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Abstract. Border points are those instances located at the outer mar-
gin of dense clusters of samples. The detection is important in many
areas such as data mining, image processing, robotics, geographic infor-
mation systems and pattern recognition. In this paper we propose a novel
method to detect border samples. The proposed method makes use of
a discretization and works on partitions of the set of points. Then the
border samples are detected by applying an algorithm similar to the pre-
sented in reference [8] on the sides of convex hulls. We apply the novel
algorithm on classification task of data mining; experimental results show
the effectiveness of our method.

Keywords: Data mining, border samples, convex hull, non-convex hull,
support vector machines.

1 Introduction

Geometric notion of shape has no associated a formal meaning[1], however in-
tuitively the shape of a set of points should be determined by the borders or
boundary samples of the set. The boundary points are very important for several
applications such as robotics [2], computer vision [3], data mining and pattern
recognition [4]. Topologically, the boundary of a set of points is the closure of
it and defines its shape[3]. The boundary does not belong to the interior of the
shape.

The computation of border samples that better represent the shape of set
of points has been investigated for a long time. One of the first algorithms to
compute it is the convex hull (CH). The CH of a set of points is the minimum
convex set that contains all points of the set. A problem with CH is that in
many cases, it can not represent the shape of a set, i.e., for set of points having
interior “corners” or concavities the CH ommits the points that determine the
border of those areas. An example of this can be seen in Fig. 1.
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262 A. López Chau et al.

Fig. 1. Convex hull can not represent exactly the borders of all sets of points

In order to better characterize the region occupied for a set of points, some
proposals have been presented : alpha shapes, conformal alpha shapes, concave
hull algorithm and Delaunay-based methods.

In [5] the alpha-shapes as a generalization of the convex hull was presented.
Alpha shapes seem to capture the intuitive notions of ”fine shape” and ”crude
shape” of point sets. This algorithm was extended to more than two dimensions
in [1]. In [6] is proposed a solution to compute the “footprint” of a set of points.
Different from geometric approach was proposed in [7], were the boundary points
are recovered based on the observation that they tend to have fewer reverse k-
nearest neighbors. An algorithm based on Jarvis march was presented in [8],
the algorithm is able to efficiently compute the boundary of a set of points in
two dimensions. A problem detected with the algorithm in [8] is that although
it can effectively work in almost all scenarios, in some cases it produces a set
of elements that does not contain all the samples in a given data set, this is
specially notorious if the distribution of samples is not uniform, i.e., if there are
“empty” zones, another detail occurs if there are several clusters of points, the
algorithm does not compute all border samples.

In this paper we introduce an algorithm to compute border samples. The
algorithm is based on the presented in [8] but with the following differences: The
algorithm was modified to be able to compute all extreme points, the original
algorithm sometimes ignores certain points and the vertexes of convex hull are
not included as part of the solution. Instead of using the k nearest neighbors
of a point pi we use the points that are within a hyper-box centered in pi,
this makes the algorithm slightly faster than the original one if the points are
previously sorted. The novel algorithm was extended for higher dimensions using
a clustering strategy. Finally we use a discretization step and work with groups
of adjacent cells from where the border samples are detected.

The rest of the paper is organized as follows. In the section 2 definitions
about convexity, convex and non convex hulls are explained. The notion of bor-
der samples is also shown. Then in section 3 three useful properties to compute
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border samples of a set of points are shown, and proposed algorithms that ac-
complish the properties are explained. In section 4 the method is applied as a
pre-processing step in classification task using Support Vector Machine (SVM)
as an application of the algorithms to data mining. The results show the effec-
tiveness of the proposed method. Conclusions and future work are in last part
of this paper.

2 Border Points, Convex Hull and Non-convex Hull

The boundary points (or border points) of a data set are defined in [7] as those
ones that satisfy the following two properties: Given a set of points P = {p ∈ Rn},
a p ∈ P is a border one if

1. It is within a dense region R and
2. ∃ region R

′
near of p such that Density(R

′
) � Density(R).

