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Abstract—Scheduling is a main issue of real-time systems
because it involves meeting the deadlines. In this paper, we
address the problem of scheduling a set of periodic tasks on
m processors under EDF (Earliest Deadline First) using a
partitioned scheme. The allocation problem is transformed into
a binary integer linear program. Then, it is solved by applying
Geoffrion’s version of Balas’ additive method, optimized for the
real-time scheduling problem. In order to assess the feasibility
of the approach for a small size practical problem, some
experimental results are shown.

Keywords-Balas’ additive algorithm, binary integer program-
ming, multiprocessor real-time scheduling, partitioned scheme

I. INTRODUCTION

Real-time scheduling consists of planning the order in
which the system’s tasks execute, so that their deadlines
are met. For uniprocessor systems, the scheduling problem
has been widely studied and effective algorithms have been
found that take into account many aspects that arise in real-
time systems [1].

Nowadays, the use of one processor is not sufficient
because of the increasing demands in computing power of
modern applications. The commercial availability of mul-
tiple cores, their low cost, and the fact that these kind of
systems give support to some important issues of real-time
such as fault-tolerance, have made the real-time community
focus on the study of multiprocessor scheduling in the last
decades [2].

The allocation problem, which consists of assigning
tasks to processors, has been proved to be NP -hard [3].
This problem has been widely studied in the literature and
extended to include processors with different speeds (e.g.
heterogeneous) and several software architecture models
(e.g. precedence relations). However, the main direction of
research has focused on finding out approximated solutions
in polynomial time. To our best knowledge, there is no
real-time work focusing on applying exact optimization
techniques to obtain the best real-time scheduling in mul-
tiprocessor systems for the task model that is used in this
work.

We address the problem of scheduling a set of n

preemptive and periodic tasks with hard deadlines on m
homogeneous processors using a partitioned scheme. In this
scheme, each task is assigned to a processor and all instances
of the task must execute on the same processor. Then, on
each processor the assigned tasks are scheduled by EDF. We
assume that the timing constraints of the tasks in the system
(worst-case execution time, period, etc.) are known a priori.

In this context, this work does not pretend to offer the
most efficient algorithm for obtaining the optimal solution
for the allocation problem in a real-time system, but to
investigate how feasible it would be to find that optimal
solution. This work uses the same approach as that of
the research done in 2008 by Baruah and Bini [6]. Their
work models the allocation problem as an integer linear
programming (ILP) problem with binary variables. However,
they do not apply any exact method to provide a solution.

The contributions of our work are the following:

• An optimal solution of the allocation problem under
our task model is provided. Our aim is to find the best
possible allocation by applying an implicit enumeration
technique, using a well-known algorithm from the
operations research area.

• An optimization of the original algorithm is presented,
taking into consideration the specificities of the real-
time scheduling problem.

• Some experimental results are presented to evaluate the
feasibility of applying this method in problems of the
presented size.

The paper is organized as follows: section II gives a brief
overview of how the allocation problem has been previously
studied. In section III, the task model is defined. Later, in
section IV, the allocation problem is modeled as a binary
linear integer programming problem and our solution stra-
tegy is described. Also, the arguments for the improvements
to the original algorithm are stated. Section V shows some
experimental results that analyze the acceptance ratio and the
execution time of the algorithm, to evaluate its feasibility.
Finally, section VI gives the conclusions and some future
work to be done, so as to improve the performance results.



II. PREVIOUS WORK

The allocation problem has been faced using heuristics
or some form of enumerative method. Neural networks,
genetic algorithms (GA’s) and bin-packing are some of
the heuristic approaches. Nevertheless, they all have some
disadvantages. For example, for NP-hard problems, GA’s
do not offer better performance than an algorithm specially
designed for a particular problem [4]. For this kind of
problems, GA’s focus in obtaining approximate solutions
in polynomial time. Although many bin-packing heuristics
have been proved to have a good performance and GA’s
have been used in the context of real-time scheduling (see for
example [5]), these approaches do not work for our purposes.
We intend to obtain an optimal solution of a scheduling
problem with reasonably low execution time.

