
Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

DOI : 10.5121/cseij.2012.2402 9

RELIABILITY IMPROVEMENT WITH PSP OF
WEB-BASED SOFTWARE APPLICATIONS

Leticia Dávila-Nicanor, Pedro Mejía-Alvarez
CINVESTAV-IPN. Sección de Computación

ldavila@yahoo.com.mx,
pmejia@cs.cinvestav.mx

ABSTRACT

In diverse industrial and academic environments, the quality of the software has been evaluated using
different analytic studies. The contribution of the present work is focused on the development of a
methodology in order to improve the evaluation and analysis of the reliability of web-based software
applications. The Personal Software Process (PSP) was introduced in our methodology for improving the
quality of the process and the product. The Evaluation + Improvement (Ei) process is performed in our
methodology to evaluate and improve the quality of the software system. We tested our methodology in a
web-based software system and used statistical modeling theory for the analysis and evaluation of the
reliability. The behavior of the system under ideal conditions was evaluated and compared against the
operation of the system executing under real conditions. The results obtained demonstrated the
effectiveness and applicability of our methodology.

KEYWORDS

Reliability Models, Web Applications, Improvement, PSP.

1. INTRODUCTION

Web applications possess different unique characteristics that make web testing and quality
assurance different from its corresponding traditional techniques. Web applications can be
characterized by the following aspects [5]. Massive Access of users, the simultaneous access of
the users in these applications is part of the essence of this type of systems. Web applications
provide cross-platform universal access to web resources for the massive user population. For the
users it should be transparent that these web applications provide this service to other millions of
users. The difficulty of establishing the causes of the errors, since web applications may be
access by millions of users, errors have a big impact. Finding the origin of errors in web
applications may be difficult and its recovery time may not be immediate, given the great number
of software elements that intervene. The integration of diverse software elements for an
application in Internet. Web users employ different hardware equipments, network connections,
operating systems, middleware and web server support. In a web application, two main
components are always required: the backend and the front-end. The backend is the software
required for an application in Internet to operate. Among the most important software found in
the backend are: the database servers (MySQL, Oracle, Informix, DB2, among those but
important), Web Servers (Apache, Netscape Enterprise Server, Netra of Sun, etc.), and the

mailto:ldavila@yahoo.com
mailto:pmejia@cs.cinvestav

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

10

interface programming languages (HTML, XML, PHP, Servlets-Java, Live - Wire, etc.). The
front-end is the software required on the part of the client to allow the systems to access the Web
Applications. Among the most important software found in the frontend are: Navigators
(Explorer, Netscape), which contain plug-in software such as presentations of Macromedia, and
languages like JavaScript. Diversity of frameworks to develop, to operate and to maintain a Web
site, the development of a Web site requires of a great team of people with different profiles and
backgrounds. These teams include programmers, graphic designers, usability engineers,
specialists in information integration, network experts and database administrators. This diversity
of personnel profiles makes reliable web applications development difficult and sometimes
unpredictable. Because of the above characteristics web-based systems tend to evolve rapidly
and undergo frequent modifications, due to new technological and commercial opportunities, as
well as feedback from the users. In consequence web-based systems are very sensitive to errors.
Most work on web applications has been on making them more powerful, but relatively little has
been done to ensure its quality. The most important quality attributes demanded by web-based
systems are reliability, usability and security. Additional important quality attributes are
availability, scalability, maintainability and time-to-market [12]. As with traditional software,
verification and validation (V &V) processes have the purpose of checking the quality of the
web-based system and revealing non-compliances with the user requirements. However, it is
clear that quality assurance should not only include verification and validation but also process
improvement. We consider statistical modeling and related reliability analysis in our previous
work [18] as one good candidate for effective web quality assurance. This technique help on
detecting software errors based on user requirements. In this paper we propose the combination
the idea of verification & validation process with Personal Software Process (PSP) as
improvement process as part of the quality assurance process of a web-based system. The
methodology provides not only a convenient definition on detection software errors, but also to
direct the verification and validation process. Structural and thread testing are used to obtain
information about the defect density and the mean software fault occurrence in the methodology.

