

Abnormal Events Handling for Dependable Embedded Systems *

aLuis E. Leyva-del-Foyo, bPedro Mejia-Alvarez, cDionisio de Niz
aDpto. Computación, Universidad de Oriente, 90500, Santiago de Cuba, Cuba

bSección de Computación, CINVESTAV-IPN, Av. I.P.N. 2508, México, D.F., 07300
cDESI, ITESO, Periférico Sur 8585, Tlaquepaque, Jal. México,

E-mail: luisleyva@acm.org, pmejia@cs.cinvestav.mx, dionisio@iteso.mx

* This research work has been supported in part by NSF-CONACyT project 42449-Y, Mexico.

Abstract

 In this paper, we analyze the difficulties of handling
abnormal events. We introduce a framework that
integrate the concepts of Design by Contract, exception
safety and fault tolerance and from then, obtain a set of
criterions for the design of a mechanism that integrate
error code, exception and executable assertions for the
handling of different types of abnormal events. From
these criterions, a proposal for a novel exception
mechanism adequate for C written embedded systems is
presented. Finally, we analyze the advantages of our
mechanism over the existing mechanisms and over other
languages or previous extension to C.

1. Introduction
Many embedded systems must satisfy temporal and

dependability requirements under high cost restrictions,
limited storage and computational capacities. Examples of
this type of systems exist in the automotive industry,
medical equipments, industrial control systems and
consumer devices.

The requirements of those embedded systems motivate
the use of embedded operating systems (EOS) which do
not use the traditional process model (such as the different
UNIX variants or Windows NT). This process model is
able to isolate the different activities (by using memory
and input/output protection) so that the system reliability
is to a certain extent determined by the trustworthiness of
the operating system. Modern EOS provide basic services
such as scheduling and a set of libraries to aid in the
creation of applications but they do not support a process
model, instead they provide a single physical address
space for all the activities and the operating system does
little to avoid that the programs interfere the one with the
other or with the operating system. In this EOS, the
programmer has total control over every aspect of the
application and must provide all the routines to verify, to
report and to treat all the abnormal conditions that can
arise during the execution of an application.

Abnormal events handling is needed to ensure reliable
and predictable operation of embedded systems in the
presence of errors. Errors can result from hardware

failures, software bugs, discrepancies between the
external environment and the internal representation, or
from improper timing and synchronization.

Traditionally the mechanism of return of error codes
has been used for the handling of abnormal events.
However, the well-known drawbacks of this method [7]
brought as consequence the introduction of exceptions
handling mechanisms with the promise to separate the
error handling code from the normal code [13]. The
introduction of exception constructs has helped
programmers to improve the reliability of software,
however the semantics (and the supporting syntax) of
current exception constructs is still too loose leaving
plenty of room for their misuse. For instance, a common
misuse is to use exceptions to report back rather regular
events. Yet another common misuse is to catch exceptions
with an empty catch block (ignoring the exception). This
misuse is a symptom of improper support for the
separation of concerns in current exception handling
mechanisms. Perhaps the worse consequence of the lack
of a proper separation of concerns is the negative
correlation between correctness and reliability, commonly
observed in software systems as identified by Parnas in
[25]. This correlation suggests that when a software
system needs to observe both correctness and reliability,
increasing the emphasis in one decreases the quality of
the other.

The previous exception constructs results in an
excessive increase of the code associated to the handling
of abnormal events. This also increases the complexity
and costs of the system without contributing significantly
to the correction and reliability requirements of the
application. In this context, we believe that it is important
the existence of a general conceptual framework for the
handling of all errors types. This framework should
promote the use of the adequate mechanisms and a correct
separation of responsibilities among the different software
elements and among different sections of codes. Also,
appropriate language constructs are necessary to allow the
direct implementation and enforcement of this
framework. In this context, the main contributions of our
work are:

• A conceptual framework that integrates design by
contract, exception safety and fault tolerance. This
framework provides a clear separation of
responsibilities for abnormal handling and a right
balance between the correctness and reliability
requirements.

• The proposal of a set of criterions for the design and
use of an abnormal events handling mechanism based
on this conceptual framework.

• The design of a novel exception handling mechanism
based on these criterions with a supporting syntax and
semantic that prevents important misuses and adapted
for C written embedded systems.
This work is organized as follows. In section 2, the

general difficulties associated to the handling of abnormal
events are presented. Section 3 introduces our conceptual
framework for the handling of abnormal events and its
derived criterions for the design of an abnormal event
handling mechanism. Section 4 proposes an exception
handling mechanism based on these criterions for C based
embedded systems and section 5 highlights the
differences of the mechanism proposed with some other
existing mechanisms. Finally, section 6 presents some
concluding remarks.

2. Abnormal event handling difficulties
2.1. Hierarchical Architecture Drawbacks

Usually software is structured in layers to provide an
easier management of its complexity. Each layer is
constructed using the information hiding principle [24]
and communicates only with adjacent layers through well
defined interfaces. Each layer implements a level of
abstraction or a virtual machine and these levels form a
hierarchy at which the highest level implements an
specific functionality of the application. As one lowers in
levels, the abstraction diminishes until arriving at the
lowest level where generally there is a direct interaction
with the hardware. Nevertheless, this structure makes
difficult those aspects requiring cooperation among
several levels, such as the handling of abnormal events.

The problem with this hierarchical structure is that,
since most of these abnormal events are detected at the
inferior levels, it is not possible to carry out appropriate
recovery procedures. This is because at these inferior
levels there is neither sufficient global information nor
specific context of the application. The current existing
solution is to allow the interfaces between the modules to
communicate the errors occurred among them [25]. This
are done in a way that these errors propagate from the
lower levels, where those were detected, up to the higher
levels at which appropriate decisions can be taken to cope
with error treatment [13].