The convex hull CH of a data set X is mathematically defined as in equation
(1) and there are several algorithms to compute it [9]: brute force (O(n3)),
Grahamś scan(O(n log n)), divide and conquer O(n logn), quick hull (average
case O(n log n), Jarvís march and Chan’s algorithm (O(n logh).

CH(X)

{
w : w =

n∑
i=1

aixi, ai ≥ 0,

n∑
i=1

ai = 1, xi ∈ X

}
(1)

Extreme points are the vertexes of the convex hull at which the interior angle is
strictly convex[10]. However as stated before and exemplified in figure 1, CH(X)
can not always capture all border samples of X . Another detail relates to the
use of CH for capturing the border samples occurs when the set of points form
several groups or clusters, only extreme borders are computed and outer borders
are omitted. For cases like this, the border samples B(· ) usually should define a
non-convex set. A convex set is defined as follows[11]: A set S in Rn is said to
be convex if for each

x1, x2 ∈ S, αx1 + (1 − α)x2 belongs to S (2)

for α ∈ (0, 1).

Any set S
′
that does not hold equation (2) is called a non-convex.

We want to compute B(X) which envelopes a set of points, i.e., B(X) is
formed with the borders of X . Because a data set is in general non-convex, we
call B(X) non-convex hull. The terms non-convex hull and border samples will
be used interchangeably in this work.

Although the CH(P ) is unique for each set of points P , the same does not
occur with B(P), there can be more than one valid set of points that define the
border for the given P . An example of this is shown in figure 2. The difference
of between two border sets B(P) and B(P ′) is due to the size of each one, which



264 A. López Chau et al.

.

Fig. 2. Two different non-convex hulls for the same set of points. The arrows show
some differences.

in turn is related with the degree of detail of the shape. A non-convex hull with
a small number of points is faster to compute, but contain less information and
vice-verse. This flexibility can be exploited depending on application.

The minimum and maximum size (| · |) of a B(P) for a given set of points P
is determined by (3) and (4).

min |B(P)| = |CH(P )| ∀ B(P ). (3)

max|B(P)| = |P | ∀ B(P ). (4)

The (3) and (4) are directly derived, the former is from definition of CH, whereas
the second happens when B(P ) contains all the points.

Let be P ={p ∈ Rn} and P
′
a discretization of P by using a grid method. Let

be yi a cell of the grid and let be Yi a group of adjacent cells with
⋂

i Yi = ∅

and
⋃

i Yi = P
′
. The following three properties contribute to detect the border

samples of P
′
.

1. ∀ B(P
′
), B(P

′
) ⊃ CH(P

′
).

2.
⋃

i B(Yi) ⊃ B(P
′
).

3. Vertexes of
⋃

i B(Yi) ⊃ vertexes of CH(P
′
).

The property 1 obligates that the computed B(P
′
) contain the vertexes of convex

hull of P
′
; it is necessary that all extreme points be include as members of B(P

′
)

in order to explore all space in which points are located, regardless of their
distribution.

The property 2 states that border points of P
′

can be computed on disjoint
partitions Yi of P

′
. The resulting B(P

′
) contain all border samples of P

′
, this

is because border samples are not only searched in exterior borders of the set
P

′
, but also within it. The size of

⋃
i B(Yi) is of course greater than the size of

B(P
′
).

Finally the property 3 is similar to the property 1, but here the resulting
non-convex hull computed on partitions Yi of of P

′
must contain the vertexes of

convex hull. If the border samples computed on partitions of P
′
contain extreme
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points, then not only the points in interior corners are detected but also those
on the the vertexes of convex hull.

In order the detect border samples and overcome the problems of convex
hull approach (interior corners and clusters of points) we propose a strategy
based on three properties, if they are accomplished then those points that are
not considered in the convex hull but that can be border points (according to
definition in past section) can be easily detected.

3 Border Samples Detection

The novel method that we propose is based on the concave hull algorithm pre-
sented in [8], with important differences explained in the introduction of this
paper, also there are some advantages over [8]: computation of border samples
regardless of density distribution of points, extended to more than two dimen-
sions and a easy concurrent implementation is possible. The method consists
in three phases: 1) discretization; 2) selection of groups of adjacent boxes; 3)
reduction of dimensions and computation of borders.