This paper is organized as follows. In Section 2, Web Testing and Quality Assurance is discussed.
In Sections 3 a methodology for improving the reliability of web-based software systems is
introduced. In Section 4, a case study is introduced to illustrate the use of our methodology.
Section 5, we introduce the tool used for the evaluation process. In Section 6, describes the
application of the methodology to the case study. Finally in Section 7, we give some concluding
remarks.

2. WEB TESTING AND QUALITY ASSURANCE
Quality assurance and testing for web applications focus on the prevention and detection of web
failures. Web failure is defined as the inability to correctly deliver information or documents
required by web users. The following web failure sources are associated with different web layers
[11]:

• Host or network failures: Hardware or system failures at the destination host or home host, as
well as network failures, may lead to web failures. These failures are mostly related to
middleware or web server layers.

• Browser failures: These failures are linked to problems in the web browser at the client side.
These failures can be treated the same way as software product failures. Existing techniques for

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

11

software testing and reliability [1, 10] can be used to assess, predict and improve browser
reliability. For web applications there is a strong emphasis in the compatibility among browsers.

• Source or content failures: Web failures can also be caused by the information source itself at
the server side. In most cases these kinds of failures reveal non-compliances with user
requirements. In our methodology we focus in source failures, instead of browser compatibility or
host, network or other browser failures.

According to [8], information source related web components include (a). HTML documents, (b).
Java, Javascript, and ActiveX, (c). Cgi-bin Scripts, (d). Database, and (e). Multimedia
components. Our goal is to ensure functionality and reliability of this web components and their
applications. To do this, we use some forms of functionality testing and thread testing.

2.1. Web Modeling and Testing Techniques

Different types of web modeling and testing techniques are being used in the development of web
applications. This techniques include, petri nets[9] , model checking[2] and statistical web
modeling and testing [5]. Software reliability models the behavior of software systems based on
its failures. Predictions such as time to next failure, mean time to failure, or total number of faults
detected, are examples of measurements derived from the reliability models. These
measurements provide an indicator of reliability growth. The equations for the models have
parameters estimated from techniques like least squares or maximum likelihood estimation. Then
the equations of the models, often containing exponents or logarithms must be executed.
Mathematical and statistical functions provide the predictions and degrees of confidence for the
predictions. Verifying that the selected model is valid for the particular data set may require
several iterations and an analysis of the model assumptions [17]. According to [5] there are two
approaches to statistical web-based software reliability analysis:

• Time domain approach. The failure arrival process is analyzed as a stochastic process using
software reliability growth models, which can be used to assess and predict reliability and
estimate time or resources needed to reach a reliability target. Markov chains are typically used in
this approach. Most web-based applications consists of various components, or stages visible to
the users and typically initiated by them. Markov models based on state transitions can generally
capture such navigations patterns.

• Input domain approach. This approach is based on repeated error sampling to model software
reliability. Input from navigation patterns of web applications is used to test its reliability. We
will evaluate the reliability of the system using the input domain approach and study its statistical
distribution. The evaluation of the quality attributes selected will be performed using histograms.
The main problem is to replace the histograms by theoretical curves or models that represent a
probability law. This probability law will allow us to model the behavior of our quality attribute.

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

12

3. A METHODOLOGY FOR SOFTWARE RELIABILITY
IMPROVEMENT.

The main goal in this paper is to introduce a methodology to improve the reliability of web based
software systems. This methodology intends to be used to evaluate the quality of web-based
software systems using statistical web testing techniques [18]. We will perform an analysis, using
statistical modeling techniques, to study the behavior of the system and to detect software defects.
Results from our analysis will be evaluated using a case study. We will consider the detection of
software defects (errors) resulting from incorrect functionality of the system (i.e., functionality
not corresponding to the systems specifications). We intend to use our methodology to evaluate
web-based software products already being used on a software industry. The behavior of the
system under ideal conditions will be evaluated and compared against the operation of the system
executing under real conditions. With the information obtained from this comparison we will be
able to acknowledge how far the operation of the system is from the ideal case. After evaluating
and predicting the quality of the web based software system, the aim is to introduce the Personal
Software Process (PSP) to the software product to improve the quality of the process and the
product. After introducing PSP the quality of the product will be again evaluated to measure the
reliability and to compare again the operation of the system against the ideal case. The Evaluation
+ Improvement process will be performed to evaluate and to improve the quality of the software
system. The specific phases of the methodology are the following:

1) Evaluation of the quality attribute under ideal conditions. The goal in this phase is to
model the system following ideal conditions. In our ideal system the arrivals of the
clients into the server are simulated, so that no overload or concurrent problems occur.
This evaluation will allow us to obtain reliability measurements for the system executing
under ideal conditions.

