executed c j by τ kj is computed as c j =

∑p
k=1(atx ·Ui). This simple optimization allows for a more

precise load estimation at job completions.

Fig. 4. A job executing in p contiguous chunks of execution.

4.3 Implementation Issues
Implementing the EDF(k) energy-aware scheduling policy is not as simple as it seems. EDF(k) might
group processors intom different patterns, one for each value that k can take. However, it is not
obvious at first how to do this in practice. The clustering approach implemented by the LITMUSRT
stock clustered EDF (C-EDF) scheduling plugin was chosen here. However, as opposed to C-EDF,
which groups processors into clusters of the same size around the different cache levels offered by
the hardware8, the EDF(k) scheduling plugin assembles processors into clusters of different sizes,
as required by the algorithm (subsection 4.1). To accomplish this, the clustering functionality for
EDF(k) was linked to the procedure for clustering processors already implemented in LITMUSRT.

, Vol. 1, No. 1, Article . Publication date: December 2018.

14 Mejia-Alvarez P. et al.

The user writes the desired clustering option (e.g., k = 1, k = 2, etc.) to a virtual file in the /proc
file system. When the EDF(k) scheduling plugin is activated, it dynamically determines which
processors to group based on the selected configuration. The frequency of the platform is then set
to that computed by Expression 1.

The CVFS algorithm was implemented in LITMUSRT by building a scheduling plugin similar to
the LITMUSRT stock partitioned EDF (P-EDF) plugin. Notably, the P-EDF and CVFS plugins differ in
how they manage scheduling decisions at runtime. The CVFS plugin can accomodate the necessary
operating frequency adjustments at job release and completion using the energy management
infrastructure described in section 2.
Concurrent frequency adjustment requests are particularly troublesome. Since CVFS is a par-

titioned scheduler, different processors might attempt to adjust the frequency to different levels
at the same time. For instance, two processors might attempt to both increase and decrease the
frequency. In order to coordinate the frequency adjustment actions occurring concurrently on
different processors, the CVFS plugin relies on the synchronization procedure enforced by the
infrastructure, where updates are attended to in first-in first-out order (section 3). When two
frequency adjustment requests arrive, the first is enacted immediately and the second is queued.
Once the minimum period between any two adjustments has elapsed, the second request is enacted
if it is in accordance to the CVFS energy management policy (i.e., if the requested frequency level
is enough to guarantee the feasibility of the workload), and discarded otherwise.

5 EXPERIMENTAL EVALUATION OF ENERGY-AWARE MULTIPROCESSOR
ALGORITHMS

This section presents and discusses the results of the measurements taken of the implemented
energy-aware multiprocessor scheduling algorithms (EDF(k) and CVFS), with the goal of unveiling
their performance trend in terms of energy consumption when running on real hardware. To
accomplish this, the implementation makes explicit use of the infrastructure presented in section 2.
The methodology followed for carrying out the evaluation is described, which includes a description
of the hardware platform underlying the experiments, the benchmark used for stressing the
schedulers, and the instrumentation equipment employed.

5.1 Platform
The prototypes for the schedulers considered for the case study were implemented in LITMUSRT
version 2017.1, which is based on the 4.9 Linux kernel release. The system ran the Ubuntu 16.04
LTS “Xenial Xerus” Linux distribution.

Power dissipation measurements described in the following sections were taken on an Intel Core
i7-26009 SandyBridge system. The i7-2600 is a quad-core 64-bit Chip Multiprocessor (CMP). The
four processing cores in the chip run at a nominal frequency of 3.4 GHz, and always operate at the
same speed (i.e., the four cores belong to the same voltage island).

The i7-2600 supports Enhanced Intel SpeedStep Technology, Intel’s implementation of dynamic
processor frequency scaling that defines multiple voltage and frequency operating points (referred
to as P-States in section 2). The i7-2600 clock can oscillate at fourteen different frequencies, from
2.1 to 3.4 GHz in steps of 100 MHz. At lower speeds, the processor consumes less power, but the
workload execution time is longer.

8 Under the C-EDF scheduling plugin, the user clusters processors based on the cache topology of the platform, for instance
around the L1, L2, etc. cache levels. This makes the grouping of cores dependent on the architecture of the underlying
hardware.
9See https://ark.intel.com/products/52213/.

, Vol. 1, No. 1, Article . Publication date: December 2018.

Evaluation Framework for Energy-Aware Multiprocessor Scheduling in Real-Time Systems 15

5.2 Workload
In order to assess the performance of the implemented real-time energy-aware multiprocessor
scheduling algorithms, an appropriate benchmark for exercising the aspects of the system of
greatest interest was needed. Previous research efforts [4, 40, 43] focusing on DVFS techniques for
managing the processor’s energy consumption in a real-time setting have mostly studied the effect
of their proposals on the execution of a CPU-bound workload, and therefore so does this work.
The effectiveness of the implemented real-time multiprocessor scheduling algorithms on a memory
bound10 workload is deferred for future work.

The userspace interface available within LITMUSRTwas employed to build a suitable benchmark.
The interface comprises the liblitmus library and accompanying tools to facilitate the writing of
custom real-time tasks. The liblitmus library contains all the required system calls and definitions
to interact with the kernel services that LITMUSRT provides to real-time tasks (recall from section 2
that in LITMUSRT a real-time task is one that has been admitted to the LITMUSRT scheduling class).