2.2. Returning status or error value

The traditional mechanism of C to carry out abnormal
events handling consists of returning an status or error
value on each function. This code must be verified
explicitly at each level in the hierarchy to determine if the
normal processing should continue, if it is necessary to
give treatment or to return immediately to the invoking
procedure propagating the error.

The problem with this approach is that, when an error
is detected on functions located at the middle of the
hierarchy, it rarely can be correctly treated, so it must be
propagated. These errors are usually generated at lower
level functions and they are not directly related to the
logic of the current computation, thus they cannot be
treated by the function. These errors are named tramp
errors 2 [26]. The presence of tramp errors in the interface
of a function breaks with the function’s abstraction,
because it reveals information referring to its
implementation. Even worse is the fact that the invoking
code, cannot avoid those implementation details, which
are irrelevant to its logic of operation. This is because the
invoking code has the responsibility to propagate the error
explicitly to the higher levels. The presence of this
propagation code, mixed with the function’s code,
introduces a tight data coupling among layers which
complicates reusability. Additionally, programmers tend
to ignore this extra code because the propagation code is
not within the normal logic of the program and it makes it
difficult [7][21].

2.3. Using Exception Handling Mechanisms

With the purpose of solving the above mentioned
problems, several specific control structures, named
exception handling mechanisms [13], were developed to
handle abnormal events. Modern programming languages,
such as Ada[16], Eiffel[19], C++[31], Java[11], and
C#[14] provide support for this constructs.

It is argued that exceptions are superior to the return of
error codes because (1) they provide a clear separation of
the error handling code from the normal code [10][32],
(2) do not require a frequent verification and propagation
of the error values [10] and (3) the program cannot ignore
the errors returned by the lower level functions
[21][27][32]. All those advantages should lead to the
construction of software with lower complexity, easier to
read, more efficient and hence with less bugs [13].

However, the experience has demonstrated that the
excessive use of exceptions leads to the development of
programs plagued with try-catch blocks which in most
cases: (1) handle rather normal situations [32], (2) convert

2 In analogy with the term “tramp data” in the structured

analysis: a piece of information that shuffles aimlessly around
a system, unwanted by — and meaningless to — most of the
modules through which it passes [23].

exceptions among abstraction levels while they are being
propagated, or (3) even catch the exceptions ignoring its
treatment (to avoid compiler errors). These try-catch
sentences are more difficult to read and much less
efficient at run time that the alternative if-else. In
addition, it is easier to introduce bugs due to the presence
of implicit control transfers.

All current research efforts dedicated to characterize
the situations for which exceptions must be used instead
of the returning of error codes, agree in that they must be
used only under exceptional or rare conditions. Nowadays
the most elaborated definitions of exceptional conditions
are based on the design by contract theory [19]. Under
this theory an exceptional condition is that which does not
fulfil the contract, or that on which it is not possible to
fulfil the contract [32]. Although this definitions are
precise, they are stated in terms of a formal model of the
software system and therefore they do not give an
engineering criteria to decide what must be (and what
must not be) included into the contract. So, in practice
they are not always very useful.

2.4. Difficulties associated to embedded system

2.4.1. Support for C-written Programs
Nowadays the C language continues being the

language of choice for a broad range of embedded
systems. The great success of C is given by its
combination of low level features, which allows a high
degree of direct hardware control needed for embedded
systems, along with its processor independence. This
characteristics contrast with the higher level and more
secure features of others languages, which overcome its
ability to easily control the hardware. On the other hand,
C++, the object oriented superset of C, which provides
native support for exception handling, is increasingly
popular for embedded systems. However, some of its new
features reduce the efficiency of executable programs.

The lack of a structured exception handling
mechanism in C is an important drawback for the creation
of reliable systems. So, we argue that the incorporation of
a well-designed exception mechanism to the C language
allows an adequate balanced between efficiency,
portability and reliability for the development of reliable
embedded systems.

2.4.2. Support for fault tolerance
Given the dependability requirements of the embedded

systems, the exceptions mechanism must provide
adequate support for fault tolerance [8]. This aspect
introduces particular characteristics for embedded
systems which are exposed next.

Minimum redundancy and diversity of software.
The provision of fault tolerance does not come without
cost. This cost depends mainly on the type of redundancy
and diversity used. Due to the cost restrictions, in some
cases hardware redundancy is not an option and then the

software must take care of the fault tolerance.
Nevertheless, due to the increase in the amount of code
and the overhead in the execution times, it will be
necessary more powerful processors and more memory
with the corresponding increase in the hardware cost. The
challenge is then to provide suitable levels of fault
tolerance with minimum cost increases.

Error recovery. This takes care of bringing the
system from an erroneous state, back to a consistent state.
Error recovery may be carried out by correcting the
damaged state (known as forward error recovery) or by
returning the system to a previous known consistent state
(known as backward error recovery) [4]. The backward
error recovery has the advantage of providing a
transparent implementation which provides an efficient
recovery from unpredictable errors. For this reasons,
backward error recovery is used in most general purpose
systems. Nevertheless, its main drawback is the
requirement of saving the system state in a set of recovery
points. This extra state may be a burden in resource-
constrained system such as embedded systems. In
addition, the state of embedded systems may also include
the actuation to the external environment that cannot be
undone without consequences. As a result, an abnormal
event handling mechanism for embedded systems must
provide support for backward and forward error recovery.

Damage confinement. After an error is detected, it
must be verified to what extent the system has been
corrupted by the error. In embedded systems, after
detecting an error, it cannot be guaranteed that the caused
damages have been restricted to certain areas of the
system. This is because of, the absence of security
features in the C language, the use of EOS, the use of
hardware without memory protection and the use of direct
programming over the bare hardware.

2.4.3. Compatibility and legacy systems support
The mechanism for handling abnormal situations must

allow: (1) A maximum portability, allowing the
implementation of any construction of the language as a C
extension supported by the compiler (to maximize
efficiency), or as pre-processor macros (for it use with
existing compilers), and (2) A maximum compatibility,
allowing the reuse of legacy C code that has not been
written specifically for this mechanism.