2) Evaluation of the quality attribute under real conditions. This phase intends to provide
quantitative information about the reliability of the real web-based software system. Our
case study will be a web-based software for application to graduate courses in a
University.

3) Personal Software Process Execution. This phase is introduced as a way to improve the
quality of the web-based software system. Since we are applying PSP to well developed
web-based software systems, with the application of PSP in our methodology we intend
to execute a reengineering process to improve the quality of the software system.

4) Evaluation of the Quality Attribute after PSP. After PSP is implemented, the
improvements are measured and compared against the results of the system before PSP.
Improvements on the reliability of the system are expected after the introduction of PSP.

5) Analysis of results and conclusions. After applying the Ei process a number of times, we
expect to obtain the level of reliability desired. After this process, we propose to evaluate
the results and to reach conclusions. Here, we must identify common sources of errors
and ways to avoid them. The information obtained from the Ei process will allow also to
quantify the effort involved in obtaining desired reliability attributes. This analysis is
expected to be useful for future web-based software developments.

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

13

3.2. Modeling and Evaluation Process

In our methodology, the process required to evaluate the web software product is described in the
following steps.

1) Analysis of the initial conditions. The initial conditions of the system are (a). the
inputs of the system, (b). its restrictions and non-functional requirements, (c). the services
provided by the system and (d). the development conditions. The development conditions
allow us to obtain the development process used (i.e cascade, iterative, prototyping, or
reuse), the personnel involved in the development, the budget assigned to software
development, and the quality standards imposed by the organization.

2) Quality attributes selection and its corresponding metrics. The metrics selected must
represent the population under study. In the selection of these metrics is important to
choose the appropriate time measurement units. These units describe the time necessary
to produce a reliable evaluation process.

3) Measurement Process. A numerical value is the result of this process. This process is
responsible for obtaining reliable and easy-to-evaluate results. The steps used in this
process are the following.

a. Select the components to be evaluated.
b. Measure the characteristics for the components using the metrics selected.
c. Identify anomalous measurements.
d. Analyze anomalous components.

4) Evaluation and model selection. The procedure required to obtain the statistical model
is defined in the following steps.

a. Choose the probability law associated with the population. This law could have an
empirical origin. For instance, the histogram that represents the errors occurred in a time
interval during the execution of the web system. Examples of these laws are the Gamma
distribution, the Poison distribution, the Normal distribution or the Weibull distribution.

b. Evaluate the parameters from the probability law. A probability law contains
parameters that depend on the population under study. Modeling is used as a way to
provide the mathematical equations necessary to obtain the values of these parameters.
Different techniques from numerical analysis can be used to estimate the parameters of
the model. For instance, maximum likelihood estimates (MLE’s), least squares method,
or polynomial regression [7]. It may be necessary to consider the use of several
techniques to obtain the parameters of the model. Once the parameters are obtained, the
distribution function graph from the model must be drawn to observe its behavior and its
tendency. This graph will denote the behavior of the quality attribute.

c. Compare the probability law. Once chosen the probability law, and its corresponding
parameters we must verify that the law chosen is in accordance with the population under
study. If the result from this comparison is favorable, then we can be certain that the law

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

14

chosen represents the population under study. Otherwise, we may have to choose another
probability law and continue with the procedure from the beginning. In this step, test
results for reliability assessment and prediction help with decision making. The results
from this evaluation are graphs known as histograms, where the x-axis denotes the values
of the metric used and the y-axis denotes its frequency. This histograms will allows us to
approximate the probability model that best represent the behavior of the population
(metrics) under study. After this histogram is developed, it must be replaced by the
probability law that best represent its behavior. This law will represent the behavioral
pattern of the metrics under study and will indicate the correctness of our evaluation.

5. Model Validation. With the parameters obtained we must corroborate that the model
represent the population of metrics under study. In this step the histogram is compared
against the distribution function obtained.

6. Overall evaluation. In this step we must evaluate the information provided by the
evaluation process (information relevant to the quality attribute). Predictions about the
future behavior of the quality attribute can also be assessed in this step.