Baruah and Bini modeled the allocation problem with
EDF scheduling on each processor as an integer linear
problem with binary variables [6]. The exact problem is
represented with pseudo-polinomially many restrictions, and
then an approximated problem is stated with polinomially
many restrictions.

Recently, an off-line non-heuristic approach proposed
the construction of lookup tables to partition a set of tasks
[7]. By using the table, task partitioning is achieved in
polynomial time, but the construction of the table involves
choosing certain values of utilizations depending on a fixed
value of ε and exhaustively trying all possible combinations
of distinct utilization values until the capacities of the
processors are reached. Having a specific task set, it is
enough to look up on the table to obtain the solution. In
general, this approach yields high computation time. The
smaller the value of ε, the greater the accuracy and the
computation that must be executed previously.

III. TASK MODEL

In this paper, we are considering the partitioned scheme
to schedule a set T = {τ1, . . . , τn} of implicit-deadline,
periodic tasks without any precedence constraints, executing
on m identical processors. Each task τi is characterized
by its period Ti, its worst-case execution time Ci and its
utilization ui =

Ci

Ti
. After the tasks have been assigned to

the processors, they will be scheduled under EDF on each
processor. A necessary and sufficient condition for the tasks
assigned to each processor to be schedulable by EDF is that
the total sum of their utilizations is not greater than the
capacity of the processor, which is assumed to be one.

IV. ALLOCATION PROBLEM AND BINARY INTEGER
LINEAR PROGRAMS (BILP’S)

Here, the optimization problem which models the allo-
cation problem for the task model given above will be
described. It is assumed that it is impossible to partition a
job, and that there will not be any job-level migration, i.e.,

all instances of one task must execute on a single processor.
Let us denote by:

Xij =
{ 1 if task i is assigned to processor j,

0 otherwise. (4.1)

Then, the allocation problem can be stated as the following
linear integer problem with m×n binary variables and m+n
constraints:

max

n∑
i=1

ui

( m∑
j=1

Xij

)
(4.2)

s.t.
n∑

i=1

uiXij ≤ 1, j = 1, . . . ,m, (4.2a)

m∑
j=1

Xij ≤ 1, i = 1, . . . , n, (4.2b)

Xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . ,m. (4.2c)

The objective function is to maximize the processors
utilization. The first m constraints correspond to the fact
that the utilizations of the tasks allocated to each processor
must sum up to 1 (the processor’s capacity), at most, i.e.,
the EDF exact schedulability test. The other n constraints
correspond to the fact that each task must be assigned to
one processor or not be assigned at all.

A. Solving binary integer linear problems

This BILP problem models the allocation problem
exposed in section II. The latter is a multiple knapsack
problem where the processors are the bins and the tasks are
the objects to be assigned to the bins [13]. As an NP-hard
problem, up to now no polynomial time algorithm exists for
computing its optimal solution [13].

Integer linear programming problems can be solved by
applying any linear programming technique like Gomory’s
cutting planes, Land and Doig’s branch and bound method,
or some hybrids of these two, by introducing additional
binary restrictions on the variables [8][9][10]. But since
these methods were developed to solve ILP’s, they do not
take any advantage on the special characteristics of BILP’s.
Some methods have been proposed to solve these binary
problems in a more efficient way.

One of them is Balas’ method, where all 2n possible
solutions are explicitely or implicitely enumerated [11]. The
strategy that makes this method efficient is that only some
solutions are selected for explicit enumeration. The branch
and bound approach of this method successively assigns
values of zeros or ones to some of the variables, so that after
treating some of the 2n combinations, it finds an optimal
solution or assures that there is no optimal solution at all.

Based on Balas’ work, Arthur Geoffrion gave a refor-
mulated version of the additive algorithm in 1967 [12]. The
spatial complexity (storage) used by the original method is



reduced by this version [14]. The aim here is to apply this
approach to get the best solution. There exist results showing
that it is possible to reach a good tradeoff between time
responses and performance of the algorithm [12].

