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Abstract. In this paper we propose a novel scheduling framework for
a dynamic real-time environment that experiences power consumption
constraints. This framework is capable of dynamically adjusting the volt-
age/speed of the system, such that no task in the system misses its dead-
line and the total energy savings of the system are maximized.
Each task in the system consumes a certain amount of energy, which
depends on a speed chosen for execution. The process of selecting speeds
for execution while maximizing the energy savings of the system requires
the exploration of a large number of combinations, which is too time con-
suming to be computed on-line. Thus, we propose an integrated heuristic
methodology which executes an optimization procedure and an approx-
imate greedy algorithm in a low computation time. This scheme allows
the scheduler to handle power-aware real-time tasks with low cost while
maximizing the use of the available resources and without jeopardizing
the temporal constraints of the system. Simulation results show that our
heuristic methodology achieves a performance with near-optimal results.

1 Introduction

Power management is increasingly becoming a design factor in portable and
hand-held computing/communication systems. Energy minimization is critically
important for devices such as laptop computers, PCS telephones, PDA’s and
other mobile and embedded computing systems simply because it leads to ex-
tended battery lifetime.

The problem of reducing and managing energy consumption has been ad-
dressed in the last decade with a multi-dimensional effort by the introduction of
engineering components and devices that consume less power, low power tech-
niques involving VLSI/IC designs, algorithm and compiler transformations, and
by the design of computer architectures and software with power as a primary
source of performance. Recently, hardware and software manufacturers have in-
troduced standards such as the ACPI (Advanced Configuration and Power In-
terface) [8] for energy management of laptops, desktops and servers that allow



several modes of operation, turning off some parts of the computer (e.g., the
disk) after a preset period of inactivity.

Energy management is also achieved by variable voltage scheduling (VVS),
which involves dynamically adjusting the voltage and frequency (hence, the CPU
speed). By reducing the frequency at which a component operates, a specific op-
eration will consume less energy but may take longer to complete. Although
reducing the frequency alone will reduce the average energy used by a processor
over that period of time, it may not always deliver a reduction in energy con-
sumption overall, because the power consumption is linearly dependent on the
increased time and quadratically dependent on the increased/decreased voltage.

In the context of dynamic voltage scaled processors, VVS in real-time systems
is a problem that assigns appropriate clock speeds to a set of periodic tasks, and
adjust the voltage accordingly such that no task misses its predefined deadline
while the total energy savings in the system is maximized.

The aim in this work is to study the problem of maximizing energy savings
during the scheduling of dynamic real-time tasks in a single processor environ-
ment. In a dynamic environment, we must compute a solution for our power
optimization problem at every task arrival (and departure). The identification
of feasible options that maximize our optimality criteria (expressed as the total
energy savings of the system) requires the exploration of a large combinatorial
space of solutions. This optimization problem is stated in this paper as a linear
(0/1) multiple-choice knapsack optimization problem [16].

In order to cope with the highly computation costs of the dynamic real-time
environment, we have developed a low-cost power-aware scheduling paradigm.
Our Power-Optimized Real-Time Scheduling Server (PORTS) consists of four
stages: (a) an acceptance test for deciding if and when dynamically arriving tasks
can be accepted in the system, (b) a reduction procedure which transforms the
original multiple-choice knapsack optimization problem into a standard knapsack
problem, (c) a greedy heuristic algorithms used to solve the transformed opti-
mization problem, and (d) a restoration algorithm which restores the solution of
the original problem from the transformed problem. The optimization procedure
developed (b,c and d above) are novel mathematical formulations which provide
a near-optimal solution for the problem of selecting speeds of execution of all
tasks in the system. The solution developed satisfies the condition of maximizing
the energy savings of the system while guaranteeing the deadlines of all tasks in
the system. The performance of the PORTS Server and its heuristic algorithms
will be compared with the performance of several known algorithms.

The remainder of this paper is organized as follows. In Section 2 related mod-
els and previous work are reviewed. In Section 3, the system and energy models
used in this paper are defined. In Section 4, the power-optimized scheduling
is formulated as an optimization problem. In Section 5, the Power-Optimized
Real-Time Scheduling Sever (PORTS) is described and in Section 6 we describe
a methodology for handling power-aware real-time tasks. In Section 7, simula-
tion results are presented to show the performance of the PORTS Server. Finally,
Section 8 presents concluding remarks.



