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Abstract 

 In this paper, we analyze the difficulties of handling 
abnormal events. We introduce a framework that 
integrate the concepts of Design by Contract, exception 
safety and fault tolerance and from then, obtain a set of 
criterions for the design of a mechanism that integrate 
error code, exception and executable assertions for the 
handling of different types of abnormal events. From 
these criterions, a proposal for a novel exception 
mechanism adequate for C written embedded systems is 
presented. Finally, we analyze the advantages of our 
mechanism over the existing mechanisms and over other 
languages or previous extension to C. 

1. Introduction 
Many embedded systems must satisfy temporal and 

dependability requirements under high cost restrictions, 
limited storage and computational capacities. Examples of 
this type of systems exist in the automotive industry, 
medical equipments, industrial control systems and 
consumer devices.  

The requirements of those embedded systems motivate 
the use of embedded operating systems (EOS) which do 
not use the traditional process model (such as the different 
UNIX variants or Windows NT). This process model is 
able to isolate the different activities (by using memory 
and input/output protection) so that the system reliability 
is to a certain extent determined by the trustworthiness of 
the operating system. Modern EOS provide basic services 
such as scheduling and a set of libraries to aid in the 
creation of applications but they do not support a process 
model, instead they provide a single physical address 
space for all the activities and the operating system does 
little to avoid that the programs interfere the one with the 
other or with the operating system. In this EOS, the 
programmer has total control over every aspect of the 
application and must provide all the routines to verify, to 
report and to treat all the abnormal conditions that can 
arise during the execution of an application.  

Abnormal events handling is needed to ensure reliable 
and predictable operation of embedded systems in the 
presence of errors. Errors can result from hardware 

failures, software bugs, discrepancies between the 
external environment and the internal representation, or 
from improper timing and synchronization.  

Traditionally the mechanism of return of error codes 
has been used for the handling of abnormal events. 
However, the well-known drawbacks of this method [7] 
brought as consequence the introduction of exceptions 
handling mechanisms with the promise to separate the 
error handling code from the normal code [13]. The 
introduction of exception constructs has helped 
programmers to improve the reliability of software, 
however the semantics (and the supporting syntax) of 
current exception  constructs is still too loose leaving 
plenty of room for their misuse. For instance, a common 
misuse is to use exceptions to report back rather regular 
events. Yet another common misuse is to catch exceptions 
with an empty catch block (ignoring the exception). This 
misuse is a symptom of improper support for the 
separation of concerns in current exception handling 
mechanisms. Perhaps the worse consequence of the lack 
of a proper separation of concerns is the negative 
correlation between correctness and reliability, commonly 
observed in software systems as identified by Parnas in 
[25]. This correlation suggests that when a software 
system needs to observe both correctness and reliability, 
increasing the emphasis in one decreases the quality of 
the other. 

The previous exception constructs results in an 
excessive increase of the code associated to the handling 
of abnormal events. This also increases the complexity 
and costs of the system without contributing significantly 
to the correction and reliability requirements of the 
application. In this context, we believe that it is important 
the existence of a general conceptual framework for the 
handling of all errors types. This framework should 
promote the use of the adequate mechanisms and a correct 
separation of responsibilities among the different software 
elements and among different sections of codes. Also, 
appropriate language constructs are necessary to allow the 
direct implementation and enforcement of this 
framework. In this context, the main contributions of our 
work are: 



 
 

• A conceptual framework that integrates design by 
contract, exception safety and fault tolerance. This 
framework provides a clear separation of 
responsibilities for abnormal handling and a right 
balance between the correctness and reliability 
requirements.  

• The proposal of a set of criterions for the design and 
use of an abnormal events handling mechanism based 
on this conceptual framework.  

• The design of a novel exception handling mechanism 
based on these criterions with a supporting syntax and 
semantic that prevents important misuses and adapted 
for C written embedded systems. 
This work is organized as follows. In section 2, the 

general difficulties associated to the handling of abnormal 
events are presented. Section 3 introduces our conceptual 
framework for the handling of abnormal events and its 
derived criterions for the design of an abnormal event 
handling mechanism. Section 4 proposes an exception 
handling mechanism based on these criterions for C based 
embedded systems and section 5 highlights the 
differences of the mechanism proposed with some other 
existing mechanisms. Finally, section 6 presents some 
concluding remarks. 

2. Abnormal event handling difficulties 
2.1. Hierarchical Architecture Drawbacks 

Usually software is structured in layers to provide an 
easier management of its complexity. Each layer is 
constructed using the information hiding principle [24] 
and communicates only with adjacent layers through well 
defined interfaces. Each layer implements a level of 
abstraction or a virtual machine and these levels form a 
hierarchy at which the highest level implements an 
specific functionality of the application. As one lowers in 
levels, the abstraction diminishes until arriving at the 
lowest level where generally there is a direct interaction 
with the hardware. Nevertheless, this structure makes 
difficult those aspects requiring cooperation among 
several levels, such as the handling of abnormal events. 

The problem with this hierarchical structure is that, 
since most of these abnormal events are detected at the 
inferior levels, it is not possible to carry out appropriate 
recovery procedures. This is because at these inferior 
levels there is neither sufficient global information nor 
specific context of the application. The current existing 
solution is to allow the interfaces between the modules to  
communicate the errors occurred among them [25]. This 
are done in a way that these errors propagate from the 
lower levels, where those were detected, up to the higher 
levels at which appropriate decisions can be taken to cope 
with error treatment [13]. 