A few steps are required to convert a regular task into a LITMUSRT real-time task. All modifica-
tions to the target task must be done in its source code. Before declaring the actual activity that
will be carried out, a few lines of code must be devoted to establishing the interaction between the
task and the LITMUSRT kernel by means of the userspace real-time interface. Most of the functions
used for this purpose are simply system calls provided by LITMUSRT. In particular, converting a
regular task into a real-time task requires the use of the following set of system calls:

(i) init_rt_task_param(), which initializes the interface;
(ii) set_rt_task_param(), which sets the real-time parameters for each job that the target task

will produce, including period, deadline, and execution budget;
(iii) task_mode(), which “transitions” the target task to real-time mode; and
(iv) wait_for_ts_release(), which blocks the task (whose status by now is real-time) until

signaled from userspace to begin execution.
After performing the series of steps outlined above, the task is now ready to be launched when

signaled by the rt_launch utility. When this happens, the real-time task begins execution. Within
LITMUSRT, real-time jobs are more of an accounting abstraction to keep track of the number of
times that the real-time task has executed its main job loop, which are all the relevant instructions
accomplished by the task; a “job” is therefore a single round of execution of all instructions
within the boundaries of the task’s main loop. Periodic execution of jobs is achieved by calling
the sleep_next_period() function at the end of each job. This function triggers the kernelspace
mechanism for moving the task from the ready to the release queue. Subsequently, a high-resolution
timer is set to fire at the release time for the next job of the task, at which time LITMUSRT will move
it back to the ready queue and the task will again be eligible for execution. Figure 5 shows a code
template for developing periodic real-time tasks, which demonstrates the use of all the functions
mentioned above.

The benchmark prepared for exercising the platform attempts to replicate the use of a real-world
CPU-intensive workload. The reasons for this are twofold: first, CPU-bound workloads are more
sensitive to changes on the platform’s operating frequency (the aspect to be analyzed), as these
have a direct dependency on the processor’s clock rate [1, 6, 28], and are more likely to bring about
the processor’s power consumption trend. Second, embedded real-time multiprocessor systems
are typically host to compute-intensive tasks such as high-definition multimedia playback, digital

10 The authors are aware of previous studies exploring the problem of ensuring performance while decreasing power
consumption (e.g., [33]) considering both cache sensitive and memory bound workloads. These studies focus mostly on
non-real-time computing contexts. However, their methodologies could serve as base for future evaluations in a real-time
setting.

, Vol. 1, No. 1, Article . Publication date: December 2018.

16 Mejia-Alvarez P. et al.

signal processing, and object and pattern recognition [29]. As such, compute-intensive workloads
are a natural starting point for testing resource optimization approaches targeting the real-time
domain.

With this in mind, the benchmark designed for the purposes of this work consists of the following
two components:
• A subroutine for computing an LUP decomposition for a reasonably large system of linear
equations [16], whit the aim of representing a subset of the operations commonly performed
in machine learning, data analysis, and computer vision applications.
• A subroutine for producing the discrete Fourier transform of a sequence of values by means
of an iterative Fast Fourier Transform (FFT) algorithm [16, 41], whit the aim of representing
data filtering and signal processing applications.

5.3 Methodology
In what follows, the steps taken to build the experiments (based on the workload presented in
the previous section) and measuring the power consumption of our experimental platform are
described. Figure 6 presents an illustration of the different stages involved in the evaluation.

5.4 Experiments
The experimental evaluation targeted four different scheduling policies: LITMUSRT’s stock parti-
tioned EDF (P-EDF), EDF(k) (without frequency scaling), CVFS, and EDF(k). The first two carried out
the scheduling of tasks while running at full speed, whereas the other two did so while applying
their respective energy management actions. The two schedulers not implementing any particular
energy management policy in our evaluation are included mainly for comparison purposes.

In the context of energy-efficient scheduling algorithms for real-time systems, power consump-
tion and processor utilization are easily recognized as being correlated to one another, as a lower
processor utilization naturally leads to long slack periods arising from the spare processor capacity,
which the algorithm is likely to exploit in some way to decrease the platform’s power consumption

Fig. 5. Real-time task boilerplate code.

, Vol. 1, No. 1, Article . Publication date: December 2018.

Evaluation Framework for Energy-Aware Multiprocessor Scheduling in Real-Time Systems 17

Fig. 6. Flowchart illustrating the followed steps in the evaluation.

[29]. To align with previous studies, the experiments carried out in this study likewise considered
processor utilization as the primary parameter for revealing the performance of the tested schedul-
ing algorithms in terms of energy consumption. The role of the size of the sporadic real-time task
sets used for exercising the schedulers is yet to be determined.