2 Related Work on Variable Voltage Scheduling
Broadly speaking, there are two methods to reduce power consumption of pro-
cessors through OS-directed energy management techniques. The first is to bring
a processor into a power-down mode, where only certain parts of the computer
system such as the clock generation and the timer circuits are kept running when
the processor is in idle state. Most power-down modes have a trade-off between
the amount of power savings and the latency overhead incurred during mode
change. For an application that cannot tolerate latency, as those in real-time
systems, the applicability of power-down modes is limited. The second method
is to dynamically change the speed of a processor by varying the clock fre-
quency along with the supply voltage. Power Reduction via variable voltage can
be classified as static and dynamic techniques. Static techniques, such as static
scheduling, compilation for low power [17] and synthesis of systems-on-a-chip [7],
are applied at design time. In contrast, dynamic techniques use runtime behavior
to reduce power when systems are serving dynamically arriving real-time tasks,
light workloads or the system is idle.

Static (or off-line) scheduling methods to reduce power consumption in real-
time systems were proposed in [24, 10, 5]. These approaches address task sets with
a single period or aperiodic tasks. Heuristics for on-line scheduling of aperiodic
tasks while not hurting the feasibility of off-line periodic requests are proposed in
[6]. Non-preemptive power-aware scheduling is investigated in [5]. Recent work
on VVS includes the exploitation of idle intervals in the context of the Rate
Monotonic and Earliest Deadline First (EDF) scheduling frameworks [19, 11,
2, 15]. Most of the above research work on VVS assumes that all tasks have
identical power functions. Using an alternate assumption, efficient power-aware
scheduling solutions are provided where each real-time tasks have different power
consumption characteristics [1, 4].

Although systems which are able to operate on an almost continuous voltage
spectrum are rapidly becoming a reality thanks to advances in power-supply
electronics [3], it is a fact nowadays that most of the microprocessors that support
dynamic voltage scaling use a few discrete voltage levels. Some examples of
processors that support discrete voltage scaling are: (a) the Crusoe processor
[23] which is able to dynamically adjust clock frequency from 200 to 700 MHz
and from 1.1 V to 1.6 V, in 33 MHz steps; (b) the ARM7D processor [22] which
can run at 33MHz and 5V as well as at 20MHz and 3.3V; and (c) the Intel
StrongARM SA1100 processor, which supports 11 clock speeds: 59-221 MHz in
14.7 MHz Steps [9].

3 System and Energy Models
We consider a set T = {T1, . . . , Tn} of n periodic preemptive real-time tasks
running on one processor. Tasks are independent (i.e., do not share resources)
and have no precedence constraints. Each task Ti arrives in the system at time
ai. The Earliest Deadline First (EDF) [13] scheduling policy will be considered.

The life-time of each task Ti consists of a fixed number of instances ri, that
is, after the execution of ri instances, the task leaves the system. The period of
Ti is denoted by Pi, which is equal to the relative deadline of the task.



Examples of event-driven real-time systems exhibiting this behavior include:
(1) Internet video conferencing and multimedia systems, where media streams
are generated aperiodically; each stream contains a fixed number of periodic in-
stances which are transmitted over the network, and (2) digital signal processing,
where each task processes source data that often arrives in a bursty fashion.

Given a CPU speed determined by a voltage/frequency pair, the worst-case
workload is represented by the traditional worst-case execution time (WCET)
value. Note that, however, for VVS framework where the actual execution time
is dependent on the CPU speed, the worst-case number of required CPU cycles
is a more appropriate measure of the workload. We denote by Ci the number
of processor cycles required by Ti in the worst-case. Under a constant speed
SPi (given in cycles per second), the execution time of the task is ti = Ci

SPi
.

A schedule of periodic tasks is feasible if each task Ti is assigned at least Ci

CPU cycles before its deadline at every instance. The utilization of the system
denotes the amount of processor load in percentage that a task is demanding for
execution. Ui = ti

Pi
(or Ci

SPiPi
) denotes the utilization of task Ti. According to

EDF, a set of tasks are feasible (no tasks misses its deadline) if the utilization
of the system is less or equal than the total capacity of the system,

∑
Ui ≤ c.