2.2. Returning status or error value 

The traditional mechanism of C to carry out abnormal 
events handling consists of returning an status or error 
value on each function. This code must be verified 
explicitly at each level in the hierarchy to determine if the 
normal processing should continue, if it is necessary to 
give treatment or to return immediately to the invoking 
procedure propagating the error. 

The problem with this approach is that, when an error 
is detected on functions located at the middle of the 
hierarchy, it rarely can be correctly treated, so it must be 
propagated. These errors are usually generated at lower 
level functions and they are not directly related to the 
logic of the current computation, thus they cannot be 
treated by the function. These errors are named tramp 
errors 2 [26]. The presence of tramp errors in the interface 
of a function breaks with the function’s abstraction, 
because it reveals information referring to its 
implementation. Even worse is the fact that the invoking 
code, cannot avoid those implementation details, which 
are irrelevant to its logic of operation. This is because the 
invoking code has the responsibility to propagate the error 
explicitly to the higher levels. The presence of this 
propagation code, mixed with the function’s code, 
introduces a tight data coupling among layers which 
complicates reusability. Additionally, programmers tend 
to ignore this extra code because the propagation code is 
not within the normal logic of the program and it makes it 
difficult [7][21]. 

2.3. Using Exception Handling Mechanisms 

With the purpose of solving the above mentioned 
problems, several specific control structures, named 
exception handling mechanisms [13], were developed to 
handle abnormal events. Modern programming languages, 
such as Ada[16], Eiffel[19], C++[31], Java[11], and 
C#[14] provide support for this constructs. 

It is argued that exceptions are superior to the return of 
error codes because (1) they provide a clear separation of 
the error handling code from the normal code [10][32], 
(2) do not require a frequent verification and propagation 
of the error values [10] and (3) the program cannot ignore 
the errors returned by the lower level functions 
[21][27][32].  All those advantages should lead to the 
construction of software with lower complexity, easier to 
read, more efficient and hence with less bugs [13].  

However, the experience has demonstrated that the 
excessive use of exceptions leads to the development of 
programs plagued with  try-catch blocks which in most 
cases: (1) handle rather normal situations [32], (2) convert 
                                                
2 In analogy with the term “tramp data” in the structured 

analysis: a piece of information that shuffles aimlessly around 
a system, unwanted by — and meaningless to — most of the 
modules through which it passes [23]. 



 
 

exceptions among abstraction levels  while they are being 
propagated, or (3) even catch the exceptions ignoring its 
treatment (to avoid compiler errors). These try-catch 
sentences are more difficult to read and much less 
efficient at run time that the alternative if-else. In 
addition, it is easier to introduce bugs due to the presence 
of implicit control transfers. 

All current research efforts dedicated to characterize 
the situations for which exceptions must be used instead 
of the returning of error codes, agree in that they must be 
used only under exceptional or rare conditions. Nowadays 
the most elaborated definitions of exceptional conditions 
are based on the design by contract theory [19]. Under 
this theory an exceptional condition is that which does not 
fulfil the contract, or that on which it is not possible to 
fulfil the contract [32]. Although this definitions are 
precise, they are stated in terms of a formal model of the 
software system and therefore they do not give an 
engineering criteria to decide what must be (and what 
must not be) included into the contract. So, in practice 
they are not always very useful.   

2.4. Difficulties associated to embedded system 

2.4.1. Support for C-written Programs 
Nowadays the C language continues being the 

language of choice for a broad range of embedded 
systems. The great success of C is given by its 
combination of low level features, which allows a high 
degree of direct hardware control needed for embedded 
systems, along with its processor independence. This 
characteristics contrast with the higher level and more 
secure features of others languages, which overcome its 
ability to easily control the hardware. On the other hand, 
C++, the object oriented superset of C, which provides 
native support for exception handling, is increasingly 
popular for embedded systems. However, some of its new 
features reduce the efficiency of executable programs.  

The lack of a structured exception handling 
mechanism in C is an important drawback for the creation 
of reliable systems. So, we argue that the incorporation of 
a well-designed exception mechanism to the C language 
allows an adequate balanced between efficiency, 
portability and reliability for the development of reliable 
embedded systems. 

 

2.4.2. Support for fault tolerance 
Given the dependability requirements of the embedded 

systems, the exceptions mechanism must provide 
adequate support for fault tolerance [8]. This aspect 
introduces particular characteristics for embedded 
systems which are exposed next. 

Minimum redundancy and diversity of software. 
The provision of fault tolerance does not come without 
cost. This cost depends mainly on the type of redundancy 
and diversity used. Due to the cost restrictions, in some 
cases hardware redundancy is not an option and then the 

software must take care of the fault tolerance. 
Nevertheless, due to the increase in the amount of code 
and the overhead in the execution times, it will be 
necessary more powerful processors and more memory 
with the corresponding increase in the hardware cost. The 
challenge is then to provide suitable levels of fault 
tolerance with minimum cost increases. 

Error recovery. This takes care of bringing the 
system from an erroneous state, back to a consistent state. 
Error recovery may be carried out by correcting the 
damaged state (known as forward error recovery) or by 
returning the system to a previous known consistent state 
(known as backward error recovery) [4]. The backward 
error recovery has the advantage of providing a 
transparent implementation which provides an efficient 
recovery from unpredictable errors. For this reasons, 
backward error recovery is used in most general purpose 
systems. Nevertheless, its main drawback is the 
requirement of saving the system state in a set of recovery 
points. This extra state may be a burden in resource-
constrained system such as embedded systems. In 
addition, the state of embedded systems may also include 
the actuation to the external environment that cannot be 
undone without consequences. As a result, an abnormal 
event handling mechanism for embedded systems must 
provide support for backward and forward error recovery. 

