
Reliability Improvement of Web-Based Software Applications

Leticia Dávila-Nicanor, Pedro Mejı́a-Alvarez
CINVESTAV-IPN. Seccíon de Computación

Av. I.P.N. 2508, Zacatenco. Ḿexico, DF. 07300
ldavila@computacion.cs.cinvestav.mx, pmejia@cs.cinvestav.mx

Abstract

In diverse industrial and academic environments, the
quality of the software has been evaluated (validated) us-
ing different analytic studies. It is a common practice on
these environments, the use statistical models for the assur-
ance, control and evaluation of the quality of a software
product or process. A number of industries in the safety-
critical sector are forced nowadays to use such processes
by industry-specific standards (e.g., the DO-178B standard
for airborne software systems).

The contribution of the present work is focused on the
development of a methodology for the evaluation and anal-
ysis of the reliability of web-based software applications.
We tested our methodology in a web-based software system
and used statistical modeling theory for the analysis and
evaluation of the reliability. The behavior of the system un-
der ideal conditions was evaluated and compared against
the operation of the system executing under real conditions.
The Personal Software Process (PSP) was introduced in our
methodology for improving the quality of the process and
the product. The Evaluation + Improvement (Ei) process is
performed in our methodology to evaluate and improve the
quality of the software system. The results obtained demon-
strated the effectiveness and applicability of our methodol-
ogy.

1. Introduction

Web applications possess different unique characteristics
that make web testing and quality assurance different from
its corresponding traditional techniques. Web applications
can be characterized by the following aspects [5].
Massive Access of users. The simultaneous access of the
users in these applications is part of the essence of this type
of systems. Web applications provide cross-platform uni-
versal access to web resources for the massive user popu-
lation. For the users it should be transparent that these web
applications provide this service to other millions of users.

The difficulty of establishing the causes of the errors. Since
web applications may be access by millions of users, errors
have a big impact. Finding the origin of errors in web ap-
plications may be difficult and its recovery time may not
be immediate, given the great number of software elements
that intervene.
The integration of diverse software elements for an appli-
cation in Internet. Web users employ different hardware
equipments, network connections, operating systems, mid-
dleware and web server support. In a web application, two
main components are always required: the backend and the
frontend. The backend is the software required for an ap-
plication in Internet to operate. Among the most impor-
tant software found in the backend are: the database servers
(MySQL, Oracle, Informix, DB2, among those but impor-
tant), Web Servers (Apache, Netscape Enterprise Server,
Netra of Sun, etc.), and the interface programming lan-
guages (HTML, XML, PHP, Servlets-Java, Live - Wire,
etc.). The frontend is the software required on the part of
the client to allow the systems to access the Web. Among the
most important software found in the frontend are: Naviga-
tors (Explorer, Netscape), which contain plug-in software
such as presentations of Macromedia, and languages like
JavaScript.
Diversity of frameworks to develop, to operate and to main-
tain a Web site. The development of a Web site requires
of a great team of people with different profiles and back-
grounds. These teams include programmers, graphic de-
signers, usability engineers, specialists in information inte-
gration, network experts and database administrators. This
diversity of personnel profiles makes reliable web applica-
tions development difficult and sometimes unpredictable.

Because of the above characteristics web-based systems
tend to evolve rapidly and undergo frequent modifications,
due to new technological and commercial opportunities, as
well as feedback from the users. In consequence web-based
systems are very sensitive to errors. Most work on web ap-
plications has been on making them more powerful, but rel-
atively little has been done to ensure its quality. The most
important quality attributes demanded by web-based sys-

tems are reliability, usability and security. Additional im-
portant quality attributes are availability, scalability, main-
tainability and time-to-market [12]. As with traditional soft-
ware, verification and validation (V &V) processes have
the purpose of checking the quality of the web-based sys-
tem and revealing non-compliances with the user require-
ments. However, it is clear that quality assurance should not
only include verification and validation but also process im-
provement. In this paper we propose a methodology that in-
troduce aV &V + Process improvement processas part of
the quality assurance process of a web-based system. We
consider statistical modeling and related reliability analy-
sis [6] as one good candidate for effective web quality as-
surance. These techniques help on detecting software errors
based on user requirements. Structural and thread testing
are used to obtain information about the defect density and
the mean software fault occurrence.