3. Criteria for abnormal event handling
In this section we first discuss design by contract, the

formal framework under which we provide a clean
separation of concerns. Then we provide a classification
of the types of abnormal events and its dynamics, which
allows us to identify the requirements and mechanisms
necessary to handle each of these events and the
responsibilities of the different software elements for
handling those events. After that, we analyse exceptions
safety and fault tolerance to identify the issues that allows

us an adequate achievement of dependability and
correctness requirements. From this analysis, we provide
design criterions for the treatment of abnormal events for
embedded systems.

3.1. Separations of Responsibilities

At the core of separation of concerns is
modularization. This implies that a good separation of
concerns cannot be achieved without an strong emphasis
in a clear modularization. To achieve this we base our
modularization semantics and syntax in the Design by
Contract Theory [19].

Design by contract supports a formal separation of
responsibilities among software elements (objects,
components, function or code sections). According to this
theory, a software system is a set of software elements
that interact on the base of a well defined specification of
mutual obligations which constitute a contract between
the supplier element (the one whose methods or routines
are invoked) and the client element (the one that invokes
the methods or routines). This contract is composed of a)
the preconditions guaranteed by the client element, before
a routine of the supplier is executed; b) the postconditions
guaranteed by the supplier when the routine ends; and c)
the invariants or conditions that applies to the entire
element that characterize its consistency and integrity
properties. If the client element assures the satisfaction of
the preconditions, then the supplier element assures the
satisfaction of the postconditions and invariants.

Using the notation defined in [15] the responsibilities
assigned to a Code section (in terms of the contract) can
be specified as:
 {precondition ∧ invariant} Code {postcondition ∧ invariant}

The separation of responsibilities between the client
and supplier code sections in a program is illustrated in
Table 1. The relyer is the software element that assumes
that a condition (precondition, postcondition or invariant)
is true, while the ensurer is the element that has the
responsibility of guarantee the condition.

Two code sections are related by a condition if one is
ensurer and the other is relyer of this condition. An
ensurer code has fulfilled the condition, if it transfers the
control to a relyer code, when the condition that relates
them is true. If an ensurer code evaluates the condition
that relates it with a relyer, in order to make sure that it is
satisfied, it is said that the client has tested the condition.
On the contrary, if the relyer code evaluates the condition
that relates it with an ensurer, with the purpose of
checking its validity, it is said that it has checked the
condition3.

Table 1. Conditions related relationship between code sections
 Precondition Postcondition Invariant

3The concepts of test, check and fulfill are generalizations for

conditions of the concepts defined in [20] for preconditions.

 Relyer Supplier Client Supplier
 Ensurer Client Supplier Supplier

3.2. Error Semantics & Constructs Alignment

We define abnormal events as those that may arise
during the execution of an operation and that are related
with this operation4, but require an immediate change of
the normal course of execution for its treatment. The
omission of this treatment prevents the fulfilling of the
dependability requirements, therefore, any classification
of these abnormal events should be made in the context of
the dependability impairments [17]. Here we can
distinguish the following concepts: (a) failure, defined as
the deviation of the service delivered by the system from
the behavior specified in their requirements, (b) error,
defined as the system state that is liable to lead to a
failure, and (c) fault, defined as the identified or
hypothetical cause of an error. It is known that there are
faults after errors are detected and the errors can be
spread, to produce other errors [17]. In this context, we
classify the following types of abnormal events and
provide different strategies and priorities for their
handling:

Software error: it is an invalid state at which the
system can enter as a result of a software fault or bug.
These faults are persistent and occur because of design or
implementation errors. Although they should never exist,
it is impossible to avoid them. In consequence, a
dependable system should have some strategy to deal with
them. According to the form at which the bugs are
manifested it is common to distinguish two types [10]:
heisenbugs that lead to a transient, intermittent software
errors; and bohrbugs that are manifested in a reliable way
under a set of well defined conditions. When we deal with
software faults the priority is to detect (and to correct)
them as soon as possible (before the system is deployed).

Application error: it is an invalid state of a system
caused by circumstances that arise in a justifiable and
unavoidable way during its execution. This error can be
the failure of another external component or the fail of the
required service. We distinguish two types of application
errors:
• Incident: It is a situation that arise during the execution

of an operation (inside the logic of the application) and
which it is completely foreseeable. Only few incidents
are possible and they should be completely
enumerated.

• Emergency: It is an uncommon and not very frequent
situation that, although it could be anticipated, does not
match with the current abstraction level (tramp error).
It is not possible to foresee all potential emergencies

4This requirement discards the asynchronous events (not related)

like the interrupts or the UNIX signals.

that could arise during the execution of a software
element.
The incidents must be treated directly by the calling

code, therefore the priority when facing them is to provide
efficient mechanisms for their treatment. In the other
hand, when an emergency arises, it is not possible to
provide means to solve the problem within reach of the
immediate caller. Therefore, the priority is to allow the
safe propagation through all the software elements located
among the point at which it is detected and the point at
which it can be treated; as well as, to allow the safe
recovery of all these intermediate elements in the face of
any abrupt interruption due to this propagation.

Criterion 1: Support for multiple error-handling

mechanisms. There is not a unique general mechanism
for the handling of all the types of abnormal events.

Depending on the error type different mechanisms
must be used:

Incidents handling: The most effective form to report
them is using a return of error codes. This is because the
calling code can perform its treatment efficiently using
the normal language instructions for conditional control
transfers.

Emergency handling: The most effective form to
report and propagate them is by the use of an exception
mechanism. This is because the exception mechanism is
specially designed to cut through the calling stack to
reach the appropriate element where the error can be
treated. The exception mechanism is restricted only to the
task of propagating abnormal events. This is the only
aspect where it is less expensive than the other
alternatives.