Damage confinement. After an error is detected, it 
must be verified to what extent the system has been 
corrupted by the error. In embedded systems, after 
detecting an error, it cannot be guaranteed that the caused 
damages have been restricted to certain areas of the 
system. This is because of, the absence of security 
features in the C language, the use of EOS, the use of 
hardware without memory protection and the use of direct 
programming over the bare hardware. 

 

2.4.3. Compatibility and legacy systems support  
The mechanism for handling abnormal situations must 

allow: (1) A maximum portability, allowing the 
implementation of any construction of the language as a C 
extension supported by the compiler (to maximize 
efficiency), or as pre-processor macros (for it use with 
existing compilers), and (2) A maximum compatibility, 
allowing the reuse of legacy C code that has not been 
written specifically for this mechanism. 

3. Criteria for abnormal event handling 
In this section we first discuss design by contract, the 

formal framework under which we provide a clean 
separation of concerns. Then we provide a classification 
of the types of abnormal events and its dynamics, which 
allows us to identify the requirements and mechanisms 
necessary to handle each of these events and the 
responsibilities of the different software elements for 
handling those events. After that, we analyse exceptions 
safety and fault tolerance to identify the issues that allows 



 
 

us an adequate achievement of dependability and 
correctness requirements. From this analysis, we provide 
design criterions for the treatment of abnormal events for 
embedded systems. 

3.1. Separations of Responsibilities 

At the core of separation of concerns is 
modularization. This implies that a good separation of 
concerns cannot be achieved without an strong emphasis 
in a clear modularization. To achieve this we base our 
modularization semantics and syntax in the Design by 
Contract Theory [19].  

Design by contract supports a formal separation of 
responsibilities among software elements (objects, 
components, function or code sections). According to this 
theory, a software system is a set of software elements  
that interact on the base of a well defined specification of 
mutual obligations which constitute a contract between 
the supplier element  (the one whose methods or routines 
are invoked) and the client element (the one that invokes 
the methods or routines). This contract is composed of a) 
the preconditions guaranteed by the client element, before 
a routine of the supplier is executed; b) the postconditions 
guaranteed by the supplier when the routine ends; and c) 
the invariants or conditions that applies to the entire 
element that characterize its consistency and integrity 
properties. If the client element assures the satisfaction of 
the preconditions, then the supplier element assures the 
satisfaction of the postconditions and invariants. 

Using the notation defined in [15] the responsibilities 
assigned to a Code section (in terms of the contract) can 
be specified as:  
 {precondition ∧ invariant}  Code  {postcondition ∧ invariant} 

The separation of responsibilities between the client 
and supplier code sections in a program is illustrated in 
Table 1. The relyer is the software element that assumes 
that a condition (precondition, postcondition or invariant) 
is true, while the ensurer is the element that has the 
responsibility of guarantee the condition. 

Two code sections are related by a condition if one is 
ensurer and the other is relyer of this condition. An 
ensurer code has fulfilled the condition, if it transfers the 
control to a relyer code, when the condition that relates 
them is true. If an ensurer code evaluates the condition 
that relates it with a relyer, in order to make sure that it is 
satisfied, it is said that the client has tested the condition. 
On the contrary, if the relyer code evaluates the condition 
that relates it with an ensurer, with the purpose of 
checking its validity, it is said that it has checked the 
condition3.  

 

Table 1. Conditions related relationship between code sections 
 Precondition Postcondition Invariant 

                                                
3The concepts of test, check and fulfill are generalizations for 

conditions of the concepts defined in [20] for preconditions.  

 Relyer Supplier Client Supplier 
 Ensurer Client Supplier Supplier 

3.2. Error Semantics & Constructs Alignment 

We define abnormal events as those that may arise 
during the execution of an operation and that are related 
with this operation4, but require an immediate change of 
the normal course of execution for its treatment. The 
omission of this treatment prevents the fulfilling of the 
dependability requirements, therefore, any classification 
of these abnormal events should be made in the context of 
the dependability impairments [17]. Here we can 
distinguish the following concepts: (a)  failure, defined as 
the deviation of the service delivered by the system from 
the behavior specified in their requirements, (b) error, 
defined as the system state that is liable to lead to a 
failure, and (c) fault, defined as the identified or 
hypothetical cause of an error. It is known that there are 
faults after errors are detected and the errors can be 
spread, to produce other errors [17]. In this context, we 
classify the following types of abnormal events and 
provide different strategies and priorities for their 
handling: 

Software error: it is an invalid state at which the 
system can enter as a result of a software fault or bug. 
These faults are persistent and occur because of design or 
implementation errors. Although they should never exist, 
it is impossible to avoid them. In consequence, a 
dependable system should have some strategy to deal with 
them. According to the form at which the bugs are 
manifested it is common to distinguish two types [10]: 
heisenbugs that lead to a transient, intermittent software 
errors; and bohrbugs that are manifested in a reliable way 
under a set of well defined conditions. When we deal with 
software faults the priority is to detect (and to correct) 
them as soon as possible (before the system is deployed). 