For EDF, c = 1; that is, the achievable capacity is 100%.
We assume that at the arrival of any task, the CPU speed can be changed at

discrete levels between a minimum speed SPmin (corresponding to a minimum
supply voltage level necessary to keep the system functional) and a maximum
speed SPmax. SPij denotes the speed of execution of an instance of task Ti when
executes at speed j, and Uij denotes the utilization of task Ti executing at speed
j. The power consumption of the task Ti is denoted by gi(SP ), assumed to be a
strictly increasing convex function [3], specifically a polynomial of at least second
degree. If the task Ti occupies the processor during the time interval [t1, t2],
then the energy consumed during this interval is E(t1, t2) =

∫ t2
t1

gi(SP (t))dt.
The total energy consumed in the system from t = 0 up to t = t2 is therefore
E(0, t2). We assume that the speed remains the same during the execution of a
single instance. Finally, a schedule is energy-optimal if it is feasible and the total
energy consumption for the entire execution of the system is minimal.

While applying voltage-clock scaling under EDF scheduling, we make the
following additional assumptions: (1) The time overhead associated with volt-
age switching is negligible. According to [23] the time overhead associated with
voltage switching in the Transmeta Crusoe microprocessor is less than 20 mi-
croseconds per step. The worst-case scenario of a full swing from 1.1 V to 1.6 V
takes 280 microseconds, and (2) Different tasks have different power consump-
tions. This assumption is based in the real-life fact that the power dissipation is
dependent on the nature of the running software of each task in the system. This
assumption is clearly justified taking into consideration the following examples:
some tasks will use more of the memory system (in addition to the cache), some
tasks will use the floating point unit more than others, some will ship the tasks
to specialized processors (e.g., DSPs, micro-controllers, or FPGAs).



4 Formulation of the Problem
In a real-time system with energy constraints, the scheduler should be able to
guarantee the timing constraints of all tasks in the system and to select the
speed of execution of each task such that the energy consumption of the system
is minimized, or equivalently, that the energy savings of the system is maximized.

Therefore, the problem can be formulated as follows. Each time a new task Ti

arrives or leaves the system, the problem is to determine the speed of execution
for each task in the system such that no task misses its deadline and the energy
savings of the system is maximized. Note that a solution to this problem must
be computed each time a new task arrives or leaves the system, therefore we can
not allow a solution with high computation time.

4.1 The Optimization Problem

For each task Ti in the system we define a set of speeds of execution which will
be called class Ni. Each level of speed j ∈ Ni has a Energy Saving computed by

Sij = (Ei1 − Eij) (1)

where Ei1 is the energy consumed by task Ti executing at its maximum speed
and Eij denotes the energy consumption of Ti executing at speed j.

Furthermore, each task running at speed SPij , will have utilization Uij =
Ci

SPij ·Pi
. Note that the size of class Ni is ni and the total number of items is

m =
∑n

i=1 ni. It is assumed that the items j ∈ Ni for all tasks are arranged
in non-decreasing order, so that Si1 and Ui1 are the items with the smallest
values in Ni. Each task Ti in the system accrues an accumulated energy savings
Sk

i upon executing a number of instances during the interval of time between
arrivals ak and ak+1. Sk denotes the amount of energy savings accrued by all
the tasks in the system during ak+1 − ak.

Sk =
n∑

i=1

Sk
i (2)

The aim of this optimization problem is to find an speed level j ∈ Ni for each
task Ti, such that the sum of energy savings for all tasks is maximized without
having the utilization sum to exceed the capacity of the system c. That is,

maximize Z0 =
∑n

i=1

∑
j∈Ni

Sij xij

subject to
∑n

i=1

∑
j∈Ni

Uij xij ≤ c∑
j∈Ni

xij = 1, i = 1, ..., n

xij =
{

1 if speed j ∈ Ni for task Ti is chosen
0 otherwise

We call this problem, Problem P0.
By achieving the optimality criteria, whenever a new task arrives or departs

from the system, we intend to maximize the accumulated energy savings Sk for
each arrival and therefore to maximize the accumulated energy savings obtained
after scheduling the entire set of tasks for the complete duration of the schedule.