Workloads with total number of tasks ranging from n ∈ {6m, 8m, 10m, 12m}, wherem = 4 were
considered. It was decided to execute sets with a large number of tasks so that the implemented algo-
rithms had a better chance of success when partitioning the workload [10]. For each number of tasks
n, sporadic real-time task sets with total normalized utilization U across U ∈ {20%, 30%, . . . , 80%}
were considered. Normalized utilization refers to the mean processor share requested to each
processor on the platform, i.e, to the quantity Utot

m . For each n andU pair, ten random task sets were
generated (for a total of 280 task sets) using the task set generator from Emberson et al. [24]. The
generator produces task sets with a given number of tasks, whose cumulative utilization adds up to
a given utilization value. Each generated task is assigned a uniformly distributed utilizationui and a
periodTi chosen at random from the set {10, 20, 25, 40, 50, 100, 125, 200, 500, 1000} (in milliseconds),
which are comparable to those found in actual real-time workloads [29]. The worst-case execution
requirement for each task is computed asCi = ui ·Ti . All tasks were assumed to execute up to their
WCET.

Energy-aware multiprocessor approaches based on partitioned scheduling generally perform
better when the workload is split evenly. For partitioned schedulers, the generated task sets were
divided using the worst-fit decreasing (WFD) [30] heuristic, which is known to generate better
balanced partitions. A task set was deemed valid if WFD was able to partition the set successfully.
Invalid task sets were simply discarded and new ones were generated until the target 280 task
sets were produced. For EDF(k) schedulers, a task set was considered valid if EDF(k) managed to
cluster the tasks in the set following the procedure outlined in section 4. Figure 7 summarizes the
experiment generation procedure.
As opposed to the other scheduling policies, CVFS operates by dynamically reclaiming unused

processor capacity in the form of dynamic slack, which stems from tasks finishing their execution
earlier than expected. In order to capture the impact of dynamic workload variability on the

, Vol. 1, No. 1, Article . Publication date: December 2018.

18 Mejia-Alvarez P. et al.

1 generate_experiments()
2 set Γ ← �:
3 for each n ∈ {6m, 8m, 10m, 12m}
4 for eachU ∈ {20%, 30%, . . . , 80%}:
5 for count ← 1, 2, . . . , 10:
6 set valid ←⊥
7 While not valid :
8 set τ ← generate_taskset(n,U)
9 set valid ← determine if the task set is valid
10 return Γ

Fig. 7. Pseudocode for generating experiments.

performance of CVFS, 3 more sets of task systems were generated (with 280 task systems each)
specifically for CVFS, in which tasks randomly underrun their WCET by a factor of 10%, 20%, and
30%. The partitioning of these sets was carried out in the same manner.
Each generated experiment was post-processed and translated into an executable shell script

containing the specification of the task set, the scheduling plugin that handled the task set at
runtime, and the duration of the experiment. Each task was mapped to one of the two CPU
intensive workloads described in subsection 5.2, which were developed specifically for the purposes
of experimentation. Each task set was traced for 20 seconds. In total, 1, 960 sporadic real-time task
sets were executed and measured over more than 20 hours of continuous real-time execution and
power measurement.

5.5 Instrumentation
Measuring the exact power usage of a processor is notoriously difficult. Modern processors use
hundreds of pins and multiple interconnect layers for power and ground lines [39]. These lines are
further distributed within the chip between the many processor components, some of which have
uneven power requirements. Therefore, accurately determining the processor’s power consumption
under full consideration of its internal architectural traits would require the use of highly specialized
and expensive equipment. Instead, a much simpler approach is followed that allows approximating
the actual numbers for the power being drawn at a reasonable cost.
To characterize the processor’s power consumption, the electrical current passing through it

must first be determined. One way to accomplish this is to intercept the line delivering power to the
chip and insert a measurement device to monitor the current flowing through this line. However,
the current can rise to levels that are unbearable for the measurement instrument during instances
when the processor is running at peak performance, resulting in incorrect readings or even damage
to the instrument. An alternative, safer solution involves inserting a shunt (a manganin resistor
of accurately known resistance) between the processor and its power supply. The voltage drop
across a shunt is proportional to the current flowing through it. Given a shunt’s resistance, it is
easy to compute the value of the current passing through the circuit where the shunt is installed on
using Ohm’s law. The placement of a shunt resistor has an almost negligible effect on the circuit,
as the shunt normally offers very small electrical resistance. Once the current passing through
the processor has been determined, its power draw is also easily computed as the product of the
current and the voltage being fed to the processor.
The above described method was chosen because it has the pragmatic benefit of being clean,

simple, and accurate enough for most purposes. The voltage drop was measured across a low-
resistance shunt resistor installed in series between the processor and the power delivery line

, Vol. 1, No. 1, Article . Publication date: December 2018.

Evaluation Framework for Energy-Aware Multiprocessor Scheduling in Real-Time Systems 19

Fig. 8. Physical setup for measuring power consumption.

coming from the power supply. Shunts were rated by maximum current and voltage drop at that
current. The voltage drop of the shunt employed was 75 mV at a maximum current of 50 A. The
resistance offered by the shunt was therefore 1.5 mΩ. The motherboard holding the i7-2600 chip,
an Asus P8H67-M EVO11, used an eight-pin EATX12V connection to deliver power to the processor.
The connection consisted of four DC +12 V wires and four ground wires coming from a Corsair
GS700 power supply12. To improve the accuracy of the voltage readings, the shunt was inserted as
close to the ground leg of the circuit as possible [17]. Figure 8 shows the physical interconnection
of the power supply, processor, and shunt device.