Software error handling: In this case, the most
effective way is the use of executable assertions [30]. The
non-fulfillment of these should invoke a global handler to
record enough information to fix the bug and perform a
fail-safe or a reset. The use of executable assertions to
handle software errors simplifies greatly the design of the
exception mechanism and of the error treatment code,
hence reducing code size. Without damage confinement
features (subsection 2.4.2), the use of executable
assertions diminishes the possibility of spreading the error
and increases the possibility of system recovery (because
the same recovery code or its environment could have
been corrupted). Also, it promotes the construction of
bug-free software. Table 2 summarizes the types of
abnormal events and its correspondence with the priorities
and the language mechanism used for its handling.

By providing a correct identification and classification
of possible abnormal events that can arise in the different
system components, it is possible to identify precisely the
software elements responsible for handling such events
and the mechanism required for its reporting. This avoids
an excessive growth of the code needed for errors

handling and allows the construction of dependable
systems with minimum costs increments.

Table 2. Integrated Strategy for Abnormal Events handling

Type of Abnormal
Situations

Priority to deal
with it

Language
Mechanisms

Software Error Early detection /
fail-safe or reset

Executable
assertions

Emergency Safe propagation
and recovery

Structured
exceptions Appli-

cation
Error Incidence error treatment Error codes/

Normal construct

Criterion 2: Single point of correctness or

minimum code redundancy: avoid having two code
sections that rely in, and ensure the same conditions.

This principle is a consequence of the application of
the design by contract (jointly with the verification of the
conditions), to allow an early detection of software faults.
This is because, in this way the introduction of heisenbugs
is minimized and more bugs may be manifested as
bohrbugs. This principle discards the use of the N-version
programming approach to fault tolerance [3] which is
consistent with the resources restrictions for embedded
systems.

3.3. Abnormal events characterization

The identification and classification of abnormal
events must be performed at early design stages for all the
system components. This allow us to correctly define the
responsibilities for each system component in their
handling of abnormal events.

The concepts introduced in section 3.1 help us to
formally define a software error as the non-fulfillment of
a condition, that is detected by a checking. This allows a
clear separation of responsibilities for detecting and
reporting software errors from those of detecting and
reporting application errors. The first is responsibility of
the relyer code, while the second is responsibility of the
ensurer. Although this separation of responsibilities
(given in terms of the contract) is important, it does not
specify the conditions of the contract. The specification of
the conditions of the contract is obtained using
engineering criteria that take into account the context of
the application and its abstraction level.

Application dependency. The classification of a
concrete event depends on the application. For example,
in a dynamic system that operates in an environment
where its resources are constantly changing, the
impossibility of assigning a resource (such as the
memory) is considered an emergency. However, in
applications executing in predictable environments, where
the resources (including memory) need to be sized at
design-time, the impossibility of assigning resources
constitutes a software error.

Abstraction level dependency. The classification of a
concrete event is local to a software element. For
example, at the I/O level, a failure when reading some
external storage device is an incident (it is perfectly
foregone and inside the logic of the operation). The
immediate superior level (I/O logic) must be prepared to
deal with this situation, by retrying the operation (hoping
that the cause has been some transitory failure). However,
if this situation persists, it has to be reported as an
emergency so that it is propagated up to the point where
enough contextual information exists. If this higher level
of abstraction was trying to locate information for the first
time, it is possible that the error was due to that the
storage media had not been already introduced, or that it
was due to an invalid media. Again, this can be
considered a situation inside the application logic and
therefore should be reported as an incident. The
immediate upper level is prepared to manage it, for
example, by requesting the insertion of the media.

Engineering Criteria: As more general purpose is a
software element, it is more reasonable to state that the
different abnormal events are expected and are inside the
caller logic. In other words, at the lowest levels of the
architecture the abnormal events are incidents and
therefore they should be reported by returning error
codes. The upper levels tend to be application oriented
and it is reasonable to state that the incidents (error codes)
reported by the lowest levels now are transformed into
emergencies (exceptions), so that they travel in an
implicit way to the higher levels, avoiding tramp errors.
Lastly, when these errors are being reported at the highest
level of the application (where one must treat them) they
should again turn into incidents (error return codes)
according to this level of abstraction.

Criterion 3: conversion among errors types: The
mechanism used for abnormal event handling should
support the conversion (preferably automatically) among
different errors types (exceptions, return codes and
assertions violation).

This feature would eliminate the great amount of the
code needed to translate one error type to another one
(change of abstraction level). This code is responsible for
many of the try-catch construction in a program. This
makes easier the understanding, the maintenance and the
reusability of the code.

3.4. Understanding Exception Correctness

It is well know the fact that writing correct code in
presence of exceptions is difficult [5][27]. The main
problem is that exceptions hide the control transfers that
break the explicit control flow of the operations. When an
exception is raised on a deeply nested service, all
functions in the invocation chain are abruptly interrupted.
This interruption may leave the data structures associated
to these functions in an inconsistent state or it may cause

resource leaks due to the skipping of the code where such
resources were released (e.g. memory).

To specify the software behavior in presence of
exceptions we will adopt the Abrahams guarantees [1].
These guarantees are:
• Basic guarantee: No resources are leaked; software

elements remain in a valid although not predictable
state.

• Strong guarantee: The state of the program remains
without changes. This guarantee always implies a
global commit-or-rollback semantics.

• Non-Fail: The operation never raises an exception.
Here it is important to emphasize that (1) the

impossibility to offer at least the basic guarantee is
considered a software error; (2) although not always is
possible to provide the non-fail guarantee, in some
operations it is a mandatory requirement (e.g.,
deallocation and swap function). Without this requirement
other operations cannot even provide the basic guarantee
[33]; (3) the strong guarantee is different than the other
guarantees because it is the only one which is dependent
on the application requirements.

Criterion 4: Separation of concerns for exception
correctness: The exception mechanism should provide
explicit support for the attainment of the basic guarantee.