Application error: it is an invalid state of a system 
caused by circumstances that arise in a justifiable and 
unavoidable way during its execution. This error can be 
the failure of another external component or the fail of the 
required service. We distinguish two types of application 
errors: 
• Incident: It is a situation that arise during the execution 

of an operation (inside the logic of the application) and 
which it is completely foreseeable. Only few incidents 
are possible and they should be completely 
enumerated.  

• Emergency: It is an uncommon and not very frequent 
situation that, although it could be anticipated, does not 
match with the current abstraction level (tramp error). 
It is not possible to foresee all potential emergencies 

                                                
4This requirement discards the asynchronous events (not related) 

like the interrupts or the UNIX signals. 



 
 

that could arise during the execution of a software 
element. 
The incidents must be treated directly by the calling 

code, therefore the priority when facing them is to provide 
efficient mechanisms for their treatment. In the other 
hand, when an emergency arises, it is not possible to 
provide means to solve the problem within reach of the 
immediate caller. Therefore, the priority is to allow the 
safe propagation through all the software elements located 
among the point at which it is detected and the point at 
which it can be treated; as well as, to allow the safe 
recovery of all these intermediate elements in the face of 
any abrupt interruption due to this propagation. 

 
Criterion 1: Support for multiple error-handling 

mechanisms. There is not a unique general mechanism 
for the handling of all the types of abnormal events.  

 

Depending on the error type different mechanisms 
must be used:   

Incidents handling: The most effective form to report 
them is using a return of error codes. This is because the 
calling code can perform its treatment efficiently using 
the normal language instructions for conditional control 
transfers. 

Emergency handling: The most effective form to 
report and propagate them is by the use of an exception 
mechanism. This is because the exception mechanism is 
specially designed to cut through the calling stack to 
reach the appropriate element where the error can be 
treated. The exception mechanism is restricted only to the 
task of propagating abnormal events. This is the only 
aspect where it is less expensive than the other 
alternatives. 

Software error handling: In this case, the most 
effective way is the use of executable assertions [30]. The 
non-fulfillment of these should invoke a global handler to 
record enough information to fix the bug and perform a 
fail-safe or a reset. The use of executable assertions to 
handle software errors simplifies greatly the design of the 
exception mechanism and of the error treatment code, 
hence reducing code size.  Without damage confinement 
features (subsection 2.4.2), the use of executable 
assertions diminishes the possibility of spreading the error 
and increases the possibility of system recovery (because 
the same recovery code or its environment could have 
been corrupted). Also, it promotes the construction of 
bug-free software. Table 2 summarizes the types of 
abnormal events and its correspondence with the priorities 
and the language mechanism used for its handling. 

By providing a correct identification and classification 
of possible abnormal events that can arise in the different 
system components, it is possible to identify precisely the 
software elements responsible for handling such events 
and the mechanism required for its reporting. This avoids 
an excessive growth of the code needed for errors 

handling and allows the construction of dependable 
systems with minimum costs increments. 

 
Table 2. Integrated Strategy for Abnormal Events handling 

Type of Abnormal 
Situations 

Priority to deal 
with it 

Language 
Mechanisms 

Software Error Early detection / 
fail-safe or reset 

Executable 
assertions 

Emergency Safe propagation 
and   recovery 

Structured 
exceptions  Appli-

cation 
Error Incidence error treatment Error codes/ 

Normal construct 
 
Criterion 2: Single point of correctness or 

minimum code redundancy: avoid having two code 
sections that rely in, and ensure the same conditions. 

This principle is a consequence of the application of 
the design by contract (jointly with the verification of the 
conditions), to allow an early detection of software faults. 
This is because, in this way the introduction of heisenbugs 
is minimized and more bugs may be manifested as 
bohrbugs. This principle discards the use of the N-version 
programming approach to fault tolerance [3] which is 
consistent with the resources restrictions for embedded 
systems. 

3.3. Abnormal events characterization 

The identification and classification of abnormal 
events must be performed at early design stages for all the 
system components. This allow us to correctly  define the 
responsibilities for each system component in their 
handling of abnormal events.  

The concepts introduced in section 3.1 help us to 
formally define a software error as the non-fulfillment of 
a condition, that is detected by a checking. This allows a 
clear separation of responsibilities for detecting and 
reporting software errors from those of detecting and 
reporting application errors. The first is responsibility of 
the relyer code, while the second is responsibility of the 
ensurer. Although this separation of responsibilities 
(given in terms of the contract) is important, it does not 
specify the conditions of the contract. The specification of 
the conditions of the contract is obtained using 
engineering criteria that take into account the context of 
the application and its abstraction level. 

Application dependency. The classification of a 
concrete event depends on the application. For example, 
in a dynamic system that operates in an environment 
where its resources are constantly changing, the 
impossibility of assigning a resource (such as the 
memory) is considered an emergency. However, in 
applications executing in predictable environments, where 
the resources (including memory) need to be sized at 
design-time, the impossibility of assigning resources 
constitutes a software error. 



 
 

Abstraction level dependency. The classification of a 
concrete event is local to a software element. For 
example, at the I/O level, a failure when reading some 
external storage device is an incident (it is perfectly 
foregone and inside the logic of the operation). The 
immediate superior level (I/O logic) must be prepared to 
deal with this situation, by retrying the operation (hoping 
that the cause has been some transitory failure). However, 
if this situation persists, it has to be reported as an 
emergency so that it is propagated up to the point where 
enough contextual information exists. If this higher level 
of abstraction was trying to locate information for the first 
time, it is possible that the error was due to that the 
storage media had not been already introduced, or that it 
was due to an invalid media. Again, this can be 
considered a situation inside the application logic and 
therefore should be reported as an incident. The 
immediate upper level is prepared to manage it, for 
example, by requesting the insertion of the media. 