This paper is organized as follows. In Section 2, Web
Testing and Quality Assurance is discussed. In Sections 3
a methodology for improving the reliability of web-based
software systems is introduced. In Section 4, a case study is
introduced to illustrate the use of our methodology. Section
5, describes the application of the methodology to the case
study. In Section 6, we introduce the tool used for the evalu-
ation process. Sections 7 and 8 describe PSP and the evalua-
tion of the quality attribute after the implementation of PSP
in the case study. Finally in Section 9, we give some con-
cluding remarks.

2. Web Testing and Quality Assurance

Quality assurance and testing for web applications fo-
cus on the prevention and detection of web failures. Web
failure is defined as the inability to correctly deliver infor-
mation or documents required by web users. The following
web failure sources are associated with different web lay-
ers [11]:

• Host or network failures: Hardware or system fail-
ures at the destination host or home host, as well as
network failures, may lead to web failures. These fail-
ures are mostly related to middleware or web server
layers.

• Browser failures: These failures are linked to prob-
lems in the web browser at the client side. These fail-
ures can be treated the same way as software prod-
uct failures. Existing techniques for software testing
and reliability [1, 10] can be used to assess, predict
and improve browser reliability. For web applications
there is a strong emphasis in the compatibility among
browsers.

• Source or content failures: Web failures can also be
caused by the information source itself at the server
side. In most cases these kinds of failures reveal non-
compliances with user requirements.

In our methodology we focus in source failures, in-
stead of browser compatibility or host, network or other
browser failures. According to [8], information source re-
lated web components include (a).HTML documents, (b).
Java, Javascript, and ActiveX, (c). Cgi-bin Scripts, (d).
Database, and (e).Multimedia components. Our goal is to
ensure functionality and reliability of this web components
and their applications. To do this, we use some forms of
functionality testing and thread testing.

2.1. Web Modeling and Testing Techniques

Different types of web modeling and testing techniques
are being used in the development of web applications. This
techniques include,petri nets[9] , model checking[2] and
statistical web modeling and testing[5]. Software reliabil-
ity models the behavior of a software systems based on
its failures. Predictions such as time to next failure, mean
time to failure, or total number of faults detected, are ex-
amples of measurements derived from the reliability mod-
els. These measurements provide an indicator of reliabil-
ity growth. The equations for the models have parameters
estimated from techniques like least squares or maximum
likelihood estimation. Then the equations of the models, of-
ten containing exponents or logarithms must be executed.
Mathematical and statistical functions provide the predic-
tions and degrees of confidence for the predictions. Verify-
ing that the selected model is valid for the particular data set
may require several iterations and an analysis of the model
assumptions [17].

According to [5] there are two approaches to statistical
web-based software reliability analysis:

• Time domain approach. The failure arrival process
is analyzed as a stochastic process using software re-
liability growth models, which can be used to assess
and predict reliability and estimate time or resources
needed to reach a reliability target. Markov chains are
typically used in this approach. Most web-based appli-
cations consists of various components, or stages visi-
ble to the users and typically initiated by them. Markov
models based on state transitions can generally capture
such navigations patterns.

• Input domain approach. This approach is based on
repeated error sampling to model software reliability.
Input from navigation patterns of web applications is
used to test its reliability.

We will evaluate the reliability of the system using the
input domain approach and study itsstatistical distribution.
The evaluation of the quality attributes selected will be per-
formed using histograms. The main problem is to replace
the histograms by theoretical curves or models that repre-
sent a probability law. This probability law will allow us to
model the behavior of our quality attribute.

3. A Methodology for Software Reliabil-
ity Improvement

The main goal in this paper is to introduce a methodol-
ogy to improve the reliability of web based software sys-
tems. This methodology intends to be used to evaluate the
quality of web-based software systems using statistical web
testing techniques. We will perform an analysis, using sta-
tistical modeling techniques, to study the behavior of the
system and to detect software defects. Results from our
analysis will be evaluated using a case study. We will con-
sider the detection of software defects (errors) resulting
from incorrect functionality of the system (i.e., functional-
ity not corresponding to the systems specifications).