Let Vdd , VCPU, and Vshunt denote the voltage delivered by the power supply, the voltage drop at
the CPU, and the voltage drop at the shunt device, respectively (Figure 8). R denotes the resistance
offered by the shunt, and I is the current flowing through the circuit. The power dissipation of
the CPU can be equated to the product of its voltage and current consumption, PCPU = VCPU · I .
Based on basic circuit theory, VCPU = Vdd −Vshunt . The value of the current being drawn can be
approximated to I = Vshunt

R . These two equations allow expressing the power consumption for the
CPU as a function of the shunt’s voltage drop:

PCPU = VCPU · I = (Vdd −Vshunt)

(
Vshunt

R

)
(2)

A Keysight 34411A 6 1/2-digit multimeter [44] was used to measure the voltage drop across the
installed shunt resistor (Figure 8). The 34411A is a high-performance Digital Multimeter (DMM)
capable of taking measurements over a fixed period without user intervention. The instrument can
be connected to a computer by means of the USB, LAN, or GPIB interface. The multimeter can be
triggered by software and has the capacity to store the acquired data in its internal non-volatile
memory for later retrieval. Readings were automated by means of a dedicated script consisting
mostly of commands that conform to the SCPI13 standard. The script was deployed prior to the
execution of each experiment, and was responsible for configuring the instrument, triggering the
acquisition of data, and retrieving the collected measurement samples.

11See https://www.asus.com/Motherboards/P8H67M-EVO.
12See http://www.corsair.com/en-us/gs700w.
13 The Standard Commands for Programmable Instruments (SCPI) specification defines the syntax rules and conventions used
in controlling programmable test and measurement devices. The 34411A complies with SCPI, which allows the instrument
to be programmed using simple, generic commands.

, Vol. 1, No. 1, Article . Publication date: December 2018.

20 Mejia-Alvarez P. et al.

The experiments were performed while measuring the actual power consumption of the test
bench, following the measurement procedure described above. Each experiment lasted for 20
seconds, during which voltage readings were collected at a rate of 1, 000 readings per second. The
energy consumption of a running sporadic real-time task set was computed by approximating the
integral of the power consumed over time using the Riemann sum. Specifically, let ECPU denote the
energy consumed by the processor over a period of time T , and xi be the set of voltage readings
recorded by the multimeter. Any two consecutive voltage readings are separated from each other
by a

(1
1000

) th of a second. Expression 2 allows determining the power consumed by the processor
across T = 20, by plugging to it each collected voltage reading. Hence, by the Riemann sum,

ECPU =

∫ T

0
PCPU · dt ≈

1
1000

·

n∑
i=1
(Vdd − xi)

(xi
R

)
(3)

The energy consumption numbers reported in Figure 10 through Figure 12 reflect the average of
ten measurements (see subsection 5.4). For all experiments, more than 450 MB of trace data were
recorded containing more than 50, 000, 000 measurement samples.

5.6 Measurements and Observations
Once the entire experimental flow was set up and deployed, it was possible to acquire meaningful
measurement data to evaluate the overall energy consumption resulting from the execution of
sporadic real-time task sets under different energy-aware policies.
Given the short separation allowed by the measurement device between any two consecutive

readings, it was possible to capture very slight variations in power consumption, which aids in
gaining a deeper understanding of the implemented scheduler’s runtime behavior. An interesting
pattern was noted when the computing platform was underutilized. The power measurements for
sporadic task sets whose normalized utilization is markedly low exhibit a bimodally distributed
arrangement. This situation might be explained by the likelihood of sudden short bursts of activity
being interspersed with long periods of idleness. The distribution of the data might reflect the
platform’s power consumption when alternating between the active and idle states. As the processor
utilization increases, the power dissipation begins to display a more familiar normal distribution
pattern. This phenomenon might represent the scheduler’s tendency to consistently select a specific
operating frequency level to execute the workload. When the processing requirement increases, the
schedulers opt for the lowest operating frequency that still guarantees meeting all timing require-
ments. Consequently, the execution of the workload is extended and slack times are shortened,
resulting in a more regular power consumption at a constant operating frequency level.

Figure 9 illustrates the effect described above, showing the power measurement distribution for
task sets of varying normalized utilization scheduled under CVFS. In the figure, the blue histogram
represents the powermeasurements distribution for a task set with a 20% total normalized utilization,
whereas the red histogram represents that of an 80% utilization task set.

The power consumption trends of both CVFS and EDF(k) (described in section 4) were profiled
while scheduling sporadic real-time task sets of increasing worst-case processor utilization. Both
algorithms were designed for multiprocessor platforms where all processing units are constrained
to operate at the same voltage and frequency level. The algorithms differ, however, in the power
saving measures they take to lower the platform’s overall energy consumption. EDF(k) relies on a
static frequency selection, while CVFS benefits from tasks finishing their execution earlier than
expected. The actual processor power dissipation for P-EDF and EDF(k) (running at full speed)
were also measured to provide a baseline for their energy-efficient counterparts. Figure 10 through
Figure 12 present the performance of the schedulers with respect to energy consumption. In the

, Vol. 1, No. 1, Article . Publication date: December 2018.