We have formulated the power saving problem as a Multiple-Choice Knap-
sack Problem (MCKP) with 0-1 variables [16]. According to the real-life require-
ments of dynamic power-aware real-time systems, any instance of the medium-
size MCKP containing 10 to 80 tasks with 5 to 40 different speed levels is to be
solved within a few milliseconds. However, the MCKP is known to be NP-hard
[16] which implies that it is very unlikely to design a so fast (polynomial-time)
exact method for its solution. From a practical point of view it means that some
of the available exact methods for power-aware scheduling that solve our op-
timization problem, such as dynamic programming [16], Lagrange multipliers
[1], mixed-integer linear programming [21] and enumeration schemes [6], do not
satisfy the above realistic requirements for solving the problem.

5 PORTS: Power-Optimized Real-Time Scheduling
Server

The Power-Optimized Real-time Scheduling Server PORTS, is an extension of
the Earliest Deadline First scheduling algorithm (EDF [13]). The PORTS Server
is capable of handling dynamic real-time tasks with power constraints, such
that the energy savings of the system is maximized and the deadlines of the
tasks are always guaranteed. In order to meet our optimality criteria, when new
tasks arrive in the system, the PORTS Server adjusts the load of the system by
controlling the speed of execution of the tasks.

The PORTS Server is activated whenever a new task arrives in the system.
The PORTS Server first executes a Feasibility Test (FT) to decide whether or
not the new task can be accepted for execution in the system. If the new task
is accepted, an optimization procedure is executed to calculate the speeds of
execution of all tasks in the system.

This optimization procedure consists of three parts:
1. A reduction algorithm, which converts the original MCKP to a standard KP.
2. An approximation algorithm (e.g. Enhanced Greedy Algorithm) capable of

finding an approximate solution to the reduced KP, and
3. A restoration algorithm, which re-constructs the solution of the MCKP from

the KP.
The solution provided by the optimization procedure is such that no task in

the system misses its deadline and the speeds of execution chosen for all tasks,
maximizes the energy savings of the system. After the optimization procedure
is executed, the Total Bandwidth Server [14] is used to compute the start time
of the new task. Finally, with the start time of the new task computed and the
solution provided by the optimization procedure (the set of speeds for execution),
the PORTS Server will schedule the new task in the system.

The PORTS Server is also activated when a task leaves the system, in which
case, the Feasibility Test is not executed.

6 Handling Power-Aware Real-Time Tasks

The proposed method consists of five basic parts, or stages, as illustrated in
Figure 1, and described in detail in the following subsections.



6.1 Activating the PORTS Server and Feasibility Test

The two conditions for activating the PORTS Server and their procedures are:

1. Task Arrival. When a new task Tj arrives in the system, the feasibility test
is executed. The task is rejected when running all tasks (including Tj) at the
maximum speed (minimum utilization) the system is not feasible. Otherwise,
the new task is accepted:
Feasibility Test (FT):

FT =
{

Tj is accepted if Umin =
∑n

i=1 Ui1 ≤ 100 %
Tj is rejected otherwise

After a new task has been accepted in the system, the next problem is to
choose the speed of execution of each task in the system. This problem is related
to our optimization problem because by choosing a speed for the execution of
task Ti we will obtain its corresponding energy savings achieved. Obviously,
energy savings are minimum when all tasks execute at their maximal speeds.
Therefore, our goal is to choose the speed for execution of each task such that
our optimization criteria is met.

2. Task Departure. The PORTS Server is also activated when a task leaves the
system. In this case, the optimization procedure is executed to satisfy the opti-
mality criteria for the new set of tasks in the system. In this case, the Feasibility
Test is clearly not needed.
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Fig. 1. Methodology for Handling Power-Aware Real-Time Tasks

6.2 Reduction Scheme from MCKP to the Classical KP

Our approximation algorithm is based on the reduction of the MCKP to the
equivalent KP using the convex hull concept [16]. In order to reduce the MCKP,
denoted by P0, the following auxiliary problems will be used:



P1: The Truncated MCK Problem

Problem P1 is constructed from P0, by extracting the lightest item from
each class and assuming that all these items are inserted into the knapsack.
The sum of the lightest items from each class is denoted by S0 =

∑n
i=1 Si1

and U0 =
∑n

i=1 Ui1. When formulating P1, we have to write
∑

j∈Ni
xij ≤ 1

(instead of
∑

j∈Ni
xij = 1) because the lightest items are assumed to be already

inserted into the knapsack. Therefore, some or even all classes in Problem P1

may contain no items, that is, it is allowed that
∑

j∈Ni
xij = 0 for the optimal

solution of Problem P1.