Some of the advantages of this method are:

• Addition is the only arithmetic operation required, thus
eliminating roundoff problems. Since no linear systems
of equations need to be solved, it is unnecessary to use
matrix multiplication, which costs enough.

• The algorithm gives the optimal solution, if one exists.
• If the calculations need to be stopped before termina-

tion, usually a feasible solution is in store, even if it is
not the optimal.

• At any moment, it is possible to know how many solu-
tions have been implicitly enumerated, thus estimating
how much time is needed for termination.

• It is also possible to apply this method to non-linear
objective functions.

B. Balas’ additive algorithm

Fig. 1 shows a simplified version of Balas’ algorithm
given in [12] for solving a BILP of the standard form:

minf(X) = CTX (4.3)
s.t. B +AX ≥ 0, (4.3a)

where X is a n-dimensional vector (X is restricted to be
integer), B is a m-dimensional vector, A is a m×n matrix,
F (X) is the objective function, and C is the non-negative
n-dimensional vector of cost coefficients.

Set S = 0.

Attempt to fathom S.
Is the attempt successful?

If the best feasible com-
pletion of S has been
found and is better than
the incumbent, store it
as the new incumbent.

Augment S on the
right by 0 or 1 on
any free variable.

? ?

YesNo
1

2 3

4
Locate the rightmost element of S
which is not fathomed. If none exists,
terminate. Otherwise, replace the ele-
ment by its complement and delete
all elements to the right.

?

?
-�

Figure 1. Basic version of Balas’ algorithm [12].

Here, some concepts are needed [12]. A partial solu-
tion S is defined as a set of values assigned to some of
the variables of the problem. The variables without value on
S are called free variables. The completions of a partial
solution S are all the combinations of the values that could
be assigned to the free variables plus the values of the
variables in S.

If all possible 2n combinations of possible solutions to
a BILP with n variables are represented as a tree, a partial
solution is any node, and the completions are the leafs (see
Fig. 2). A partial solution S can be fathomed if either:

• It is possible to find the best feasible completion of S.
• There is no feasible completion of S, better than the

stored solution.

Geoffrion’s version of Balas’ algorithm tries to fathom
a partial solution on each iteration. Each time a feasible
completion is found, it is compared against the incumbent,
which is the best feasible solution found up to that moment.
If S is fathomed but there is no better solution than the
incumbent, then the algorithm goes up until it reaches the
level above the variable from which the fathoming was done
and takes the other branch, which corresponds to the comple-
ment of the value of that variable (see Fig. 2). If S cannot
be fathomed, the algorithm goes down one level on the tree
(assigns a value to a free variable) and tries to fathom the
new partial solution.

To reduce the BILP problem stated on the previous
section to the standard form which is needed to apply this
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Figure 2. Partial solutions and completions on a Branch & Bound
algorithm with 5 variables.



method, it is necessary to change variables:

Yij = 1−Xij , i = 1, . . . , n, j = 1, . . . ,m. (4.4)

This change of variables leads to the problem in the
standard form:

min
∑
j

∑
i

(uiYij − ui) ≡ min
∑
i

∑
j

uiYij (4.5)

s.t.(1−m) +

m∑
j=1

Yij ≥ 0, i = 1, . . . , n, (4.5a)

(1−
n∑

i=1

ui) +

n∑
i=1

uiYij ≥ 0, j = 1, . . . ,m. (4.5b)

So that (1)× (n×m) vector BT is:

(1−m, . . . , 1−m︸ ︷︷ ︸
n times

, 1−
n∑
1

ui, . . . , 1−
n∑
1

ui︸ ︷︷ ︸
m times

). (4.6)

And (n+m)× (n×m) matrix A has the form:

1 1 . . . 1 0 . . . 0 0 . . . 0
0 0 . . . 0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

...
. . .

...
0 0 . . . 0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . . 1 1 . . . 1
u1 0 . . . 0 u2 . . . un 0 . . . 0
0 u1 . . . 0 0 . . . 0 un . . . 0
...