Engineering Criteria: As more general purpose is a 
software element, it is more reasonable to state that the 
different abnormal events are expected and are inside the 
caller logic. In other words, at the lowest levels of the 
architecture the abnormal events are incidents and 
therefore they should be reported by returning error 
codes. The upper levels tend to be application oriented 
and it is reasonable to state that the incidents (error codes) 
reported by the lowest levels now are transformed into 
emergencies (exceptions), so that they travel in an 
implicit way to the higher levels, avoiding tramp errors. 
Lastly, when these errors are being reported at the highest 
level of the application (where one must treat them) they 
should again turn into incidents (error return codes) 
according to this level of abstraction.  

Criterion 3: conversion among errors types: The 
mechanism used for abnormal event handling should 
support the conversion (preferably automatically) among 
different errors types (exceptions, return codes and 
assertions violation). 

This feature would eliminate the great amount of the 
code needed to translate one error type to another one 
(change of abstraction level). This code is responsible for 
many of the try-catch construction in a program. This 
makes easier the understanding, the maintenance and the 
reusability of the code. 

3.4. Understanding Exception Correctness 

It is well know the fact that writing correct code in 
presence of exceptions is difficult [5][27]. The main 
problem is that exceptions hide the control transfers that 
break the explicit control flow of the operations. When an 
exception is raised on a deeply nested service, all 
functions in the invocation chain are abruptly interrupted. 
This interruption may leave the data structures associated 
to these functions in an inconsistent state or it may cause 

resource leaks due to the skipping of the code where such 
resources were released (e.g. memory).   

To specify the software behavior in presence of 
exceptions we will adopt the Abrahams guarantees  [1]. 
These guarantees are: 
• Basic guarantee: No resources are leaked; software 

elements remain in a valid although not predictable 
state.  

• Strong guarantee: The state of the program remains 
without changes. This guarantee always implies a 
global commit-or-rollback semantics. 

• Non-Fail: The operation never raises an exception.  
Here it is important to emphasize that (1) the 

impossibility to offer at least the basic guarantee is 
considered a software error; (2) although not always is 
possible to provide the non-fail guarantee, in some 
operations it is a mandatory requirement (e.g., 
deallocation and swap function). Without this requirement 
other operations cannot even provide the basic guarantee 
[33]; (3) the strong guarantee is different than the other 
guarantees because it is the only one which is dependent 
on the application requirements. 

Criterion 4: Separation of concerns for exception 
correctness:  The exception mechanism should provide 
explicit support for the attainment of the basic guarantee.  

Aligning this support with the Design by Contract 
involve two independent aspects: 

a) The recovery of the local invariants (consistent state).  
b) The preservation of the system global invariants (i.e., 

absence of resources leaks, absence of deadlock). 
The explicit distinction of the code sections 

responsible for each one of these aspects is important 
because: 
1. Local invariant recovery code (a) has to be executed 

only when a code section is aborted abruptly by an 
exception, while the global invariant recovery (b) must 
be executed independently of the way that the code 
section ends. 

2. It allows for restricting the execution order so that (a) 
is executed first and (b) after that, so that the resources 
are assigned when (a) is carried out. 

3. The logic of preservation of the local invariants is 
specific of the software element and cannot be 
generalized. On the contrary, the logic of preservation 
of the global invariants is more general and can be 
feasibly automated (e.g., garbage collection, monitor 
locks release). 

4. It allows us to establish the local invariants as 
precondition of the code that preserve the global 
invariants enabling its verification at runtime.  
The last aspect is of paramount important for schemes 

that automate the preservation of global invariants. For 
example, in Java the exceptions release all the locks from 
the invoked object when a synchronized method raises an 
exception to the invoker [11] while local invariants are 



 
 

not enforced. Consequently, Java programs are prone to 
leave objects in an inconsistent state [9]. 

Criterion 5: Guarantee for exception correctness. 
The codes in charge of local and global invariants must 
offer the non-fail guarantee. If this condition is not met, 
then we are in presence of a software error. 

Without this criterion it is impossible to offer the basic 
exception guarantee. For example, if an exception in Java 
is thrown inside a catch or a finally block, it is 
propagated to the outer catch block (aborting the recovery 
of the local or global invariants). This fact and the 
impossibility to guarantee non-fail operations in Java, 
preclude writing exception safe code [33]. 

3.5. Exception Handling Decomposition 

The exception mechanism has to provide adequate 
support for a system fault tolerance scheme (subsección 
2.4.2). In error handling we differentiate error recover 
from error treatment. Error recovery returns the system to 
a consistent state. Error treatment is in charge of 
satisfying, as best as possible, the service requested 
(maybe with an alternative algorithm or by allowing an 
acceptable degradation), so that the system can continue 
with its operation. When treatment is provided, many 
times it is necessary to recognize the cause of the error 
and if possible to carry out the necessary actions to avoid 
that it happens again.  

The distinction between recovery and treatment is 
important for the following reasons: 
1. It allows for establishing a correspondence between 

the fault tolerance and the exceptions guarantees: the 
error recovery is responsible for assuring the basic 
guarantee, while the error treatment is responsible for 
assuring any additional guarantee. 