Problem P1:
Maximize Z1 =

∑n
i=1

∑
j∈Ni

(Sij − Si1) xij

subject to
∑n

i=1

∑
j∈Ni

(Uij − Ui1) xij ≤ (c− U0),∑
j∈Ni

xij ≤ 1, i = 1, ..., n,
xij = 0 or 1, for j ∈ Ni, i = 1, ..., n.

P2: The Truncated Relaxed MCK Problem

Problem P2 is formulated from Problem P1 by allowing a relaxation on the
variable integrality condition: 0 ≤ xij ≤ 1. Let Z2 be the objective function of
Problem P2. The reason for introducing this problem is that its exact solution can
be found in low computation time, which in turn, provides a good approximation
solution to Problem P1 and hence a good approximation solution to P0. The
algorithm for exact solving the Problem P2 [12, 20, 16, 18] can be obtained by
solving the following P3 and P4 problems.

P3: The Relaxed MCK Problem on the Convex Hull

Given P2, a convex hull of items in each class can be found [16]. The elements
constituting the convex hull will be called P-undominated and denoted by (Rij ,
Hij) (this notion will be explained below in more detail).

Let us start by denoting (Sij − Si1) in P2 by pij and (Uij − Ui1) by wij .

Definition 1 (Sinha and Zoltners [20]). If two items r and s in the same
class Ni in Problem P2 satisfy that pir ≤ pis and wir ≥ wis then item r is said
to be dominated by s.

Proposition 2 (Sinha and Zoltners [20]). In every optimal solution of P3,
xis = 0, that is, the dominated items do not enter into the optimal solution.

Proposition 3 (Sinha and Zoltners [20]). If some items r, s, t from the same
class Ni are such that pir ≤ pis ≤ pit, wir ≤ wis ≤ wit, and

(pis − pir)
(wis − wir)

≤ (pit − pis)
(wit − wis)

, (3)

then xis = 0 in every optimal solution of P2.
The item s ∈ Ni is called P-dominated [16]. In what follows, we exclude P-

dominated points from each class Ni when solving the relaxed Problem P3 to
optimality. The items remaining after we excluded all the P-dominated points are



called P-undominated. All these items belonging to the same class, if depicted as
points in the two dimensional space (R, H), form the upper convex hull of the
set Ni [16]. Note that R denotes energy savings and H denotes utilization.

The set of all P-undominated items may be found by examining all the items
in each class Ni in an increasing order and according to Equation 3. Because of
the ordering of the items, the upper convex hull can be found in O(m log m)
time [20]. Recall that m =

∑n
i=1 ni. The obtained Multiple-Knapsack Problem

on the Upper Convex Hull is denoted as Problem P3.

Problem P3:
Maximize Z3 =

∑n
i=1

∑
j∈Ni

Rij yij

subject to
∑n

i=1

∑
j∈Ni

Hij yij ≤ (c− U0),∑
j∈Ni

yij ≤ 1, i = 1, ..., n,
0 ≤ yij ≤ 1, for j ∈ Ni, i = 1, ..., n.

As described in [20], some items belonging to the class Ni (i.e., yij = 1) can be
included into the solution entirely; they are called integer variables. On the other
hand, some items may exceed the constraint:

∑n
i=1

∑
j∈Ni

(Hij yij) ≤ (c− U0)
and only part of it could be included into the solution. This items are called
fractional variables.

P4: The Equivalent Knapsack Problem (EKP)

The equivalent Knapsack Problem P4 is constructed from P3. In each class
slices, or increments are defined as follows:

Pij = (Rij −Ri,j−1); i = 1, . . . , n; j = 2, . . . , CHi (4)

Wij = (Hij −Hi,j−1); i = 1, . . . , n; j = 2, . . . , CHi (5)

where CHi is the number of the P-undominated items in the convex hull of
class Ni. When solving the (continuous) Problem P3, we may now discard the
condition

∑
j∈Ni

xij ≤ 1, i = 1, ..., n, and solve the problem of selecting slices
in each class.