Evaluation Framework for Energy-Aware Multiprocessor Scheduling in Real-Time Systems 21

Fig. 9. Power measurements for different utilization levels.

(a) (b)

Fig. 10. Energy measurements for CVFS while scheduling sporadic real-time task sets with a number of tasks
(a) n = 6m = 24 (b) n = 8m = 32.

figures for CVFS, “underrun” relates to the deviation of the actual execution time of tasks from its
worst-case. For instance, a task with a underrun value of 10% is likely to run for 90% of its WCET.

Observation 1. CVFS dominates P-EDF in terms of energy consumption in all tested scenarios, and
even more so when the actual case execution time of tasks declines. When the overall processing
requirement is low, both schemes display similar energy consumption trends. As processor uti-
lization increases, the effectiveness of CVFS’s energy saving features becomes apparent. The gap
between CVFS and P-EDF gradually widens as the platform becomes more occupied, achieving
an ≈ 18% reduction in power consumption at a normalized utilization value of 80%. Interestingly,
CVFS performance remains the same even with an increasing number of tasks. In fact, the energy
consumption of a task set comprising n = 6m = 24 real-time tasks scheduled under CVFS is nearly
identical to that of a task set comprising twice as many tasks (Figure 10 (a) and Figure 11 (b)), which
indicates that energy is much more dependent on processor utilization than on the size14 of the
task set.

14 It would be interesting to determine if this claim holds for extremely large task counts.

, Vol. 1, No. 1, Article . Publication date: December 2018.

22 Mejia-Alvarez P. et al.

(a) (b)

Fig. 11. Energy measurements for CVFS while scheduling sporadic real-time task sets with a number of tasks
(a) n = 10m = 40 (b) n = 12m = 48.

Fig. 12. Energy measurements for EDF(k) while scheduling task sets with varying numbers of tasks n ∈
{6m, 8m, 10m, 12m}, withm = 4.

Observation 2. EDF(k) is unattractive for supporting high-utilization task sets from the energy
consumption perspective. Figure 12 shows the performance of EDF(k), both when performing a static
frequency selection and running at the maximum allowable frequency. The first notable effect is the
decreasing gains in terms of energy consumption at high normalized processor utilization values.
When the processor share requested by the task set is low, EDF(k) performance is comparable to
that of CVFS, mainly due to long periods of idleness taking place (Figure 10 (a) and Figure 12).
Tasks with a low processor utilization demand require either a very short computation time or
have a very long activation rate, which provides the platform with ample space to remain idle.
Thus, independently of the operating frequency, the processors remain idle for longer periods,
consuming much less energy15. As the processor utilization rises, however, the effectiveness of
EDF(k) in terms of energy consumption decreases, approaching that of its equivalent executing the
workload at full speed. This calls into question the viability of a static frequency selection technique

, Vol. 1, No. 1, Article . Publication date: December 2018.

Evaluation Framework for Energy-Aware Multiprocessor Scheduling in Real-Time Systems 23

Fig. 13. Energy efficiency of CVFS and EDF(k) relative to their baselines.

when supporting sporadic real-time task set with a high processor utilization requirement on a
multiprocessor platform constrained to global DVFS.
Figure 13 summarizes the relative energy efficiency for CVFS and EDF(k) when scheduling

compute-intensive benchmarks with varying (high) normalized processor utilization. The numbers
shown in the figure were computed by normalizing the performance of each scheduler with respect
to their baseline schemes that execute tasks at fmax at all times. It can be seen from the figure that
the relative performance of EDF(k) declines as normalized processor utilization approaches 80%,
whereas CVFS (assuming no underrun) manages to reduce the platform’s energy consumption by
more than 6% at 80% of utilization.

Measuring overheads. When the infrastructure described in section 2 is employed to enact
frequency adjustments at runtime, some extra overhead is to be expected. Compared to a scheduling
policy unaware of the system’s power and energy consumption, an energy-efficient policy will
most assuredly incur additional overheads (for updating the platform’s current load, requesting
a frequency adjustment, etc.) when making energy saving decisions at runtime. To quantify the
impact of such system overheads in a practical setting, additional workloads were run under CVFS
and its baseline (P-EDF) on the quad-core platform while recording overhead samples. The low-level
latency following a task release was selected as representative of the event-scheduling category,
where dynamic frequency adjustment actions take place. A task set generation methodology similar
to that described in subsection 5.4 was followed. 150 task sets were generated using the task set
generator from Emberson et al., each with a total utilization of either 75%, 80%, or 85%, and a number
of tasks ranging from n = 4m = 16 to 10m = 40 in steps of 2m. Each task set was guaranteed to be
feasible under partitioned scheduling and executed under both schedulers for 60 seconds. Overhead
samples were collected using LITMUSRT’s Feather-Trace low-overhead tracing toolkit (section 2).

Observation 3. Runtime overheads incurred when making frequency adjustment decisions are
relatively small in absolute terms. Figure 14 illustrates the task release overhead data observed by
Feather-Trace, which measures overheads in terms of CPU cycles. On the experimental platform
(where the CPU cycles counter runs at the platform’s nominal frequency), 1µs corresponds roughly

15 Notice, however, that this situation is not exclusive to the energy-efficient schedulers. The same holds for the schedulers
not implementing any particular energy saving measure (Figure 10 through Figure 12).