2. The recovery logic is straightforward and 
independent of the semantics of the application’s 
upper abstraction levels. Precisely, it is local to the 
element. Often also it will be independent of the error 
(or exception). 

3. The treatment logic is specific and it depends on the 
error and its cause, as well as on the context and 
requirements of the application. It is conditioned by 
design decisions that can facilitate, obstruct or even 
make it impossible (by lack of redundancy or 
diversity). Therefore, this logic is inside (and it is 
integral and inseparable part) of the application logic.  

 

This allows us to clearly separate the responsibilities of 
the code associated to the constructions of the exception 
mechanism, from those of the code associated to the 
normal (conditional, iterative) control structures of the 
language. 

 
Criterion 6: Separation of concerns for error 

handling. Error recovery must be set apart from error 
treatment. The structures of the exception mechanism 

should be responsible only of the recovery logic, 
transferring the control to the normal code for their 
treatment. 

This separation of concerns is important for the 
following reasons: 
1. It allows the application of the criteria of single point 

of correctness (sub-section 3.1) inside a software 
element, for extracting the recovery code for all the 
exceptions into a single place. 

2. It shows that the separation between the normal 
application logic (free of errors) and the error 
handling logic [10] is an erroneous separation of 
concerns. The correct separation of concerns is 
between the code of error recovery and the code of 
error treatment. 

4. Exception Handling Mechanism 
In this section we introduce the design of an exception 

handling mechanism compliant with the criteria presented 
in Section 3. We first present the syntax and semantics of 
the language constructs and then discuss how it supports 
different aspects of the framework. 

4.1. Exception Handling Construct 

Our exception handling construct consist of three code 
blocks that we identify as: _TRY, _UNLESS, and 
_FINALLY blocks (see Figure 1). A _TRY block 
encapsulates the code inside of which the exception could 
occur. The exception is signaled with the _RAISE() 
function passing a failure code (known as exception) and 
a failure parameter, transferring the control to the 
_UNLESS block. The _UNLESS block encapsulates the 
code that takes care of the exception. Lastly, the 
_FINALLY block is executed after the _TRY block 
(when no exception was raised) or after the _UNLESS 
block (when exception was raised). The _FINALLY and 
_UNLESS block are optional. This exception construct 
may be nested.  

Inside an _UNLESS block, the code can query the 
_EXCEPTION variable to decide what to do for the 
different exceptions that can occur. If the _UNLESS 
block code decides not to do anything to treat the 
exception, it is propagated implicitly to the outer 
protected block. To prevent this implicit propagation, the 
code in the _UNLESS block has three options: retry the 
protected block (_RETRY), abort the propagation with a 
status indication (_ABORT), or translate the exceptions 
code into another one and keep propagating it 
(_XTRANS).   

 
Int myCode() 

{ 
 _TRY { /* Protected Code Block */ 

    Regular code where the following may occur: 

     - raise an exception  
       [_RAISE(code,parameter)] 



 
 

     - abandon protected block [_LEAVE(code)] 

     - verify retry identifier [_RETRYCODE] 
  } 

  _UNLESS { /* Error Recovery Code Block */ 

    Error recovery, can do the following: 
     - identify the exception code [_EXCEPTION] 

     - obtain exception parameter [_EXCEPARAM]   

     - reiterate protected code[_RETRY(code)] 
     - abort operation [_ABORT(code)] 

     - Translate exception [_XTRANS(code)] 

     - propagate the exception [default option] 
  } 

  _FINALLY { /* Termination Code Block */ 

    It is executed with or without exception.  
  } 

  _END 

  return;/* return protected block exit code */ 
} 

Figure 1.  Exception Handling Mechanism 

4.2. Semantics of the exception mechanism 

For an exception construction x, let us define Tryx, 
Unlessx and Finallyx as the code blocks associated to 
_TRY, _UNLESS and _FINALLY in that order, and 
Xallx as the code associated to the complete construction. 
Let PREx and POSTx be the corresponding precondition 
and postcondition associated to x. Let e be the software 
element on witch x operate and let INVe be the invariant 
that must guarantee all the code that modifies e. 

If (according to subsection 3.4) the local invariant 
LINVe, that defines the consistency of e, is differentiated 
from the system global invariant GINV, that is 
responsibility of all the code, then: 

INVe  = LINVe ∧ GINV 
Moreover, if (according to section 3.1) the x post-

condition, in case of success SPOSTx is differentiated 
from the x postcondition for unsuccess, returning an error 
status code UPOSTx, then: 

POSTx = SPOSTx ∨ UPOSTx 
Based on the above definitions, the specification of the 

code associated to the whole construction Xallx can be 
stated in terms of the presupposed initial state and of the 
final state that has to be guaranteed, as follows: 

In case of successful exit:   
{ PREx  ∧ INVe  } Xallx { SPOSTx ∧ INVe } 

In case of exit with an error status code (incident): 
{ PREx  ∧ INVe  } Xallx { UPOSTx ∧ INVe } 

In case of raise an exception (emergency): 
{ PREx ∧ INVe  } Xallx { INVe } 

 

In the achievement of each one of the previous final 
states, the responsibilities of each one of the blocks of the 
construction x, is defined as follows: 
For Tryx: 