Aligning this support with the Design by Contract
involve two independent aspects:

a) The recovery of the local invariants (consistent state).
b) The preservation of the system global invariants (i.e.,

absence of resources leaks, absence of deadlock).
The explicit distinction of the code sections

responsible for each one of these aspects is important
because:
1. Local invariant recovery code (a) has to be executed

only when a code section is aborted abruptly by an
exception, while the global invariant recovery (b) must
be executed independently of the way that the code
section ends.

2. It allows for restricting the execution order so that (a)
is executed first and (b) after that, so that the resources
are assigned when (a) is carried out.

3. The logic of preservation of the local invariants is
specific of the software element and cannot be
generalized. On the contrary, the logic of preservation
of the global invariants is more general and can be
feasibly automated (e.g., garbage collection, monitor
locks release).

4. It allows us to establish the local invariants as
precondition of the code that preserve the global
invariants enabling its verification at runtime.
The last aspect is of paramount important for schemes

that automate the preservation of global invariants. For
example, in Java the exceptions release all the locks from
the invoked object when a synchronized method raises an
exception to the invoker [11] while local invariants are

not enforced. Consequently, Java programs are prone to
leave objects in an inconsistent state [9].

Criterion 5: Guarantee for exception correctness.
The codes in charge of local and global invariants must
offer the non-fail guarantee. If this condition is not met,
then we are in presence of a software error.

Without this criterion it is impossible to offer the basic
exception guarantee. For example, if an exception in Java
is thrown inside a catch or a finally block, it is
propagated to the outer catch block (aborting the recovery
of the local or global invariants). This fact and the
impossibility to guarantee non-fail operations in Java,
preclude writing exception safe code [33].

3.5. Exception Handling Decomposition

The exception mechanism has to provide adequate
support for a system fault tolerance scheme (subsección
2.4.2). In error handling we differentiate error recover
from error treatment. Error recovery returns the system to
a consistent state. Error treatment is in charge of
satisfying, as best as possible, the service requested
(maybe with an alternative algorithm or by allowing an
acceptable degradation), so that the system can continue
with its operation. When treatment is provided, many
times it is necessary to recognize the cause of the error
and if possible to carry out the necessary actions to avoid
that it happens again.

The distinction between recovery and treatment is
important for the following reasons:
1. It allows for establishing a correspondence between

the fault tolerance and the exceptions guarantees: the
error recovery is responsible for assuring the basic
guarantee, while the error treatment is responsible for
assuring any additional guarantee.

2. The recovery logic is straightforward and
independent of the semantics of the application’s
upper abstraction levels. Precisely, it is local to the
element. Often also it will be independent of the error
(or exception).

3. The treatment logic is specific and it depends on the
error and its cause, as well as on the context and
requirements of the application. It is conditioned by
design decisions that can facilitate, obstruct or even
make it impossible (by lack of redundancy or
diversity). Therefore, this logic is inside (and it is
integral and inseparable part) of the application logic.

This allows us to clearly separate the responsibilities of
the code associated to the constructions of the exception
mechanism, from those of the code associated to the
normal (conditional, iterative) control structures of the
language.

Criterion 6: Separation of concerns for error

handling. Error recovery must be set apart from error
treatment. The structures of the exception mechanism

should be responsible only of the recovery logic,
transferring the control to the normal code for their
treatment.

This separation of concerns is important for the
following reasons:
1. It allows the application of the criteria of single point

of correctness (sub-section 3.1) inside a software
element, for extracting the recovery code for all the
exceptions into a single place.

2. It shows that the separation between the normal
application logic (free of errors) and the error
handling logic [10] is an erroneous separation of
concerns. The correct separation of concerns is
between the code of error recovery and the code of
error treatment.

4. Exception Handling Mechanism
In this section we introduce the design of an exception

handling mechanism compliant with the criteria presented
in Section 3. We first present the syntax and semantics of
the language constructs and then discuss how it supports
different aspects of the framework.

4.1. Exception Handling Construct

Our exception handling construct consist of three code
blocks that we identify as: _TRY, _UNLESS, and
_FINALLY blocks (see Figure 1). A _TRY block
encapsulates the code inside of which the exception could
occur. The exception is signaled with the _RAISE()
function passing a failure code (known as exception) and
a failure parameter, transferring the control to the
_UNLESS block. The _UNLESS block encapsulates the
code that takes care of the exception. Lastly, the
_FINALLY block is executed after the _TRY block
(when no exception was raised) or after the _UNLESS
block (when exception was raised). The _FINALLY and
_UNLESS block are optional. This exception construct
may be nested.

Inside an _UNLESS block, the code can query the
_EXCEPTION variable to decide what to do for the
different exceptions that can occur. If the _UNLESS
block code decides not to do anything to treat the
exception, it is propagated implicitly to the outer
protected block. To prevent this implicit propagation, the
code in the _UNLESS block has three options: retry the
protected block (_RETRY), abort the propagation with a
status indication (_ABORT), or translate the exceptions
code into another one and keep propagating it
(_XTRANS).

Int myCode()

{
 _TRY { /* Protected Code Block */

 Regular code where the following may occur:

 - raise an exception
 [_RAISE(code,parameter)]

 - abandon protected block [_LEAVE(code)]

 - verify retry identifier [_RETRYCODE]
 }

 _UNLESS { /* Error Recovery Code Block */

 Error recovery, can do the following:
 - identify the exception code [_EXCEPTION]

 - obtain exception parameter [_EXCEPARAM]

 - reiterate protected code[_RETRY(code)]
 - abort operation [_ABORT(code)]

 - Translate exception [_XTRANS(code)]

 - propagate the exception [default option]
 }

 _FINALLY { /* Termination Code Block */

 It is executed with or without exception.
 }

 _END

 return;/* return protected block exit code */
}

Figure 1. Exception Handling Mechanism

4.2. Semantics of the exception mechanism

For an exception construction x, let us define Tryx,
Unlessx and Finallyx as the code blocks associated to
_TRY, _UNLESS and _FINALLY in that order, and
Xallx as the code associated to the complete construction.
Let PREx and POSTx be the corresponding precondition
and postcondition associated to x. Let e be the software
element on witch x operate and let INVe be the invariant
that must guarantee all the code that modifies e.