4. CASE STUDY

In this section we will introduce a case study to illustrate our methodology. Our case study will be
a Web-based Software for an On-line application to Graduate courses in a University (SOGU).
The architecture of the system is based on a Linux platform (Red Hat V.8)[13] using an Apache
web server [15] and a MySQL database management system[14]. The interface language used is
PHP[16]. The number of lines of code used was 1200. The development time was 6 months. The
block diagram of the SOGU system is illustrated in Fig. 1. In our case study there are three main
views: (a). Professors, (b). Students and (c) General Public Users. Access to the system is granted
by the use of a password. Each type of user is allowed to view only a dedicated part of the
system. In general this system is capable of allowing students to register for courses in a given
University, and also allow Professors to register their courses, verify the data provided by the
students and provide grades for their courses. Students and Professors can Insert, Delete, Update
and Read information from their own databases. General public users can only read courses
information. This system is composed of 3 different databases. The courses database, the students
database and the Professors database. The system controls the access of different users and
manages the information flow provided to the users. Changes to databases are allowed only
during specific time periods (e.g., start of the terms).

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

15

Fig. 1 Modules from the SOGU System

5. A TOOL FOR THE EVALUATION PROCESS

Testing a web-based software system is different from testing traditional software systems. In a
traditional software system there are no multiple accesses to the system, and single testing
software can test the system. In a web-based software there may be frequent accesses from many
users using different computing platforms, therefore web-based testing must ensure that
concurrent testers validate the execution of the system. We developed a Testing Tool for our
SOGU system in Java (under a Linux platform). This tool is used to evaluate the quality attribute
under real conditions. Evaluation is conducted by our testing tool using concurrent test threads
(system testers). Each test thread is responsible for executing a specific functionality test
specified on its corresponding test case file. Test cases are generated randomly and test data is
prepared to perform functionality tests. On each test case an specific test profile indicates an
specific path of navigation (type of test) and the view that the tester will test. The test thread, have
access to test cases (which contain the test data and the test profile) and the activity log files. The
activity log files are files that contain the activities performed by the test thread. The analyzer
reads the activity log files and produces an error log file which contains the specific faults
detected and the defect density computed. In our tool, it is possible to perform multiple
simulations and compute averages from the results of the simulations.

As shown in Fig. 2, our testing tool was built in three modules, the initialization module, the
tester module and the analyzer module. The initialization and the tester modules were developed
in Java, while the analyzer module was developed using scripts. The initialization module, build
the structure model of the web site to evaluate. That is, it finds all navigation paths of the web
site. Also, this module is responsible for activating the system testers. Any error found during the
testing process is recorded into an HTML error-log file. The second module, perform the
navigation and testing of the SOGU system, according to its web-site structure and its test case

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

16

file. The third module analyzes the data obtained from the testing process and computes the
defect density and the mean time to failure (MTTF).

Fig. 2 Modules of the Evaluation Tool

6. EVALUATION OF THE QUALITY ATTRIBUTE

6.1. Evaluation of the quality attribute under ideal conditions

1) Initial Conditions under the ideal case. A simulator was developed in Java to test the
quality attribute under ideal conditions. The simulator uses a producer-consumer model
(shown in Fig. 2, where the information is handled using a queue of shared resources.
Synchronization between producer and consumer is performed using thread
synchronization. The producer generates the input data for the consumer. The
functionality of the consumer consists on updating and drawing the behavior of the
simulation at each time unit, based on the data provided by the producers shared queue.
The producer is composed of 5 modules. In the main module, SOGU process, the
execution cycle of the simulator is executed. The second module, Initialization Routine,
initializes the structures, the statistic counters and the simulation of the first arrival. The
third module, arrive, calculates the user arrival’s times, verifies if the users are allocated
in the web server queue and verifies if the system has enough capacity for such users. If
the system has enough capacity, then the access is granted to a given user and a call is
performed to the Addeparture function. In the fourth module, AddDeparture, the
departure function is called for detecting the errors generated during the simulated
execution. In case some errors are detected, the defect density is increased allowing the
user to exit the system. The fifth module, departure, computes the finishing exit times for
each user for its corresponding thread of execution. Since the ideal case is simulated, no
overload or concurrency problems occur. The system is tested under these ideal condition
over our SOGU system. The modeling of the user arrivals is performed using M/M/1
queues on the web server with a probability of (n + 1)−1, where n denotes the size of the
queue (i.e., number of user in the system). The exit condition for any user is (a) when an
error is detected during the operation of the system, or (b) when the user requests its