Problem P4 :
Maximize Z4 =

∑n
i=1

∑
j∈Ni

Pij zij

subject to
∑n

i=1

∑
j∈Ni

(Wij zij) ≤ (c− U0),
0 ≤ zij ≤ 1, for j ∈ Ni, i = 1, ..., n.

From the analysis of Problem P4 [20, 12] it follows that, in all integer classes: if
some variable is equal 1 (e.g., the variable is chosen) then all preceding variables
are also 1; if some variable is equal zero (e.g., the variable is not chosen) then
all subsequent variables are also zeros. From this fact the following important
properties of Problem P4 follow.

Property 1: The sum of several slices in Problem P4 correspond to a single item
in Problem P3, and in each class all the slices are numbered in the decreasing
order of their ratios, Pij

Wij
.



Property 2: There should not be a gap in a set of slices corresponding to a
solution in any class.

To exemplify this Property, let us consider the class Nj containing the slices
r, s and t. According to Property 2, the following solutions are valid: {}, {r}, {r, s}
and {r, s, t}, while {s}, {t}, {r, t} and {s, t} are invalid. In particular, {r, t} is
invalid because slice s is not included, causing a gap in the solution.

6.3 Enhanced Greedy Algorithm

In order to solve the equivalent knapsack Problem P4, we may collect all slices
from all classes (following a decreasing order of their ratios, Pij

Wij
) as candidates

for including them into a single class: PW . With all slices in the single class
PW , now the problem becomes the standard knapsack problem.

The main idea of the Standard Greedy Algorithm (SGA) for solving the
standard knapsack is to insert the slices, {pi, wi} (obtained from the single class
PW ) inside the available capacity of the knapsack (c−U0) in order of decreasing
ratio pi

wi
, until the knapsack capacity is completely full, or until no more slices can

be included. If the knapsack is filled to its full capacity (c−U0) in the mentioned
order, then this is the optimal solution. While inserting slices into the knapsack,
one of them may not fit into the available capacity of the knapsack. This slice is
called the break-slice [16], and its corresponding class is called the break-class.

Contrary to the solution proposed by Pisinger [18], our method does not
consider fractional items to be part of the solution. Therefore, we will discard
the break-slices, and consequently (following Property 2) all subsequent slices
from the same break-class.

To the greedy scheme of [18] we add the following two rules.

– Rule 1. When computing the solution of P4 take into account Z
′
4 = {(pmax),

Ẑ4}, where pmax = max{pi} is the maximal energy saving item in the trun-
cated MCKP P2 and Ẑ4 = p1 + p2 + . . . + pk−1 is the approximate solution
obtained by the Standard Greedy Algorithm (SGA).

– Rule 2. After finding the break-slice, the remaining empty space is filled in
by slices from the non-break classes in decreasing order of the ratios pi

wi
.

The SGA algorithm is executed until the first break-slice is found. The En-
hanced Greedy Algorithm (EGA) algorithm is executed for all slices in Problem
P4, which are included in order of their decreasing ratio pi

wi
(i = 1, . . . , n̂). Ac-

cording to Rule 2, break-slices are not considered to be part of the solution in
the EGA algorithm. The SGA and EGA algorithms are illustrated in Figure 2.

6.4 Restoring the Solution from the EKP to the MCKP

An approximate solution to Problem P4 is obtained as follows:

– SGA Algorithm: Z
′
4 = max{pmax, (p1 + p2 + . . . + pk−1)}

– EGA Algorithm: Z
′′
4 = max{pmax, (p1 + p2 + . . . + pk−1 + α)}

The term α is a possible increment caused by using Rule 2, that is, the
profits of additional items from non-break classes.



1: Enhanced Greedy Algorithm: (EGA Algorithm)

2: input: a set of slices pj and wj from P4 ordered by the ratio pi
wi

3: c: (size of the knapsack), n̂:(number of items on Problem P4)

4: output: xi: (solution set);

5: (p∗, u∗): (energy savings and utilization result)

6: begin
7: c̄ = (c− U0); p∗ = 0; w∗ = 0;
8: for j = 1 to n̂ do
9: if wj > ĉ then
10: xj = 0; break-slice = j;

11: exit; (condition for SGA algorithm)

12: else
13: xj = 1; ĉ = ĉ− wj;

14: p∗ = p∗ + pj; u∗ = u∗ + wj

15: end;

Fig. 2. Greedy Algorithms: SGA, EGA

The approximate solution to the Problem P0 is defined as Z4 + S0. Recall
that S0 =

∑n
i=1 Si1, are the elements truncated in Problem P1.