...
. . .

...
...

. . .
...

...
. . .

...
0 0 . . . u1 0 . . . 0 0 . . . un


.

(4.7)
The algorithm has been modified with the introduction

of three optimizations based on the characteristics of the
scheduling problem we are dealing with. These are: (1)
starting from a known trivial solution; (2) cuttting-off
iterations when a scheduling is achieved; (3) reducing
number of variables by filtering the task set.

1) Starting from a known trivial solution. Before
entering the while loop of Fig. 1, we start with a
non-zero solution. Intuitively, the tasks are ordered
by decreasing order of their utilizations, and then the
first m tasks are assigned to the m processors. In
practice, it has been proved that bin-packing heuristics
work better on a set of tasks which are ordered by
decreasing utilization [15]. So, S is such that the first
task with the highest utilization is assigned to the
first processor; the second, to the second processor
and so on. Our experimental results showed that in
general, the best solution found was a completion of
this initial solution. This implies a reduction on the
number of iterations needed to find the best solution.

2) Cutting-off iterations when a scheduling is achieved.
In Step 3 (Fig. 1), the algorithm evaluates all feasible
solutions searching a lower bound of the objective
function. However, due to the nature of the allocation
problem, once all tasks have been allocated, it is not
necessary to continue the search for a better solution.
Hence, in Step 3, if all tasks have been allocated, the
algorithm terminates.

3) Reducing number of variables by filtering the task
set. It was noticed that most of the times when there
is a task that cannot be allocated at all in any of
the processors; the algorithm does a big amount of
iterations trying to allocate that task. Based on this, the
third improvement is to make a filter of the generated
set and take out the tasks that are impossible to allocate
due to their big utilizations. For instance, if there are
4 processors and 10 tasks, 5 of which have utilizations
greater than 0.5, it will be impossible to allocate one
of these tasks. In this example, the problem size would
be 40 variables (40 = 4 × 10), which gives a search
space of 240. If a task is eliminated, the problem size
is reduced to 36 (36 = 4×9), which leads to a search
space of 236. This step has to be done before all steps
of Fig. 1 and it could lead to an exponential reduction
on the search space.

V. EXPERIMENTAL RESULTS

It is not pretended to contrast the performance of the
algorithm proposed here with some other ones. To the
best of our knowledge, there are no experimental results
regarding the actual execution time performance of exact
multiprocessor real-time scheduling algorithms. The purpose
of this section is to provide experimental evidences for
the suitability of using exact multiprocessor scheduling
algorithms (like the one that is proposed) for some practical
real-time multiprocessor systems.

Although a comparison of algorithms is beyond this
work, it is worth noting that, regarding the evaluation of
scheduling algorithms, in operations research area there exist
classical benchmarks for basic scheduling problems (see
for example Taillard’s benchmarks [17]). However, these
benchmarks are not suitable to the purposes of this work,
due to the differences between the scheduling problem in
operations research and the scheduling problem in real-
time systems. For example, in standard operations research
benchmarks there are no due times nor release times for
tasks and usually the objective is to minimize the makespan
(the total execution time). In real-time scheduling problem
the makespan is not a concern, but the due times of each
task. There are no such standard benchmarks for real-
time scheduling. Synthetic task sets with suitable statistical
characteristics are used instead.



The algorithm proposed in the last section has been
tested on task sets randomly generated in order to evaluate its
performance. We considered a system with 4 processors and
several samples of task sets were generated. The periods of
the tasks are uniformly distributed on the interval [100, 500].
The sum of their utilizations will be denoted by US . For
each value of US ∈ {2, 2.2, 2.4, . . . , 3.8, 4}, 500 different
task sets were tested. This was done to test the performance
of the algorithm when the capacity of the system is filled
up to 50% (US = 2), 55%, and so on until it reaches its
maximum capacity (US = 4).