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

17

departure from the system. Since our web-server is based on a Intel 500 MHz processor
with 70 GBytes of disk and 500 Mbytes of RAM memory, the capacity of the web system
is set to 100 concurrent users. The histogram illustrated in Fig. 4 is obtained after
computing the average values of 500 simulations. For each simulation, 100 discrete
events are simulated. For each event a pre-determined navigation path is specified. As
discussed before, there are 3 types of users, students, professors and general public. An
event is executed by a user that is allowed to execute for t time units. The value of t is
generated following a normal distribution with mean μ = 3 seconds, and variance σ = 1
seconds. The time between user arrivals is generated following an exponential
distribution with mean μ = 4 seconds.

Fig. 3 Producer and Consumer Diagram

2) Quality attribute selection and its corresponding metrics.
We are interested in evaluating the reliability attribute. Reliability is a quality attribute
that evaluates the degree of fault-free operation of the system. We are interested in
evaluating the defect density as our reliability metric. The defect density denotes the
number of errors detected in a given time interval.

3) Measurement Process. In the simulations all components were tested. The metric used
was the defect density.
During the execution of the simulation only 5 from 505 measurements were discarded for
being anomalous.

4) Evaluation and model selection. The histogram resulting from the evaluation process is
shown in Fig. 4. Note that the histogram has a tendency to approximate a Weibull
distribution curve.

a. Choose the probability law associated with the population. The probability
function used to represent our histogram is the following:

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

18

The probability function chosen is the Weibull distribution. The Weibull
distribution has been used in various engineering fields for reliability
analysis[6].

b Evaluate the parameters from the probability law. The values of α and β were
obtained in [7] using maximum likelihood estimators by the following Equations:

where n = 500 (number of simulations) and Xi denotes the defect density values
obtained from each simulation and illustrated in the histogram of Fig. 4. Equation
2 is solved using the Newton-Raphson numerical method while Equation 3 is
solved directly using the α value. The values obtained from the above Equations
are: α = 1.63 and β = 2.4. Substituting the α and β values in Equation 1 we
obtain,

Based on Equation fi(x), we illustrate the performance of the reliability attribute
on Fig. 5.

5) Validation of the model. From Fig. 5, it can be noted that the Weibull distribution
chosen is capable of modeling the reliability attribute, thus validating the process. We can
say that the defect density is an adequate metric capable of representing the reliability of
our web-based software product.

6) Overall validation. From Fig 5, it can be noted that low values of defect density are
found under a high frequency. It is possible to note that defect density maximum values
are between 0 and 2, while the maximum frequency values are less than f(x) = 0.35. The
defect density values obtained are between 0 and 8. In this simulations we conclude that
the model used was capable of modeling the reliability of the ideal web-based system.

6.2. Evaluation of the quality attribute under real conditions.

1) Initial conditions under the real case. The Initial conditions for the real case are as
follows. The evaluation of the real case is performed using the testing tool described in
previous section. The views of the execution testers were: Professors, Students and
General public. All modules from the SOGU system were evaluated using functional
testing. A test case file was generated randomly, containing a large number (1000) of
threads of execution (specific navigation paths) associated with a given execution profile.
The web server used consisted of a PC executing at 500 MHz. In the real case, 500

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

19

evaluations were conducted. The average of the results from the simulations for the real
case are shown in the Histogram illustrated in Fig. 6. For each evaluation the testing time
was 100 seconds. The time between the arrival of each tester was computed following a
exponential distribution with mean equal to μ = 4 seconds. Each tester is allowed to
execute for t time units. The value of t is generated following a normal distribution with
mean μ = 3 seconds, and variance σ = 1 seconds.

Fig. 4 Histogram for the Ideal Case

Fig 5 Defect Density for the Ideal Case

1. Quality attribute selection and its corresponding metrics. As in the ideal case the quality
attribute to evaluate is the reliability, and its metric was the defect density.