If (according to subsection 3.4) the local invariant
LINVe, that defines the consistency of e, is differentiated
from the system global invariant GINV, that is
responsibility of all the code, then:

INVe = LINVe ∧ GINV
Moreover, if (according to section 3.1) the x post-

condition, in case of success SPOSTx is differentiated
from the x postcondition for unsuccess, returning an error
status code UPOSTx, then:

POSTx = SPOSTx ∨ UPOSTx
Based on the above definitions, the specification of the

code associated to the whole construction Xallx can be
stated in terms of the presupposed initial state and of the
final state that has to be guaranteed, as follows:

In case of successful exit:
{ PREx ∧ INVe } Xallx { SPOSTx ∧ INVe }

In case of exit with an error status code (incident):
{ PREx ∧ INVe } Xallx { UPOSTx ∧ INVe }

In case of raise an exception (emergency):
{ PREx ∧ INVe } Xallx { INVe }

In the achievement of each one of the previous final
states, the responsibilities of each one of the blocks of the
construction x, is defined as follows:
For Tryx:

{ PREx ∧ LINVe ∧ GINV } Tryx { SPOSTx ∧ LINVe }
For Unlessx:

In case of implicit or by _XTRANS() propagation:
{ True } Unlessx { LINVe }

In case it prepares for treatment by means of
_RETRY():

{ True } Unlessx { LINVe ∧ PREx}
In case it prepares for treatment by means of
_ABORT():

{ True } Unlessx { LINVe ∧ UPOSTx}
For Finallyx:

{ LINVx } Finally { LINVe ∧ GING }

PRE ∧ INV

_TRY
_RAISE(xc,p)

_FINALLY_UNLESS

_RETRY(rc)
_ABORT(ec)

Application Error (from _abort)

Request

Normal Return
with error code.

POST∧ INV

INV

Exception Emergency

Assertion

Software
Error
(bug)

rc0

Normal (and
treatment)
code

Code for
resource
cleanup.

 Code for
 error
 recovery.

no exception

 Exception Emergency
 (from lower level)

Contract fulfillment Contract un-fulfillment Resource
Management
 (cleanup)

Software Element's Boundary

default

Retrying (from retry)

Fail Safe

Global
code for
fail-safe
or reset.

Propagation

Figure 2. Separations of Responsibilities of the Mechanism

4.3. Separations of Responsibilities

Figure 2 illustrates the mechanism semantics and
emphasizes the separations of responsibilities among
different code blocks, and among the mechanisms
(assertions, exceptions and normal language
constructions). The thin lines depict the control flow of
the normal language instructions. The thick lines
represent the transferences associated to the fail of
executable assertions (software error detection). These
assertions explicitly insert the contracts of section 4.2 in
the corresponding block and check them automatically at
runtime. They provide support for the customization of
the application response to software errors by setting an
applications specific global handler (right-most part of
Figure 2). In an embedded application, this handler takes
the system to a fail-safe mode and then triggers a system
reset. In the development phase, this handler is an ideal
place to hard code a permanent debugger break point. The
rest of the lines represent the control transfer associated to
_TRY, _UNLESS and _FINALLY code blocks of the
structured exception mechanism. Such control transfers
are caused by _RAISE(), _RETRY() or _ABORT().

Table 3 summarizes the separation of concerns
associated to the different blocks of the exception
constructs from the perspective of the fault tolerance,
exception safety and design by contract.

Table 3. Support for the separation of concerns for Exception
correctness and Error handling in the exception mechanism
Fault Exception Design By Implementation

Tolerance Correctness Contract Mechanism
LINVe _UNLESS Error

Recovery
Basic

Guarantee GINV _FINALLY
Error

Treatment
Above Basic
Guarantee POSTx

_RETRY/ ABORT
Application Logic

4.4. Abnormal events characterization

Since errors need to have different semantics at
different levels of abstraction, our mechanism provides
functions that convert exceptions to other exception codes
or to return codes. To translate an exception code into
another one, to be sent to a higher-level module, we use
the function _XTRANS(). The _ABORT() command in
the _UNLESS block, allows the translation of the
exception (or emergency) into an error exit code (or
incidents), at the appropriate abstraction level. This exit
code may be obtained after the _END sentences using the
_EXITCODE command. Another important feature of
our mechanism is the use of _TRYERROR, instead of
_TRY, to perform an automatic conversion of all
exceptions into error exit codes. _TRYERROR avoids
the use of many _UNLESS blocks, which have the
conversion as its unique purpose, thus making the code
clearer. This option also allows the encapsulation of
software elements that raise exceptions and must be used
by legacy C code (subsection 2.4.3).

4.5. Exception handling decomposition

In Figure 3, a rearranged and simplified drawing is
presented to show how the consistent use of this
exception mechanism and the criterions of section 3 allow
the creation of a fault-tolerant capable element (FTCE).
The FTCE is an adaptation of the ideal fault-tolerant
component of Anderson and Lee [4]. The element
accepts service requests and, if necessary, calls the
services of other elements before producing a response. It
can signal two types of faults: emergency (reported by
exceptions) and software error (reported by assertions).
However, it can not support a full fault tolerance nor a
graceful degradation approach that tries to keep running
after a software error has been detected. To provide
adequate support for embedded systems, this type of error
can be handled only through the fail safe approach
(subsection 2.4.2).