Three experiments were conducted for three different
kinds of systems: the first is composed of “light and heavy”
tasks, the second considers only “light” tasks and the third
considers only “heavy” tasks. The utilizations of the tasks
are uniformly distributed on the intervals [0.1;0.7], [0.1;0.4]
and [0.4;0.7], for the three systems, respectively.

For a given set of task sets SS, we define the acceptance
ratio ρ of a multiprocessor scheduling algorithm P as:

ρSS =

number of task sets for
which P accepted all the tasks

number of task sets in SS
∗ 100 (5.1)

All experiments were conducted on an Intel Core 2 Duo
CPU, 2.93 GHz, 3.0 GB RAM and a Windows 7 32-bits
Operating System. The application was written in C and it
was compiled with GNU compiler.

Table 1 shows the time in seconds and the number of
iterations for all the experiments. As expected, the sample
sets composed of “light” tasks have the largest average
execution time. The reason for this is that there are more
variables and the size of the problem is bigger. Also, the
problem size is never reduced by the filter due to the size
of the tasks.

Table I
TIME (IN SECONDS) AND NUMBER OF ITERATIONS.

1st Experiment 2nd Experiment 3rd Experiment
Us Time No. iter. Time No. iter. Time No. iter.
2 2 · 10−5 6 10−4 15 3 · 10−6 1.2

2.2 3 · 10−5 7 2 · 10−4 17 4 · 10−6 2
2.4 4 · 10−5 9 2 · 10−4 19 7 · 10−6 3
2.6 6 · 10−5 10 4 · 10−3 368 2 · 10−5 4.3
2.8 8 · 10−5 11.5 0.06 6581 3 · 10−5 5
3 5 · 10−4 69 0.3 3 · 104 4 · 10−5 6

3.2 3 · 10−3 461 2.8 2 · 105 10−3 215
3.4 0.013 1660 9.8 8 · 105 0.0025 466
3.6 0.038 5010 47.3 3 · 106 0.03 5 · 103
3.8 0.16 2 · 104 208.2 107 0.09 104

4 33.7 3 · 106 2250 8 · 107 0.33 5 · 104

Figures 3, 4 and 5 below show the acceptance ratio
for the three experiments, respectively.

Figure 3. Acceptance ratio as a function of Us for a heterogeneous system.

Figure 4. Acceptance ratio as a function of Us for a ”light” tasks system.

Figure 5. Acceptance ratio as a function of Us for a ”heavy” tasks system.

VI. CONCLUSIONS AND FUTURE WORK

By applying Geoffrion’s simplified version of Balas’
additive algorithm, a better performance is obtained with
respect to heuristic algorithms, since this method always
gives the optimal scheduling. The only disadvantage of
this approach is that it could take a lot of time before
termination.

We do not pretend to offer the best algorithm to find out
the optimal solution to the allocation problem. To this end,
Geoffrion’s version of Balas’ algorithm with the proposed



optimizations works for our purposes. The experimental
results show the feasibility of finding the exact solution for
the allocation problem on task sets of the presented size.

The experimental results presented here for 4 processors
are valuable. We are dealing with an NP-hard problem,
so no efficient algorithms for solving it are known. For
common real-time and embedded system applications, 4
processors is a practical limit (due to typical cost, energy
and space restrictions in the hardware platform of that kind
of systems). These experimental results provide evidence
to support the statement that, for some hard real-time
applications with processor settings of typical size (up
to 4 processors), an exact offline algorithm (as the one
that is proposed) could be used instead of an efficient
approximation algorithm.

Our future work is based on the improvement proposed
by Geoffrion in [16]. In this paper, the introduction of
”surrogate constraints” is proposed. These constraints
encapsulate all restrictions of the original BILP and
cause the algorithm to find a better solution taking into
consideration all restrictions at the same time and not just
one by one, as Geoffrion’s version of Balas’ algorithm
does. On multidimensional knapsack problems, the use of
surrogate constraints on every iteration of the algorithm of
Fig.1 leads to solution times that seem to increase as the
third power of the number of variables [16].

Also, another optimization can be achieved by changing
the data structure to take profit from the sparse matrix
which is characteristic of this specific problem.
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