{ PREx ∧ LINVe ∧ GINV } Tryx { SPOSTx ∧ LINVe } 
For Unlessx: 

In case of implicit or by _XTRANS() propagation: 
{ True } Unlessx { LINVe } 

In case it prepares for treatment by means of 
_RETRY(): 

{ True } Unlessx { LINVe ∧ PREx} 
In case it prepares for treatment by means of 
_ABORT(): 

{ True } Unlessx { LINVe ∧ UPOSTx} 
For Finallyx: 

{ LINVx  } Finally { LINVe ∧ GING } 
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Figure 2.  Separations of Responsibilities of the Mechanism 
 

4.3. Separations of Responsibilities 

Figure 2  illustrates the mechanism semantics and 
emphasizes the separations of responsibilities among 
different code blocks, and among the mechanisms 
(assertions, exceptions and normal language 
constructions). The thin lines depict the control flow of 
the normal language instructions. The thick lines 
represent the transferences associated to the fail of 
executable assertions (software error detection). These 
assertions explicitly insert the contracts of section 4.2 in 
the corresponding block and check them automatically at 
runtime. They provide support for the customization of 
the application response to software errors by setting an 
applications specific global handler (right-most part of 
Figure 2). In an embedded application, this handler takes 
the system to a fail-safe mode and then triggers a system 
reset. In the development phase, this handler is an ideal 
place to hard code a permanent debugger break point. The 
rest of the lines represent the control transfer associated to 
_TRY, _UNLESS and _FINALLY code blocks of the 
structured exception mechanism. Such control transfers 
are caused by  _RAISE(), _RETRY() or _ABORT(). 

Table 3 summarizes the separation of concerns 
associated to the different blocks of  the exception 
constructs from the perspective of the fault tolerance, 
exception safety and design by contract. 

 
Table 3. Support for the separation of concerns for Exception 
correctness and Error handling in the exception mechanism 
Fault Exception Design By Implementation 



 
 

Tolerance Correctness Contract Mechanism 
LINVe _UNLESS Error 

Recovery 
Basic 

Guarantee GINV _FINALLY 
Error 

Treatment 
Above Basic 
Guarantee POSTx 

_RETRY/ ABORT 
Application Logic 

4.4. Abnormal events characterization 

Since errors need to have different semantics at 
different levels of abstraction, our mechanism provides 
functions that convert exceptions to other exception codes 
or to return codes. To translate an exception code into 
another one, to be sent to a higher-level module, we use 
the function _XTRANS(). The _ABORT() command in 
the _UNLESS block, allows the translation of the 
exception (or emergency) into an error exit code (or 
incidents), at the appropriate abstraction level. This exit 
code may be obtained after the _END sentences using the 
_EXITCODE command. Another important feature of 
our mechanism is the use of _TRYERROR, instead of 
_TRY, to perform an automatic conversion of all 
exceptions into error exit codes. _TRYERROR avoids 
the use of many _UNLESS blocks, which have the 
conversion as its unique purpose, thus making the code 
clearer. This option also allows the encapsulation of 
software elements that raise exceptions and must be used 
by legacy C code (subsection 2.4.3). 

4.5. Exception handling decomposition 

In Figure 3, a rearranged and simplified drawing is 
presented to show how the consistent use of this 
exception mechanism and the criterions of section 3 allow 
the creation of a fault-tolerant capable element (FTCE). 
The FTCE is an adaptation of the ideal fault-tolerant 
component of Anderson and Lee [4]. The element   
accepts service requests and, if necessary, calls the 
services of other elements before producing a response. It 
can signal two types of faults: emergency (reported by 
exceptions) and software error (reported by assertions). 
However, it can not support a full fault tolerance nor a 
graceful degradation approach that tries to keep running 
after a software error has been detected. To provide 
adequate support for embedded systems, this type of error 
can be handled only through the fail safe approach  
(subsection 2.4.2).  

Our FTCE enforce a clear separation of concerns 
between code sections: the responsibility of the normal 
code is to ensure the routine contract but not perform the 
recovery from the exception. The exception code is not 
intended to guarantee the contract; instead its purpose is 
only to perform the error recovery. In other words, it must 
restore the invariants and execute _ABORT (for forward 
error recovery) or restore also the preconditions and 
execute _RETRY (for backward error recovery). In any 
case, the control flow goes to the “normal” processing 
code to treat the error so that it performs a new intent to 

fulfill the contract. In otherwise, in case of failure 
(without retrying or aborting) the exception is raised at 
the caller. 
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Figure 3. Fault-Tolerant Capable Element (FTCE). 

4.6. Support for exception correctness 

The support for exception correctness is achieved by 
providing explicit support for: 
• Criterion 4:  As specified in sections 4.2, the recovery 

of the local invariant is the only responsibility of the 
_UNLESS block, while the _FINALLY block is in 
charge of the global invariant and has as precondition 
the local invariant.  

• Criterion 5: The _RAISE() sentences can be invoked 
only inside a _TRY block. The _XTRANS() 
sentence is provided to allow the _UNLESS block to 
translate an exception code while propagating it. This 
sentence only can be used inside an _UNLESS block. 
A _FINALLY block cannot raise or translate an 
exception. 

The executable assertion mechanism captures as a 
software error (subsectión 3.2) any intent of propagating a 
new exception from an _UNLESS or _FINALLY block, 
as well as any intent of leaving an _UNLESS block 
without restoring the local invariant.  