Firstly, a discretization of a set of points P is done by inserting each pi ∈ P
into a binary tree T , which represents a grid. The use of a grid helps us to avoid
the explicit use of clustering algorithms to get groups of points near among them.
This discretization can be seen as the mapping

T : P �→ P ′ (5)

where P, P
′ ∈ Rn. Each leaf in T determine a hyper box bi, the deeper T the

lesser the volume of bi. The time required to map all samples in P into the grid
is O(nlog2(n)). This mapping is important because it avoids more complicated
and computationally expensive operations to artificially create zones of points
more equally spaced, also the computation of non-convex hulls requires a set of
no repeated points, if two points are repeated in P , then both are mapped to
the same hyper box. All this is achieved with the mapping without requiring an
additional step O(|P |). During the mapping, the number of points passed trough
each node of T is stored in a integer variable.

The second phase consists in the selection of groups of adjacent boxes in
T . The are two main intentions behind this: compute the border of a single
cluster of points and control the size of it. We accomplish this two objectives by
recursively traversing down T . We stop in a node that contain less than a value
of L (predefined by user) in the variable that holds the number of points that
have passed through, then we recover the leaves (boxes) below the node. The set
of boxes form a partition of P

′
and are refereed as Yi. The Algorithm 1 shows

the general idea of the method.
For each partition Yi found, we first reduce the dimension and then compute

its border points using algorithm shown in Algorithm 2, which works as follows.
First Algorithm 2 computes CH(Yi) and then each side of it is explored searching
for those points that will form the non-convex hull B(P

′
) for the partition Yi.

The angle θ in algorithm 2 is computed using the two extreme points of each



266 A. López Chau et al.

Data:
P ∈ Rn: A set of points;
Result:
B(P ): Border samples for P

1 Map P into P’ /* Create a binary tree T */

2 Compute partitions Yi by traversing T /* Use Algorithm 1 */

3 Reduce dimension /* Apply Algorithm 4, obtain clusteri, i = 1, 2, ... */

4 for each clusteri do
5 Compute border samples for Yi within clusteri /* Algorithm 2 */

6 Get back Yi to original dimension using the centroid of clusteri
7 B(P ′) ← B(P ′)∪ result of previous step

8 end
9 return B(P)

Algorithm 1. Method to compute border samples

side of the convex hull. This part of the method is crucial to compute border
samples, because we are searching all points near of each side of convex hull,
which are border points. These border points of each side of the convex hull are
computed using the algorithm 3.

Data:
Yi: Partition of P
L: Minimum number of candidates
Result:
B(Yi): The border samples for partition Yi

1 CH ← CH(Yi) /* The sides S = {S1, . . . , SN} of CH */

2 θ ← 0 /* The initial angle */

3 B(Yi) ← ∅

4 for each side Si ∈ S of CH do
5 BP ← Compute border points (Yi, Si, L, θ)
6 θ ← get angle {si1, si2} /* Update the angle */

7 B(Yi) ← B(Yi) ∪ BP
8 end
9 return B(Yi)

Algorithm 2. Detection of border samples for a partition Yi

The Algorithm 3 shows how each side of CH(Yi) is explored. It is similar
the presented in [8] which is based on Jarvís march but considering only local
candidates, the candidates are those points located inside a box centered at
point pi being analyzed. These local points are computed quickly if Yi have been
previously sorted . The algorithm 3 always include extreme points of Yi which
produces different results from the algorithm in [8]. Also, instead of considering
k-nn we use the candidates near to point pi being analyzed (currentPoint in
Algorithm 3).
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Data:
Yi: A partition of P
S: Side of a CH(Yi)
L: (minimum) Number of candidates; θ: Previous angle.
Result:
BP: Border points to side S

1 firstPoint ← first element of S
2 stopPoint ← second element of S
3 BP ← {firstPoint}
4 currentPoint ← firstPoint
5 previousAngle ← θ
6 while currentPoint �= stopPoint do
7 if K > |Yi| then
8 L ← |Yi|
9 end