2. Measurement Process. All modules from the SOGU system were tested. During the
execution of the system only 3 evaluations were discarded for being anomalous. The
specific errors found on each of the modules from the SOGU system are not detailed in
the paper because of space restrictions.

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

20

3. Evaluation and model selection. The results shown in the histogram of Fig. 6 indicate for
example show that for 63 evaluations a defect density of errors of 10 (10 errors occurred
in average). From the Histogram we can note that the highest frequency of errors occur
with a density of 10, and the smallest frequency of errors occur with a density of 1, 26
and 32. The probability law associated with the population and its corresponding α and β
parameters are the same as those described in Equations 1, 2 and 3 respectively. The
values obtained from the Equations are: α = 2.16 and β = 12.8. Substituting the α and β
values in Equation 1 we obtain,

Based on Equation fi(x), we illustrate the performance of the reliability attribute for the
ideal and real cases in Fig. 7. It is possible to note from the figure that the results obtained
from the real case improve the results obtained from the ideal case.

6.3. PSP Implementation

The Personal Software Process [3] is a process improvement methodology aimed at individual
software engineers. It claims to improve software quality (in particular defect content), effort
estimation capability, and process adaptation and improvement capabilities. We have tested some
of these claims in our SOGU web-based system to compare the defect reduction before and after
PSP. Our aim is to include PSP in our Ei process discussed before.

Fig. 6 Defect Density Histogram for the Real Case

The goals of the PSP are that individual Software Engineers learn:

• How to accurately estimate, plan, track and re-plan the time required for individual
software development.

• How to work according to a well-defined process, and how to re-define this process.
• How to use reviews effectively and efficiently for improving software quality and

productivity.
• How to avoid software defects.

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

21

• How to analyze measurement data for improving estimation, defect removal and defect
prevention.

Fig. 7 Graph for the Ideal and Real Case

PSP consists of a series of scripts that define tasks or forms for recording data, and standards that
govern such things as coding practices, size counting, and the assignment of defect types. The
first step in PSP is to first plan the work ahead and document the plan. As this work is done, the
development times are recorded and every defect found is tracked and reported. At the end of the
project, PSP includes a postmortem analysis and a complete project plan summary report. PSPs
quality improvements result from three key aspects: First, by tracking all defects, software
developers are sensitized to the mistakes they personally make and therefore become more
careful in their work. Second, when they analyze their defect data, they gain a clearer
understanding of the cost of removing defects and thus apply the most effective ways of finding
and fixing them. And third, PSP introduces a number of quality practices that have proved
effective in preventing defects and in efficiently finding and fixing them. PSP has been
implemented after the phase of evaluation of the quality attribute under real conditions in our
SOGU system. The improving in reliability will be measured by comparing the evaluation
procedure before and after PSP implementation. In the application of PSP into our SOGU web-
based system only 1 Engineer (without previous experience in applying PSP) was involved. The
results obtained from the implementation of PSP [4] are illustrated in Fig. 8,9,10, 11 and 12.
Since we were only interested on detecting defects, other results obtained from PSP, are not
shown in this paper.

In Fig. 8 the yield versus program number is illustrated. Yield is the principal PSP quality
measure. Total process yield is the percentage of defects found and fixed in the web-based
software system. From this figure we conclude that the yield tend to improve while our Engineer
applied PSP to more programs. Defect trends are shown in Fig. 9. While the defect trend
fluctuated while developing more programs, we can observe that in general there is was a
reduction of defects/KLOC while PSP was applied to more programs. In Fig 10 and Fig. 11, we
illustrate the defects elimination rate and the defects introduction rate respectively. From these
figures, it is possible to observe a sharp decrease in the defects elimination and introduction rate
while applying PSP to more programs. Finally, Fig 12 shows the improvement in A/FR from the

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

22

application of PSP to our SOGU system. From the above results we conclude that the application
of PSP allowed us to detect and eliminate many defects from our SOGU system, and that most of
the defects detected (and eliminated) were found on the coding phases.

6.4. Evaluation of the Quality Attribute after PSP

After implementing PSP for the SOGU system several improvements were detected. This section
is devoted to the presentation of the results obtained for the evaluation of the quality attribute
after PSP.

Fig 8 Yield versus program number

Fig 9 Defects per KLOC trend

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

23

Fig 10 Defects elimination rate

Fig 11: Defects introduction rate

Fig 12. AF/R versus program number

Phases 1, 2 and 3 from the evaluation process were similar to those from the evaluation before
PSP.