We intend to use our methodology to evaluate web-based
software products already being used on a software indus-
try. The behavior of the system under ideal conditions will
be evaluated and compared against the operation of the sys-
tem executing under real conditions. With the information
obtained from this comparison we will be able to acknowl-
edge how far the operation of the system is from the ideal
case. After evaluating and predicting the quality of the web-
based software system, the aim is to introduce the Personal
Software Process (PSP) to the software product to improve
the quality of the process and the product. After introduc-
ing PSP the quality of the product will be again evaluated
to measure the reliability and to compare again the opera-
tion of the system against the ideal case.

The Evaluation + Improvement process will be per-
formed to evaluate and to improve the quality of the soft-
ware system.

The specific phases of the methodology are the follow-
ing:

1. Evaluation of the quality attribute under ideal con-
ditions. The goal in this phase is to model the system fol-
lowing ideal conditions. In our ideal system the arrivals of
the clients into the server are simulated, so that no over-
load or concurrent problems occur. This evaluation will al-
low us to obtain reliability measurements for the system ex-
ecuting under ideal conditions.

2. Evaluation of the quality attribute under real condi-
tions. This phase intends to provide quantitative informa-
tion about the reliability of the real web-based software sys-
tem. Our case study will be a web-based software for appli-
cation to graduate courses in a University.

3. Personal Software Process Execution. This phase is
introduced as a way to improve the quality of the web-
based software system. Since we are applying PSP to well
developed web-based software systems, with the applica-
tion of PSP in our methodology we intend to execute a re-
engineering process to improve the quality of the software
system.

4. Evaluation of the Quality Attribute after PSP. After
PSP is implemented, the improvements are measured and
compared against the results of the system before PSP. Im-
provements on the reliability of the system are expected af-
ter the introduction of PSP.

5. Analysis of results and conclusions. After applying the
Ei process a number of times, we expect to obtain the level
of reliability desired. After this process, we propose to eval-
uate the results and to reach conclusions. Here, we must
identify common sources of errors and ways to avoid them.
The information obtained from the Ei process will allow
also to quantify the effort involved in obtaining desired re-
liability attributes. This analysis is expected to be useful for
future web-based software developments.

3.1. Modeling and Evaluation Process

In our methodology, the process required to evaluate the
web software product is described in the following steps.

1. Analysis of the initial conditions. The initial conditions
of the system are (a). the inputs of the system, (b). its restric-
tions and non-functional requirements, (c). the services pro-
vided by the system and (d). the development conditions.
The development conditions allow us to obtain the devel-
opment process used (i.e cascade, iterative, prototyping, or
reuse), the personnel involved in the development, the bud-
get assigned to software development, and the quality stan-
dards imposed by the organization.

2. Quality attribute selection and its corresponding met-
rics. The metrics selected must represent the population un-
der study. In the selection of these metrics is important to
choose the appropriate time measurement units. These units
describe the time necessary to produce a reliable evaluation
process.

3. Measurement Process. A numerical value is the result of
this process. This process is responsible for obtaining reli-
able and easy-to-evaluate results. The steps used in this pro-
cess are the following.

a. Select the components to be evaluated.
b. Measure the characteristics for the components using

the metrics selected.
c. Identify anomalous measurements.
d. Analyze anomalous components.

4. Evaluation and model selection. The procedure re-
quired to obtain the statistical model is defined in the fol-
lowing steps.

a. Choose the probability law associated with the pop-
ulation. This law could have an empirical origin. For
instance, the histogram that represents the errors oc-
curred in a time interval during the execution of the
web system. Examples of these laws are the Gamma

distribution, the Poison distribution, the Normal distri-
bution or the Weibull distribution.

b. Evaluate the parameters from the probability law. A
probability law contains parameters that depend on the
population under study. Modeling is used as a way to
provide the mathematical equations necessary to ob-
tain the values of these parameters. Different tech-
niques from numerical analysis can be used to estimate
the parameters of the model. For instance, maximum-
likelihood estimates (MLE’s), least squares method, or
polynomial regression [7]. It may be necessary to con-
sider the use of several techniques to obtain the param-
eters of the model. Once the parameters are obtained,
the distribution function graph from the model must
be drawn to observe its behavior and its tendency. This
graph will denote the behavior of the quality attribute.