10 candidates ← Get �L elements in the box centered at currentPoint
11 Sort candidates by angle considering previousAngle
12 currentPoint ← find the first element that do not intersect BP
13 if currentPoint is NOT null then
14 Build a line L with currentPoint and stopPoint
15 if L intersects BP then
16 BP ← BP ∪ stopPoint
17 return BP
18 end

19 else
20 BP ← BP ∪ stopPoint
21 return BP
22 end
23 BP ← BP ∪ currentPoint
24 Remove currentPoint from X
25 previousAngle ← angle between last two elements of BP
26 end
27 return BP

Algorithm 3. Computation of border points for Si

For higher than two dimensions we create partitions on them to temporally
reduce the dimension of the P ∈ Rn in several steps. For each dimension we
create one dimensional clusters, the number of cluster corresponds to the parti-
tions of the dimension being reduced, then we fixed the value of that partition
to be the center of the corresponding cluster. This process is repeated on each
dimension. The final bi-dimensional subsets used are formed by considering in
decreasing order with respect to the number of partitions of each dimension.
We compute border samples and then get them back to their original dimension
taking the previously fixed values.

In order to quickly compute the clusters on each feature of data set, we use
a similar algorithm to that presented in [12]. The basic idea of the on-line di-
mensional clustering as follows: if the distance from a sample to the center of a
group is less than a previously defined distance L, then the sample belongs to
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this group. When new data are obtained, the center and the group should also
change. The Euclidean distance at time k is defined by eq. (6)

dk,x =

(
n∑

i=1

[
xi(k) − xj

ximax − ximin

]2
) 1

2

(6)

Where n is the dimension of sample x, xj is the center of the jth cluster, ximax =
maxk {xi(k)} and ximin = mink {xi(k)}.

The center of each cluster can be recursively computed using (7):

xj
i k+1 =

k − 1
k

xj
i k +

1
k

xi(k) (7)

The Algorithm 4 shows how to compute the partition of one dimension of a given
training data set. This algorithm 4 is applied in each dimension, and produces
results in linear time with the size of the training data set.

Data:

Xm: The values of the mth feature of training data set X
Result:

Cj : A number of one dimensional clusters(partitions) of mth feature of X and its
corresponding centers.

1 C1 = x(1) /* First cluster is the first arrived sample. */

2 x1 = x(1)
3 for each received data x(k) do
4 Use eq. (6) to compute distance dk,x from x(k) to cluster Cj

5 if dk,x ≤ L then
6 x(k) is kept in cluster j
7 Update center using eq. (7).

8 else
9 x(k) belongs to a new cluster Cj+1, i.e., Cj+1 = x(k)

10 xj+1 = x(k)

11 end

12 end
/* If the distance between two groups centers is more than the

required distance L */

13 if
∑n

i=1 [x
p − xq

i ]
2 ≤ L then

14 The two clusters (Cp and Cq) are combined into one group, the center of the
new group may be any of the two centers.

15 end
16 return SV1

⋃
SV2

Algorithm 4. Feature partition algorithm

4 Application on a Data Mining Task

In order to show the effectiveness of the proposed method, we apply the devel-
oped algorithms on several data sets and then train a SVM using the detected
border points.
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All experiments were run on a computer with the following features: Core
2 Duo 1.66 GHz processor, 2.5 GB RAM, linux Fedora 15 operating system
installed. The algorithms were implemented in the Java language. The maximum
amount of random access memory given to the java virtual machine was set to
1.6 GB for each one of the runs.

For all data sets the training data set was built by randomly choosing the 70%
of the whole data set read from disk, the rest of samples were used as testing
data set.

The data sets are stored as plain text files in the attribute relation file format.
The time used to read the data sets from hard disk was not taken into account
for the reported results of all the experiments, as usual in literature, i.e., the
measurements were taken from the time when a data set was loaded into mem-
ory to the time when the model has been calibrated, i.e., the reported times
correspond to the computation of border samples and the training of SVM. The
reported results are the average of 10 runs of each experiment.