, Vol. 1, No. 1, Article . Publication date: December 2018.

24 Mejia-Alvarez P. et al.

Fig. 14. Overhead incurred at task release under P-EDF and CVFS.

to 3, 400 cycles. In the figure, the y-axis denotes the fraction of all overhead data that measured at
most the quantity of processor cycles marked on the x-axis. For instance, it can be seen from the
figure that 90% of the overhead samples measured for P-EDF were fewer than 5, 000 cycles ≈ 1.47µs.
As expected, CVFS does incur higher overheads because of the latency involved in selecting the
next frequency level and synchronizing the decision with respect to every other processing core on
the platform (recall that the experimental testbed is based on a CMP featuring a global voltage and
frequency level). However, the difference between both policies in terms of runtime overheads is
relatively small, within the range of a fewmicroseconds (90% of the overheads for CVFS measured at
most 10, 000 cycles ≈ 2.94µs). Even in the presence of additional overheads, these experiments with
CVFS resulted in no observable instability with respect to timing requirements. Still, this exchange
between performance and energy consumption must be validated by taking the characteristics of
the supported application into account.

6 CONCLUSION
The recent availability of such open, feature-complete frameworks for supporting real-time work-
loads on multiprocessor and multicore platforms such as LITMUSRT has made it possible to im-
plement and evaluate real-time scheduling algorithms found in the literature on real hardware
platforms. Moreover, the integration of these frameworks with the hardware and software support
for energy management provided by most modern platforms makes it more feasible to implement
energy-aware real-time multiprocessor scheduling algorithms with reasonable effort.

In this work, we have provided a means for achieving progress in this regard. Our implementation
effort and measurement methodology was crucial in conducting a case study that presented the real
performance (for our particular experimental setup) of two energy-aware real-time multiprocessor
scheduling algorithms found in the literature. The results obtained in our study indicate that volt-
age/frequency scaling is indeed an effective means for achieving energy savings in multiprocessor
settings where all processing units are constrained to run at a single global speed. In addition, the
comparatively low runtime overheads introduced by dynamically performing operating frequency
adjustments further confirms the practicality of the technique, even in contexts where stringent
timing constraints must be preserved.

ACKNOWLEDGMENTS
The authors would like to thank to Project FOMIX CONACyT-Estado de Jalisco CIIoT (JAL-2015-03),
for proving the funds for this research.

REFERENCES
[1] Ishfaq Ahmad and Sanjay Ranka. 2012. Handbook of Energy-Aware and Green Computing. Chapman & Hall/CRC.

, Vol. 1, No. 1, Article . Publication date: December 2018.

Evaluation Framework for Energy-Aware Multiprocessor Scheduling in Real-Time Systems 25

[2] Mikael Asberg, Thomas Nolte, and Shinpei Kato. 2012. ExSched: An External CPU Scheduler Framework for Real-Time
Systems. In Proceedings of the 18th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications.

[3] Hakan Aydin, V. Devadas, and D. Zhu. 2006. System-level Energy Management for Periodic Real-Time Tasks. In
Proceedings of the 27th IEEE Real-Time Systems Symposium (RTSS’06), Rio de Janeiro, Brazil.

[4] Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Mejía-Alvarez. 2004. Power-Aware Scheduling for Periodic
Real-Time Tasks. 53, 5 (2004), 584–600. https://doi.org/10.1109/TC.2004.1275298

[5] Mario Bambagini, Mauro Marinoni, Hakan Aydin, and Giorgio Buttazzo. 2016. Energy-Aware Scheduling for Real-Time
Systems: A Survey. 15, 1 (2016). https://doi.org/10.1145/2808231

[6] Mark Benson. 2014. The Art of Software Thermal Management for Embedded Systems. Springer-Verlag New York.
[7] Aaron Block and William Kelley. 2015. Implementing Adaptive Clustered Scheduling in LITMUS-RT. In Proceedings of

the 11th Annual Workshop on Operating Systems Platforms for Embedded Real-Time applications.
[8] Vincenzo Bonifaci, Björn Brandenburg, Gianlorenzo D’Angelo, and AlbertoMarchetti-Spaccamela. 2016. Multiprocessor

Real-Time Scheduling with Hierarchical Processor Affinities. In Proceedings of the 28th Euromicro Conference on Real-
Time Systems.

[9] B. Brandenburg. 2011. Scheduling and Locking in Multiprocessor Real-Time Operating Systems. Ph.D. Dissertation.
[10] Björn B. Brandenburg and Mahircan Gül. 2016. Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor

Real-Time Schedulingwith Semi-Partitioned Reservations. In Proceedings of the 37th IEEE Real-Time Systems Symposium.
[11] Neil Brown. [n. d.]. Improvements in CPU frequency management. https://lwn.net/Articles/682391
[12] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson. 2006. LITMUS-RT: A Testbed for Empirically Comparing

Real-Time Multiprocessor Schedulers. In Proceedings of the 27th IEEE Real-Time Systems Symposium.
[13] Felipe Cerqueira, Manohar Vanga, and Björn B. Brandenburg. 2014. Scaling Global Scheduling with Message Passing.