c. Compare the probability law. Once chosen the proba-
bility law, and its corresponding parameters we must
verify that the law chosen is in accordance with the
population under study. If the result from this compar-
ison is favorable, then we can be certain that the law
chosen represents the population under study. Other-
wise, we may have to choose another probability law
and continue with the procedure from the beginning. In
this step, test results for reliability assessment and pre-
diction help with decision making. The results from
this evaluation are graphs known as histograms, where
the x-axis denotes the values of the metric used and the
y-axis denotes its frequency. This histograms will al-
lows us to approximate the probability model that best
represent the behavior of the population (metrics) un-
der study. After this histogram is developed, it must be
replaced by the probability law that best represent its
behavior. This law will represent the behavioral pat-
tern of the metrics under study and will indicate the
correctness of our evaluation.

5. Model Validation. With the parameters obtained we
must corroborate that the model represent the population
of metrics under study. In this step the histogram is com-
pared against the distribution function obtained.

6. Overall evaluation. In this step we must evaluate the in-
formation provided by the evaluation process (information
relevant to the quality attribute). Predictions about the fu-
ture behavior of the quality attribute can also be assessed in
this step.

4. Case Study

In this section we will introduce a case study to illus-
trate our methodology. Our case study will be a Web-based
Software for an On-line application to Graduate courses
in a University (SOGU). The architecture of the system
is based on a Linux platform (RedHat V.8)[13] using an

Apache web server [15] and a MySQL database manage-
ment system[14]. The interface language used is PHP[16].
The number of lines of code used was 1200. The develop-
ment time was 6 months. The block diagram of the SOGU
system is illustrated in Figure 1.

In our case study there are three main views: (a). Profes-
sors, (b). Students and (c) General Public Users. Access to
the system is granted by the use of a password. Each type
of user is allowed to view only a dedicated part of the sys-
tem. In general this system is capable of allowing students
to register for courses in a given University, and also allow
Professors to register their courses, verify the data provided
by the students and provide grades for their courses. Stu-
dents and Professors canInsert, Delete, UpdateandRead
information from their own databases. General public users
can only read courses information. This system is composed
of 3 different databases. The courses database, the students
database and the Professors database. The system controls
the access of different users and manages the information
flow provided to the users. Changes to databases are al-
lowed only during specific time periods (e.g., start of the
terms).

Courses for students Proffesors
InformationInformation

Students

of the profile

Insert

Delete

Update

Establishment

Of Changes
Control

Period

Students profile

Proffesors profile

Courses
Information Information

Access Type Password

Consultation

General Public profile

Figure 1: Modules from the SOGU System

Queue

Consumer processProducer process

1. SOGU_Process2. Init

5. Departure()

4. AddDeparture()

3. Arrive()
1. SOGU_Graphics

3. Data Flow

5. Titles

4. Access

2. Profile

6. DataBase

Figure 2: Producer and Consumer Diagram

5. Evaluation of the quality attribute under
ideal conditions

1. Initial Conditions under the ideal case. A simulator
was developed in Java to test the quality attribute under
ideal conditions. The simulator uses aproducer-consumer
model (shown in Figure 2), where the information is han-
dled using a queue of shared resources. Synchronization
between producer and consumer is performed using thread
synchronization. The producer generates the input data for
the consumer. The functionality of the consumer consists
on updating and drawing the behavior of the simulation at
each time unit, based on the data provided by the produc-
ers shared queue.

The producer is composed of 5 modules. In the main
module,SOGU process, the execution cycle of the simula-
tor is executed. The second module,Initialization Routine,
initializes the structures, the statistic counters and the sim-
ulation of the first arrival. The third module,arrive, calcu-
lates the user arrival’s times, verifies if the users are allo-
cated in the web server queue and verifies if the system has
enough capacity for such users. If the system has enough ca-
pacity, then the access is granted to a given user and a call is
performed to theAddeparturefunction. In the fourth mod-
ule, AddDeparture, thedeparturefunction is called for de-
tecting the errors generated during the simulated execution.
In case some errors are detected, the defect density is in-
creased allowing the user to exit the system. The fifth mod-
ule, departure, computes the finishing exit times for each
user for its corresponding thread of execution.