In order to compare the performance of the proposed algorithm two SVMs
are trained using LibSVM library. The first SVM is trained with the entire
data set whereas the second SVM is trained using only the border samples
recovered using the proposed method. In both cases the corresponding training
times and achieved accuracy are measured and compared. The kernel used in all
experiments is a radial basis function.

Experiment 1. In this experiment, we use a data set similar to the checkerboard
one [13]. Table 1 shows a resume of the data set. The difference with the original
is that the data set used in the experiment contains 50000 samples grouped in
a similar distribution as shown in figure 4. The squares can overlap in no more
than 10%. Note that the number of samples have kept small to clarify the view.

Table 1. Data set Checkerboard2 used in experiment 1

Data set Features Size (yi = +1/yi = −1)
Checkerboard2 2 25000 (12500/12500)

The Checkerboard2 is a linearly inseparable data set. The RBF kernel was
used with the parameter γ = 0.055. Table 2 shows the results of the Exper-
iment1. Column Tbr in the table refers to the time for the computation of
border samples, whereas Ttr is the training time, both are in milliseconds.
The column Time is the time elapsed from the load of data set in mem-
ory to the time when training of SVM is done, also it is measured in
milliseconds. The column #SV is the number of support vectors and #BS is the
number of border samples recovered by the proposed algorithm. The first row
of results shows the results using border samples detected with the proposed
algorithm whereas the second one is for LibSVM using the entire data set.



270 A. López Chau et al.

Table 2. Results for Checkerboard2 like data set (25000 samples)

Tbs Ttr Time #SV #BS Acc Training data set
1618 4669 6287 2336 2924 89.9 Only Border Samples

27943 4931 90.3 Whole data set

Fig. 3. Example of Checkerboard data set and border samples computed with the
proposed algorithm

Fig. 4. Example of the class Distribution for data set Spheres2 and Spheres3. In
higher dimensions a similar random distribution occurs. Circle: yi = +1, Square: yi =
−1.

Fig. 4 can be appreciated the border samples detected from data set Checker-
board. The method successfully compute border samples and produces a reduced
version of Checkerboard, containing only border points. This samples are used
to train SVM, which accelerated the training time as can be seen in table 2.

Experiment 2. In the second experiment, we use a data set of size up to
250000 samples and the number of dimensions is increased up to 4.. The data
set is synthetic, composed of dense hyper dimensional balls with random radius
and centres. The synthetic data set Spheresn consists in a a number of hyper
spheres whose center is randomly located in a n dimensional space. Each sphere
has a radius of random length and contains samples having the same label. The
hyper spheres can overlap in no more than 10% of the greater radius. Fig. 4
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shows an example of data set Spheresn for n=2 and n=3. Again the number of
samples have kept small to clarify the view. Similar behaviour occurs in higher
dimensions. In the Table 3 can be seen the number of samples and the dimension
of data set used in the experiment 2.

Table 3. Data set Spheresn used in experiment 2

Data set Features Size (yi = +1/yi = −1)
Spheres2 2 50000 (16000/34000)
Spheres4 4 200000 (96000/104000)

The training and testing data sets were built by randomly choosing 70% and
30% respectively from the whole data set. For all runs in experiment 2, the
parameter γ = 0.07.

Table 4. Results for Spheres2 data set (50000 samples)

Tbr Ttr Time #SV #BS Acc Training data set
2635 2887 5522 626 2924 98.4 Only Border Samples

69009 1495 98.6 Whole data set

Table 5. Results for Spheres4 data set ((200000 samples))

Tbr Ttr Time #SV #BS Acc Training data set
6719 2001 8720 627 4632 98.3 Only Border Samples

53643 1173 99.8 whole data set

Results show that accuracy of the classifier trained using only border samples
is slightly degraded but the training times of SVM are reduced considerably.
Which agree with the fact that border samples were successfully recognized from
training data set.

5 Conclusions

We proposed a method to compute the border samples of a set of points in a
multidimensional space. The results of experiments show that the effectiveness
of the method on classification task using SVM, the algorithms can quickly
obtain border samples that are used to train SVM yielding similar accuracy to
the obtained using the whole data set but with the advantage of consuming
considerably less time. We are currently working on an incremental version of
the algorithm to compute border samples.
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