From the definition of the slice (described in Equations 4 and 5) and Property
1, it follows that if several slices, (for example s, r and t in that order) belonging
to the same class Nj are chosen to be part of the solution of the greedy algorithm,
then the item corresponding to the slice t is considered to be part of the solution
of P0. On the other hand, if no slice is chosen from class Nj to be part of the
solution, then the truncated item considered in Problem P1 (Sj,1 and Uj,1) is
chosen to be part of the solution.

The above criteria allows us to construct the corresponding items (speeds)
from each class from Problem P4 that are part of the solution of Problem P0.

The solution from Problems P1, P2 and P4 can be obtained in O(m) time,
while the EGA Algorithm obtains solutions in O(m log m) time.

6.5 Scheduling the New Task

After the optimization procedure is executed, the Total Bandwidth Server (TBS)
[14] will calculate the start time of the new task. It is well known that TBS Server
provides low response times for handling aperiodic tasks. It is important to note
that the newly arrived task may not be scheduled immediately at its arrival
time because it may cause some missing deadlines. The resulting utilization,
after executing the optimization procedure, may not be immediately subtracted
from the total processor load because at the arrival time some tasks may already
have delayed the execution of other tasks.

Finally, with the start time of the new task computed and the solution pro-
vided by the optimization procedure (the set of speeds for execution), the PORTS
Server will schedule the new task in the system.



7 Simulation Experiments

The following simulation experiments have been designed to test the performance
of the PORTS Server and its ability to achieve our optimality criteria using
synthetic task sets. The goals in this simulation experiments are: (1) to measure
the quality of the results over a large set of dynamic tasks that arrive and leave
the system at arbitrary instants of time, and (2) to measure and compare the
performance and run-time of our algorithms against known algorithms.

The algorithms used for comparison are: Dynamic Programming (DP) [16],
Static Discrete Algorithm (SD) and the Optimal Discrete Algorithm OP(d) [1].

Each plot in the graphs represents the average of a set of 5000 task arrivals.
The results shown in the graphs are compared with the SD Algorithm and the
size of the knapsack used in the experiments is 1000 (100% of the load).

Each task has a life-time (ri) that follows a uniform distribution between
30 and 200 instances (periods). At the end of its life-time, the task leaves the
system. The period Pi of each task follow a uniform distribution between 1000
and 16000 time units, such that the LCM of the periods is 32000.

The arrival time of task Ti+1 is computed by ai+1 = Pi+1∗ri+1
nt , where nt is

the actual number of tasks in the system.
It is assumed that, for a given number of speeds, each speed level is computed

proportionally between the maximum speed (SPmax = 1.0) and the minimum
speed (SPmin = 0.2). For example, if there are 5 speed levels, the speed levels
will be {1.0, 0.8, 0.6, 0.4, 0.2}. The utilization of task Ti under minimum speed,
Uin, is chosen as a random variable with uniform distribution between 20% and
30%. Ci is computed by Ci = Uin · SPij · Pi. For each speed, utilization Uij is
computed by Uij = tij

Pi
, and tij = Ci

SPij
.

The power functions for each task Ti used [11, 19, 21] are of the form ki ·Sxi
i ,

where ki and xi are random variables with uniform distributions between 2
and 10, 2 and 3 respectively. Then, the energy consumption for each task and
each speed SPj is computed by Eij = I · (ki · SP xi

j
Ci

SPj ·Pi
), where I is a fixed

interval, given by I = LCM . Finally, the input to our Optimization Problem P0

is computed by Equation 1.
The performance of our algorithms is measured at each task arrival (and

departure) according to the following metrics:

– Percentage (%) of Energy Savings: This metrics is computed as follows.
The solution obtained (in terms of Energy Consumption) by each algorithm
for all task give us the total energy consumption Etot =

∑n
i=1 Ei. The solu-

tion provided by each algorithm is then compared with the solution obtained
by algorithm SD, and the percentage of improvement is plotted in the graphs.