5. Contrast with related works 
This section emphasizes the differences of the 

exceptions mechanism proposed, with those of other 
object oriented languages of the C family or based on the 
Design by Contract as well as with other extensions to the 
C language. 

5.1. Contrast with other language mechanisms 

5.1.1. Object Oriented C Family Languages 
The differences between the mechanism proposed and 

the mechanisms present in the objects oriented languages 
derived from C (Java, C++ or C #) are the following: 



 
 

• By default, the catch clause (of C++, Java or C#) 
considers that its code block provides treatment to the 
error and therefore does not continue its propagation. 
In contrast, in our mechanism the _UNLESS block 
should never treat the error. If it does not end 
explicitly, the exception is propagated to the external 
block. 

• The catch construction does not discern between the 
code for error recovery and the code for error 
treatment. In contrast, the _UNLESS block only has 
the responsibility for error treatment and not for error 
recovery. 

• Multiple catch clauses may exist and all of them are 
qualified. When an exception is thrown only the one 
that first match is executed. In contrast, there is only 
one _UNLESS for each _TRY that is executed for 
any exception. 

• The blocks associated to the catch (Java, C++, C#) 
and to the finally (Java or C#) are not forced to offer 
the non-fail guarantee. In contrast, the blocks 
associated to the _UNLESS and to the _FINALLY 
must offer the non-fail guarantee. Any intent of 
propagating an exception outside of them, is 
considered a software fault captured by the 
executable assertions5. 

 
5.1.2. The Eiffel Language 

Eiffel exceptions are based on the principle of the 
design by contract. However, our mechanism follows a 
different approach. 
• In Eiffel the exceptions indicate software errors (a 

condition violation in a test). In our scheme these 
errors are not indicated by exceptions, but by 
invoking an executable assertions handler.    

• The Eiffel exceptions are raised in an implicit way by 
the run-time support system. In our case, this is an 
explicit responsibility of the ensurer code using 
_RAISE ().   

• The code for rescue in Eiffel can only make explicit 
transfer to the beginning of the protected code 
(restoring the invariants and the precondition) 
therefore it does not provide appropriate support for 
forward error recovery. Alternatively, our mechanism 
provides explicit support for forward and backward 
error recovery. 

• The rescue clause only offers explicit support for the 
preservation of the local invariants in presence of 
exceptions. In contrast, our mechanism offers explicit 

                                                
5 For the _FINALLY case, this is equivalent a terminate() call 

in C++ if during an exception stack unwind, an exception is 
propagated from a destructor. The use of resource acquisition 
is initialization [31] place the destructor in the same role in 
C++ exception mechanism than that of _FINALLY. Both are 
variants of the responsibility management pattern under 
exceptions [22]. 

support for preserving the local and the global 
invariants. 

5.2. Contrast with other extension to C 

Although several C extensions for exceptions handling 
have been introduced in the literature, with few 
exceptions [10], all of them have been designed 
specifically for desktop systems. The work in [18] 
demonstrated that exceptions can be added to C without 
language changes (using only standard preprocessor 
features). Since then, many other introduced exceptions 
using the same approach [18], or using minor language 
extension [10]. Many of them have semantics similar to: 
Ada [10], Eiffel [6] and Java/C++ [29][34]. Some also 
include support for the resume model of exception 
handling and for asynchronous signal handling [2][10][6]. 
The work en [26] presents a higher level transaction 
approach to error handling, however it is not appropriate 
for application dependent recovery. The work in [21] is 
the only one based on an a error handling classification 
scheme. It defines fault (our software fault) and failures 
(our emergency), however its framework does not support 
incidents, does not integrate fault tolerance and exception 
safety, and does not define the precise responsibilities of 
the exceptions blocks. Its resulting exception mechanism 
is less disciplined and may produce the same problems of 
the traditional method, due to the excessive use of 
exceptions (see subsection 2.3).  

6. Conclusions 
In this paper, we analyzed the difficulties of handling 

abnormal events and provided a classification for the 
different types of those events. From this classification we 
proposed an strategy to integrate error codes, exceptions 
and executable assertions for the handling of different 
types of abnormal events, along with a support for the 
conversion of error types.  

We introduced a framework that integrates the 
concepts of Design by Contract, exception safety and 
fault tolerance. From this framework, we obtained a set of 
engineering criterions for the design of a mechanism of 
abnormal event handling. This engineering criterions 
allows us to determine the conditions of the contract and 
the classification and transformation of all types of errors 
in the context of the application and the abstraction level.  

This analysis lead us to the identification of software 
error handling, local and global invariants recovery and 
error treatment as the correct separation of concerns for 
abnormal event handling. Within our framework, the 
executable assertions mechanism are responsible for 
providing error detection and software fault tolerance. 
The exceptions handling mechanism is responsible for 
providing error recovery and the normal language 
constructs are responsible for error treatment. 



 
 

The separation of concerns together with the 
classification of error types and the application of the 
design by contract, provide a clear assignment of 
responsibilities for each code section and software 
element for the handling of abnormal situations. Also, it 
allows a decrease in the code necessary for abnormal 
event handling  and promotes a discipline for design and 
coding which could be considered as an schema for fault 
avoidance. The criterions proposed are the basis for a 
novel exception mechanism proposed for C written 
embedded systems. We analyzed the differences and 
advantages of our exceptions mechanism, and compared it 
against those of other object oriented languages of the C 
family or based on the Design by Contract as well as with 
other extensions to the C language. 
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