In Proceedings of the 20th IEEE Real-Time and Embedded Technology and Applications Symposium.
[14] Jina-Jia Chen, Heng-Ruey Hsu, and Tei-Wei Kuo. 2006. Leakage-Aware Energy-Efficient Scheduling of Real-Time

Tasks in Multiprocessor Systems. In Proceedings of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium.

[15] Jonathan Corbet. [n. d.]. The cpuidle subsystem. https://lwn.net/Articles/384146
[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms. The

MIT Press.
[17] National Instruments Corporation. [n. d.]. Current Measurements: How-To Guide. http://www.ni.com/tutorial/7114/en
[18] MatthewDellinger, Piyush Garyali, and Binoy Ravindran. 2011. ChronOS Linux: A Best-Effort Real-TimeMultiprocessor

Linux Kernel. In Proceedings of the 48th ACM/EDAC/IEEE Design and Automation Conference.
[19] Vinay Devadas and Hakan Aydin. 2010. Coordinated Power Management of Periodic Real-Time Tasks on Chip

Multiprocessors. In Proceedings of the International Green Computing Conference.
[20] Sudarshan K. Dhall and C. L. Liu. 1978. On a Real-Time Scheduling Problem. 26, 1 (1978), 127–140. https://doi.org/10.

1287/opre.26.1.127
[21] Linux Kernel Documentation. [n. d.]. CPU frequency and voltage scaling code in the Linux(TM) kernel. https:

//www.kernel.org/doc/Documentation/cpu-freq/core.txt
[22] Glenn A. Elliot and James H. Anderson. 2011. Globally Scheduled Real-Time Multiprocessor Systems with GPUs. 48, 1

(2011), 34–74. https://doi.org/10.1007/s11241-011-9140-y
[23] Glenn A. Elliot, Bryan C.Ward, and James H. Anderson. 2013. GPUSync: A Framework for Real-Time GPUManagement.

In Proceedings of the 34th IEEE Real-Time Systems Symposium.
[24] Paul Emberson, Roger Stafford, and Robert I. Davis. 2010. Techniques For The Synthesis Of Multiprocessor Tasksets. In

Proceedings of the 1st International Workshop on Analysis Tools and Methodologies for Embedded and Real-Time Systems.
[25] Unified Extensible Firmware Interface Forum. [n. d.]. ACPI Specification. http://uefi.org/specifications
[26] Joël Goossens, Shelby Funk, and Sanjoy Baruah. 2003. Priority-Driven Scheduling of Periodic Task Systems on

Multiprocessors. 25, 2-3 (2003), 187–205. https://doi.org/10.1023/A:1025120124771
[27] Jonathan L. Herman, Christopher J. Kenna, Malcolm S. Mollison, James H. Anderson, and Daniel M. Johnson. 2012.

RTOS Support for Multicore Mixed-Criticality Systems. In Proceedings of the 18th IEEE Real-Time and Embedded
Technology and Applications Symposium.

[28] Chong-Min Kyung and Sungjoo Yoo. 2011. Energy-Aware System Design. Springer Netherlands.
[29] Insup Lee, Joseph Y-T Leung, and Sang H. Son. 2008. Handbook of Real-Time and Embedded Systems. Chapman and

Hall/CRC.
[30] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia. 2000. Worst-Case Utilization Bound for EDF Scheduling on Real-Time

Multiprocessor Systems. In Proceedings of the 12th Euromicro Conference on Real-Time Systems.
[31] Robert Love. 2010. Linux Kernel Development. Pearson Education.

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://doi.org/10.1109/TC.2004.1275298
https://doi.org/10.1145/2808231
https://lwn.net/Articles/682391
https://lwn.net/Articles/384146
http://www.ni.com/tutorial/7114/en
https://doi.org/10.1287/opre.26.1.127
https://doi.org/10.1287/opre.26.1.127
https://www.kernel.org/doc/Documentation/cpu-freq/core.txt
https://www.kernel.org/doc/Documentation/cpu-freq/core.txt
https://doi.org/10.1007/s11241-011-9140-y
http://uefi.org/specifications
https://doi.org/10.1023/A:1025120124771

26 Mejia-Alvarez P. et al.

[32] Benini Luca, Alessandro Bogliolo, and Giovanni De Micheli. 2000. A survey of design techniques for system-level
dynamic power management. 8, 3 (2000), 299–316.

[33] Abdelhafid Mazouz, Alexandre Laurent, Benoît Pradelle, and Willian Jalby. 2014. Evaluation of CPU Frequency
Transition Latency. 29, 3-4 (2014), 187–195. https://doi.org/10.1007/s00450-013-0240-x

[34] Patrick Mochel. 2003. Linux Kernel Power Management. In Proceedings of the Linux Symposium.
[35] Gabriel A. Moreno and Dionisio de Niz. 2012. An Optimal Real-Time Voltage and Frequency Scaling for Uniform

Multiprocessors. In Proceedings of the 18th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications.

[36] Vincent Nélis. 2011. Energy-Aware Real-Time Scheduling in Embedded Multiprocessor Systems. Ph.D. Dissertation.
[37] Santiago Pagani and Jian-Jia Chen. 2013. Energy Efficiency Analysis for the Single Frequency Approximation (SDA)

Scheme. In Proceedings of the 19th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications.