– Run-Time: This metrics denotes the execution time of each algorithm,
which measures the physical time in microseconds, using a PC Intel 233
MHZ with 48MB of RAM and running on the Operating System Linux. The
function used for the measurements is gettimeofday().

We show here two cases to demonstrate the performance of our algorithms.
The first case (Figure 3), executes the simulations considering 10 speed levels,



and the number of tasks is varied from 5 to 80. In the second case (Figure 4),
the number of tasks is set to 30, and the speed level is varied from 3 to 60.

The results obtained by algorithm EGA (shown in Figure 3) vary from 95
to 99 near optimal solutions (when compared with the DP Algorithm), with %
of energy savings ranging from 23 % to 25 %. While the SGA provide solutions
from 92 to 96 near-optimal, with % of energy savings ranging from 19 % to 22 %.
This results give an improvement of over 80% from the results obtained by the
OP(d) algorithm. It is important to note that the continuous OP(c) algorithm
was also simulated giving % of energy savings between 26 and 30.
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Fig. 3. % of Energy Savings and Run-Time (Microseconds)

The results shown in Figure 3 indicate the low cost of the enhanced greedy
algorithms. For the SGA and EGA algorithms the run-time varies from 56 to
853 microseconds. Note the large difference in run-time obtained by the EGA
algorithms when compared with the DP and the OP(d) algorithms. For our
simulation settings, the OP(d) algorithm varies from 155 to 102500 microseconds,
and the DP algorithm varies from 2529 to 49653 microseconds.

The results shown in Figure 4 indicate how important is to consider an appro-
priate number of speed levels for achieving a high percentage of energy savings.
As shown in Figure 4, under low number of speed levels, between 3 and 30, the
EGA algorithm gives better performance than the OPT(d) algorithm. However,
for more than 30 speed levels OPT(d) algorithm outperforms the EGA algo-
rithm. For this experiment the run-time computed (shown in Figure 4), indicate
that the OPT(d) algorithm has very little sensibility to the number of speed
levels (i.e., the run-time of the OPT(d) algorithm varied from 6900 to 7100 mi-
croseconds). In contrast, our Greedy Algorithms increased their run-time with
higher number of speed levels. For this experiments, the run-time of the Greedy
Algorithms varied from 99 to 1800 microseconds.

Further tests were conducted (increasing the number of speed levels) to con-
clude that both the EGA algorithm and the OPT(d) algorithms have similar
run-time, when the number of speed levels is reaching 100.



The results obtained in our simulations indicate that the Enhanced Greedy
Algorithms are a low cost and effective solutions for scheduling power-aware
real-time tasks with discrete speeds.

0

5

10

15

20

25

30

0 10 20 30 40 50 60

%
 o

f 
E

n
e
rg

y
 S

a
v
in

g
s

�

Number of Speed Levels

DP
SGA
EGA

OP(d)

16

64

256

1024

4096

16384

65536

0 10 20 30 40 50 60

R
u
n
-T

im
e
 (

M
ic

ro
S

e
c
o
n
d
s
)

Number of Speed Levels

DP
SGA
EGA

OP(d)

Fig. 4. % of Energy Savings and Run-Time (Microseconds)

8 Conclusions

In this paper we proposed a power optimization method for a real-time appli-
cation running on a variable speed processor with discrete speeds. The solution
proposed is based on the use of a Power-Optimized Real-Time Scheduling Server
(PORTS) which is comprised of two parts (a) a feasibility test, for testing the
admission of new dynamic tasks arriving in the system, and (b) an optimization
procedure used for computing the levels of speed of each tasks in the system,
such that energy savings of the system is maximized. The process of selecting
levels of voltage/speed for each tasks while meeting the optimality criteria re-
quires the exploration of a potentially large number of combinations, which is
infeasible to be done on-line. The PORTS Server finds near-optimal solutions at
low cost by using approximate solutions to the knapsack problem.

Our simulation results show that our PORTS Server has low overhead, and
most importantly generates near-optimal solutions for the scheduling of real-time
systems running on variable speed processors.

We will extend the PORTS Server with algorithms for multiple processors
and for real-time tasks with precedence and resource constraints.
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