Our FTCE enforce a clear separation of concerns
between code sections: the responsibility of the normal
code is to ensure the routine contract but not perform the
recovery from the exception. The exception code is not
intended to guarantee the contract; instead its purpose is
only to perform the error recovery. In other words, it must
restore the invariants and execute _ABORT (for forward
error recovery) or restore also the preconditions and
execute _RETRY (for backward error recovery). In any
case, the control flow goes to the “normal” processing
code to treat the error so that it performs a new intent to

fulfill the contract. In otherwise, in case of failure
(without retrying or aborting) the exception is raised at
the caller.

no exception _RAISE(xc,p)
_ RETRY(rc)

contract run-time check

Contract
fulfillment

Resource
 cleanup

Contract un-
fulfillment

Fail
Safe Request Normal

Return

Request
Normal
 R eturn

A
ss

er
tio

n

Exception

Exception

_TRY _UNLESS
_FINALLY (error reco very)(normal code &

error treatment)

Figure 3. Fault-Tolerant Capable Element (FTCE).

4.6. Support for exception correctness

The support for exception correctness is achieved by
providing explicit support for:
• Criterion 4: As specified in sections 4.2, the recovery

of the local invariant is the only responsibility of the
_UNLESS block, while the _FINALLY block is in
charge of the global invariant and has as precondition
the local invariant.

• Criterion 5: The _RAISE() sentences can be invoked
only inside a _TRY block. The _XTRANS()
sentence is provided to allow the _UNLESS block to
translate an exception code while propagating it. This
sentence only can be used inside an _UNLESS block.
A _FINALLY block cannot raise or translate an
exception.

The executable assertion mechanism captures as a
software error (subsectión 3.2) any intent of propagating a
new exception from an _UNLESS or _FINALLY block,
as well as any intent of leaving an _UNLESS block
without restoring the local invariant.

5. Contrast with related works
This section emphasizes the differences of the

exceptions mechanism proposed, with those of other
object oriented languages of the C family or based on the
Design by Contract as well as with other extensions to the
C language.

5.1. Contrast with other language mechanisms

5.1.1. Object Oriented C Family Languages
The differences between the mechanism proposed and

the mechanisms present in the objects oriented languages
derived from C (Java, C++ or C #) are the following:

• By default, the catch clause (of C++, Java or C#)
considers that its code block provides treatment to the
error and therefore does not continue its propagation.
In contrast, in our mechanism the _UNLESS block
should never treat the error. If it does not end
explicitly, the exception is propagated to the external
block.

• The catch construction does not discern between the
code for error recovery and the code for error
treatment. In contrast, the _UNLESS block only has
the responsibility for error treatment and not for error
recovery.

• Multiple catch clauses may exist and all of them are
qualified. When an exception is thrown only the one
that first match is executed. In contrast, there is only
one _UNLESS for each _TRY that is executed for
any exception.

• The blocks associated to the catch (Java, C++, C#)
and to the finally (Java or C#) are not forced to offer
the non-fail guarantee. In contrast, the blocks
associated to the _UNLESS and to the _FINALLY
must offer the non-fail guarantee. Any intent of
propagating an exception outside of them, is
considered a software fault captured by the
executable assertions5.

5.1.2. The Eiffel Language

Eiffel exceptions are based on the principle of the
design by contract. However, our mechanism follows a
different approach.
• In Eiffel the exceptions indicate software errors (a

condition violation in a test). In our scheme these
errors are not indicated by exceptions, but by
invoking an executable assertions handler.

• The Eiffel exceptions are raised in an implicit way by
the run-time support system. In our case, this is an
explicit responsibility of the ensurer code using
_RAISE ().

• The code for rescue in Eiffel can only make explicit
transfer to the beginning of the protected code
(restoring the invariants and the precondition)
therefore it does not provide appropriate support for
forward error recovery. Alternatively, our mechanism
provides explicit support for forward and backward
error recovery.

• The rescue clause only offers explicit support for the
preservation of the local invariants in presence of
exceptions. In contrast, our mechanism offers explicit

5 For the _FINALLY case, this is equivalent a terminate() call

in C++ if during an exception stack unwind, an exception is
propagated from a destructor. The use of resource acquisition
is initialization [31] place the destructor in the same role in
C++ exception mechanism than that of _FINALLY. Both are
variants of the responsibility management pattern under
exceptions [22].

support for preserving the local and the global
invariants.

5.2. Contrast with other extension to C

Although several C extensions for exceptions handling
have been introduced in the literature, with few
exceptions [10], all of them have been designed
specifically for desktop systems. The work in [18]
demonstrated that exceptions can be added to C without
language changes (using only standard preprocessor
features). Since then, many other introduced exceptions
using the same approach [18], or using minor language
extension [10]. Many of them have semantics similar to:
Ada [10], Eiffel [6] and Java/C++ [29][34]. Some also
include support for the resume model of exception
handling and for asynchronous signal handling [2][10][6].
The work en [26] presents a higher level transaction
approach to error handling, however it is not appropriate
for application dependent recovery. The work in [21] is
the only one based on an a error handling classification
scheme. It defines fault (our software fault) and failures
(our emergency), however its framework does not support
incidents, does not integrate fault tolerance and exception
safety, and does not define the precise responsibilities of
the exceptions blocks. Its resulting exception mechanism
is less disciplined and may produce the same problems of
the traditional method, due to the excessive use of
exceptions (see subsection 2.3).

6. Conclusions
In this paper, we analyzed the difficulties of handling

abnormal events and provided a classification for the
different types of those events. From this classification we
proposed an strategy to integrate error codes, exceptions
and executable assertions for the handling of different
types of abnormal events, along with a support for the
conversion of error types.

We introduced a framework that integrates the
concepts of Design by Contract, exception safety and
fault tolerance. From this framework, we obtained a set of
engineering criterions for the design of a mechanism of
abnormal event handling. This engineering criterions
allows us to determine the conditions of the contract and
the classification and transformation of all types of errors
in the context of the application and the abstraction level.