[38] Venkatesh Pallipadi and Adam Belay. 2007. cpuidle-Do nothing, efficiently. In Proceedings of the Linux Symposium.
[39] David A. Patterson and John L. Hennessy. 2012. Computer Architecture: A Quantitative Approach. Morgan Kaufmann.
[40] Padmanabhan Pillai and Kang G. Shin. 2001. Real-Time Dynamic Voltage Scaling for Low-Power Embedded Operating

Systems. In Proceedings of the 8th ACM Symposium on Operating System Principles.
[41] K. R. Rao, D. N. Kim, and J. J. Hwang. 2010. Fast Fourier Transform: Algorithms And Applications. Springer Netherlands.
[42] Irani Sandy, Sandeep Shukla, and Rajesh Gupta. 2003. Online strategies for dynamic power management in systems

with multiple power-saving states. 2, 3 (2003), 325–346.
[43] Youngsoo Shin and Kiyoung Choi. 1999. Power Conscious Fixed Priority Scheduling for Hard Real-Time Systems. In

Proceedings of the 36th Annual ACM/IEEE Design Automation Conference.
[44] Keysight Technologies. [n. d.]. 34411A Digital Multimeter, 6 1/2 Digit Overview and Features. https://www.keysight.

com/en/pd-692679-pn-34411A
[45] Jean Vuillemin. 1978. A Data Structure for Manipulating Priority Queues. 21, 4 (1978), 309–315. https://doi.org/10.

1145/359460.359478
[46] Chuan-Yue Yang, Jian-Jia Chen, and Tei-Wei Kuo. 2005. An Approximation Algorithm for Energy-Efficient Scheduling

on A Chip Multiprocessor. In Proceedings of the Conference on Design and Automation and Test in Europe.
[47] Ren. Zhiyuan, Bruce H. Krogh, and Radu Marculescu. 2005. Hierarchical adaptive dynamic power management. 54, 4

(2005), 409–420.
[48] Dakai Zhu, Rami Melhem, and Bruce Childers. 2003. Scheduling with Dynamic Voltage/Speed Adjustment Using Slack

Reclamation in Multi-Processor Real-Time Systems. 14, 7 (2003), 686–700. https://doi.org/10.1109/TPDS.2003.1214320

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://doi.org/10.1007/s00450-013-0240-x
https://www.keysight.com/en/pd-692679-pn-34411A
https://www.keysight.com/en/pd-692679-pn-34411A
https://doi.org/10.1145/359460.359478
https://doi.org/10.1145/359460.359478
https://doi.org/10.1109/TPDS.2003.1214320

Evaluation Framework for Energy-Aware Multiprocessor Scheduling in Real-Time Systems 27

Pedro Mejia-Alvarez received the B.S. degree in computer systems from ITESM, Queretaro,
Mexico, in 1985, and the Ph.D. degree in informatics from the Polytechnic University of Madrid,
Spain, in 1995. He has been Professor for the computer science department at Cinvestav-IPN, since
1997. His main research interests are mobile computing, real-time systems scheduling, adaptive
fault tolerance, and software engineering.

David Moncada-Madero received the MsC. degree in computer science from CINVESTAV-
Guadalajara. He is currently a Software Engineer at Microsoft in Redmond Wa, USA. His research
interests include real-time systems, mobile and wearable computing.

, Vol. 1, No. 1, Article . Publication date: December 2018.

28 Mejia-Alvarez P. et al.

Hakan Aydin received the Ph.D. degree in computer science from the University of Pittsburgh
in 2001. He is currently an associate professor in the Computer Science Department at George
Mason University. He was a recipient of the US National Science Foundation (NSF) Faculty Early
Career Development (CAREER) Award in 2006. His research interests include real-time systems,
low-power computing, and fault tolerance. He is a member of the IEEE.

Arnoldo Díaz-Ramirez is a research professor in the department of Computer Systems at
Tecnologico Nacional de Mexico/Instituto Tecnologico de Mexicali. He received the BS degree in
computer sciences from Cetys University, Mexicali, Mexico, and the Masters degree in computer
sciences from the same university. He received the PhD degree in computer sciences fromUniversitat
Politecnica de Valencia, Spain, in 2006. His research interests include real-time systems, Internet of
Things, wireless sensor networks, and ubiquiotous computing. He is member of the IEEE Computer
Society.

, Vol. 1, No. 1, Article . Publication date: December 2018.

	Abstract
	1 Introduction
	2 Energy Management in Operating Systems
	2.1 Energy Management in Linux
	2.2 System Power Management
	2.3 Device Power Management

	3 Incorporating Energy Management Features in LITMUSRT
	3.1 LITMUSRT
	3.2 Extending LITMUSRT with Support for DVFS

	4 Case Study: Energy-Aware Multiprocessor Scheduling Algorithms
	4.1 EDF(k)
	4.2 CVFS
	4.3 Implementation Issues

	5 Experimental Evaluation of Energy-Aware Multiprocessor Algorithms
	5.1 Platform
	5.2 Workload
	5.3 Methodology
	5.4 Experiments
	5.5 Instrumentation
	5.6 Measurements and Observations

	6 Conclusion
	Acknowledgments
	References