4. Evaluation and model selection.
Fig. 13 illustrates the Histogram produced after implementing PSP. The probability law
associated with the population and its corresponding α and β parameters are the same as

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

24

those described in Equations 1, 2 and 3 respectively. The values obtained from the
Equations are: α = 1.26 and β = 5.19.

Substituting the α and β values in Equation 1 we obtain, Proceedings of

Based on Equation fi(x), we illustrate the performance of the reliability attribute on Fig.
14. From Fig. 14 it is possible to observe that the reliability of the SOGU system after
implementing the PSP process improves. The curve for the model after PSP indicates that
now the reliability is near the ideal case. The conclusion from this evaluation process is
that the reduced defect density observed in figure 14 for the model indicates that fewer
errors were found in the system after implementing PSP.

Fig. 13 Defect Density Histogram for the Real Case after PSP

Fig. 14 Graph from the Real Case after PSP

Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.4, August 2012

25

7. CONCLUSIONS

In this paper we introduce a methodology for reliability testing and improvement of web-based
software applications. This methodology, introduce a V &V + Process improvement process as
part of the quality assurance process of a web-based system. The Personal Software Process
(PSP) is used in our methodology to improve the reliability of the web-based software
application. We apply statistical modeling and related reliability analysis [6] for effective web
quality assurance. These techniques help on detecting and fixing software errors based on user
requirements. Structural testing is used to obtain information about the defect density and the
mean software fault occurrence. A Testing Tool was developed for our SOGU system to evaluate
the quality attribute under ideal and real conditions. We tested our methodology on Web-based
Software for an On-line application to graduate courses in a University (SOGU). Overall, we
conclude that this methodology provides an effective framework for assessing and improving
reliability of web-based software applications. Our future goals are to test our methodology in a
more complex web-based software application, and to extend it to include the markov-chain
statistical testing models. Since our testing tool was developed ad-hoc for our web-based
application we plan to develop a more general testing tool that integrate our methodology.

REFERENCES

[1] B. Beizer. Software Testing Techniques, Second Edition. Int. Thompson Computer Press, 1990.
[2] E. Clarke, O. Grumberg, and D. Long, Software Engineering Institute. Model checking and

Abstraction. ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, pp. 1512-
1542, January 1994.

[3] W.S. Humphrey. Introduction to the Personal Software Process. Addison Wesley. 1997.
[4] W. S. Humphrey, Using A Defined and Measured Personal Software Process. IEEE Software, Vol.

13, No. 3, pp 77 - 88, May 1996.
[5] C. Kallepalli, Jeff Tian, Measuring and Modeling Usage and Reliability for Statistical Web Testing.

IEEE Transactions on Software Engineering. Vol. 27, No. 11, November 2001.
[6] S. H. Kan. Metrics and Models in Software Quality Engineering,Second Edition. Addison - Wesley,

2003.
[7] A. M. Law, W. David Kelton. Simulation Modeling and Analysis. Third Edition. McGraw - Hill ,

2000.
[8] E. Miller. The Website Quality Challenge. Software Research Inc. 2000
[9] T. Murata, Petri Nets: Properties, Analysis and Applications Proceedings of the IEEE, Vol. 77, No 4,

April, 1989, pp. 541-580.
[10] J.D. Mussa. Software Reliability Engineering. New York, Mc. Graw Hill, 1998.
[11] H.Q. Nguyen. Testing Applications on the Web. Willey 2001.
[12] J. Offutt. Quality Attributes of Web Software Applications. IEEE Software, 0740-7459/02.

March/April 2002.
[13] http://www.redhat.com
[14] http:// www.mysql.com
[15] http:// www.apache.org
[16] http:// www.php.com
[17] D.R. Wallace, Practical Software Reliability Modeling Proceedings of the 26th. Annual NASA

Goddard Software Engineering Workshop (SEW’01), IEEE Computer Society Press, 2002.
[18] Davila-Nicanor, Mejia-Alvarez,. Reliability Improvement of Web-Based Applications, QSIC 2004.

Proceedings, IEEE Fourth International Conference on Quality Software, pp 180-188.

http://www.redhat.com
www.mysql.com
www.apache.org
www.php.com