This analysis lead us to the identification of software
error handling, local and global invariants recovery and
error treatment as the correct separation of concerns for
abnormal event handling. Within our framework, the
executable assertions mechanism are responsible for
providing error detection and software fault tolerance.
The exceptions handling mechanism is responsible for
providing error recovery and the normal language
constructs are responsible for error treatment.

The separation of concerns together with the
classification of error types and the application of the
design by contract, provide a clear assignment of
responsibilities for each code section and software
element for the handling of abnormal situations. Also, it
allows a decrease in the code necessary for abnormal
event handling and promotes a discipline for design and
coding which could be considered as an schema for fault
avoidance. The criterions proposed are the basis for a
novel exception mechanism proposed for C written
embedded systems. We analyzed the differences and
advantages of our exceptions mechanism, and compared it
against those of other object oriented languages of the C
family or based on the Design by Contract as well as with
other extensions to the C language.

7. References
[1] David Abrahams, “Exception Safety in STLport,” (STLport

site, 2001http://www.stlport.org/doc/exception_safety.html.
[2] Eric Allman and David Ben. “An Exception Handler for

C”, Proc. of the Summer 1985 USENIX Conference, 1985.
[3] Algirdas Avizienis, “The N-Version Approach to Fault-

Tolerant Software,” IEEE Transactions on Software
Engineering, Vol. SE-11, No. 12, pp. 1491-1501, 1985.

[4] Tom Anderson y P. Lee. “Fault Tolerance Principles and
Practice”. Second Edition. Springer-Verlag, 1990.

[5] Tom Cargill, “Exception Handling: A False Sense of
Security”, C++ Report. November-December 1994.

[6] Gregory Colvin, “Exception Handling In ANSI C”, C/C++
Users Journal. August 1991.

[7] Ingermar J. Cox Narain H. Gehani, “Exception Handling
in Robotics”, Computer, v.22 n.3, p.43-49, March 1989.

[8] Flaviu Cristian, “Exception Handling and Software Fault
Tolerance”, Transactions on Computer Systems, vol. C-31,
no. 6, pp 531-540, June 1982.

[9] C. Fetzer, K. Hogstedt, P. Felber, “Automatic Detection
and Masking of Non-Atomic Exception Handling”, Int.
Conf. on Dependable Systems and Networks, 2003.

[10] Narain H. Gehani, “Exceptional C or C with Exceptions”.
Software-Practice and Experience. Vol. 22(10), Oct. 1992.

[11] James Gosling, Bill Joy and Guy Steele. “The Java
Language Specification”, Addison- Wesley, 1996.

[12] Jim Gray, “Why Do Computer Stop and What Can Be
Done About It”, Proc. of the 5th Symposium on Reliability
in Distributed Software and Database Systems, 1986.

[13] John B. Goodenough, “Exception Handling Issues and
Proposed Notations”, CACM, 18(2), 683-96. Dec. 1975.

[14] A. Hejlsberg, S. Wiltamuth, P. Golde. “The C#
Programming Language”, Addison Wesley, 2003.

[15] C. A. R. Hoare, "An Axiomatic Basis for Computer
Programming," CACM, 12(10):576–583, Oct. 1969.

[16] J.D Ichbiah,et-al. “Rationale for Design of Ada
Programming Language”. SIGPLAN Notice, 14, 6, 1979.

[17] Jean-Claude Laprie, “Dependability -– Its Attributes,
Impairments and Means,” in B. Randell, et. al. (eds.),

Predictably Dependable Computing Systems, 1995.
[18] P. A. Lee, “Exception handling in C programs”. Software-

Practice and Experience, 13(5), 389-409. 1983.
[19] Bertrand Meyer, “Object-Oriented Software Construction”,

Prentice-Hall, 2da Edition, 1997.
[20] Richard Mitchell and Jim McKim, “Design by Contract, by

Example”, Addison-Wesley, Boston, MA, 2002.
[21] Doug Moen, “A Discipline for Error Handling”, Proc. of

the Summer '92 USENIX Conference, June 8-12, 1992.
[22] Herald M. Mueller, “Pattern Languages for Handling C++

Resources in an Exception-Safe Way”, 2nd USENIX
Conference on Object-Oriented Technologies, 1996.

[23] M. Page-Jones, “The Practical Guide to Structured Systems
Design,” Yourdon Press Comp. Series, Prentice Hall, 1988.

[24] David L. Parnas, “On the criteria to be used in
decomposing systems into modules”, CACM, Dec 1972.

[25] David. L. Parnas, “The Influence Of Software Structure On
Reliability”, In Current Trends in Programming
Methodology, pp. 111--119. Prentice Hall, April 1977.

[26] B. A. Rafnel, “A transaction approach to error handling”,
Hewlett-Packard Journal, vol. 44, no. 3, June 1993.

[27] Jack W. Reeves. “Using Exception Effectively: Part I –
Coping With Exception”, C++ Report, Mar/Apr 1996.

[28] D. Reimer, H. Srinivasan, “Analyzing Exception Usage in
Large Java Applications”. Workshop on Exception
Handling in Object Oriented Systems at ECOOP 2003.

[29] Eric S. Roberts: “Implementing exceptions in C”. TR. 40,
Systems Research Center, DEC, March 21, 1989

[30] David S. Rosenblum, “A Practical Approach to
Programming With Assertions”, IEEE Transactions On
Software Engineering. Vol. 21, No. 1, January 1995

[31] Bjarne Stroustrup, “The Design and Evolution of C++”,
Addison-Wesley, Reading, MA, 1990.

[32] Herb Sutter, “When and How to Use Exceptions”, C/C++
Users Journal, August, 2004.

[33] Herb. Sutter, “ACID Programming”, Sept 1999
[34] Herald Winroth, Matti Rendahl, “Exception Handling in

C”, C/C++ Users Journal, October, 1993.