Since the ideal case is simulated, no overload or con-
currency problems occur. The system is tested under these
ideal condition over our SOGU system. The modeling of
the user arrivals is performed usingM/M/1 queues on the
web server with a probability of(n + 1)−1, wheren de-
notes the size of the queue (i.e., number of user in the sys-
tem). The exit condition for any user is (a) when an error
is detected during the operation of the system, or (b) when
the user requests its departure from the system. Since our
web-server is based on a Intel 500 MHz processor with 70
GBytes of disk and 500 Mbytes of RAM memory, the ca-
pacity of the web system is set to 100 concurrent users.

The histogram illustrated in Figure 3 is obtained af-
ter computing the average values of 500 simulations. For
each simulation, 100 discrete events are simulated. For each
event a pre-determined navigation path is specified. As dis-
cussed before, there are 3 types of users, students, profes-
sors and general public. An event is executed by a user that
is allowed to execute fort time units. The value oft is gen-
erated following a normal distribution with meanµ = 3
seconds, and varianceσ = 1 seconds. The time between
user arrivals is generated following an exponential distribu-
tion with meanµ = 4 seconds.

2. Quality attribute selection and its corresponding met-
rics. We are interested in evaluating the reliability attribute.
Reliability is a quality attribute that evaluates the degree of
fault-free operation of the system. We are interested in eval-
uating thedefect densityas our reliability metric. The de-
fect density denotes the number of errors detected in a given
time interval.

3. Measurement Process. In the simulations all compo-
nents were tested. The metric used was the defect density.
During the execution of the simulation only 5 from 505
measurements were discarded for being anomalous.

4. Evaluation and model selection. The histogram result-
ing from the evaluation process is shown in Figure 3. Note
that the histogram has a tendency to approximate a Weibull
distribution curve.

a Choose the probability law associated with the popu-
lation. The probability function used to represent our
histogram is the following:

f(x) = αβ−αxα−1e−(x/β)α

(1)

The probability function chosen is the Weibull dis-
tribution. The Weibull distribution has been used in
various engineering fields for reliability analysis[6].

b Evaluate the parameters from the probability law. The
values ofα andβ were obtained in [7] using maximum
likelihood estimators by the following Equations:∑n

i=1 Xα
i lnXi∑n

i=1 Xα
i

− 1
α

=
∑n

i=1 lnXi

n
(2)

β =
(∑n

i=1 Xα
i

n

)1/α

(3)

wheren = 500 (number of simulations) andXi

denotes the defect density values obtained from each
simulation and illustrated in the histogram of Figure
3. Equation 2 is solved using the Newton-Raphson nu-
merical method while Equation 3 is solved directly us-
ing theα value. The values obtained from the above
Equations are:

α = 1.63 andβ = 2.4.

Substituting theα andβ values in Equation 1 we
obtain,

fi(x) =
{

0.391x0.63e−(x/2.4)1.63
If x ≥ 0

0 Otherwise

Based on Equationfi(x), we illustrate the perfor-
mance of the reliability attribute on Figure 4.

5. Validation of the model. From Figure 4, it can be noted
that the Weibull distribution chosen is capable of model-
ing the reliability attribute, thus validating the process. We
can say that the defect density is an adequate metric capa-
ble of representing the reliability of our web-based software
product.

6. Overall validation. From Figure 4, it can be noted that
low values of defect density are found under a high fre-
quency. It is possible to note that defect density maximum
values are between 0 and 2, while the maximum frequency
values are less thanf(x) = 0.35. The defect density values
obtained are between 0 and 8. In this simulations we con-
clude that the model used was capable of modeling the reli-
ability of the ideal web-based system.

0

50

100

150

200

0 2 4 6 8 10

F
re

cu
en

cy

Defect density

Figure 3: Histogram for the Ideal Case

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12 14

f(
x)

x Defect density

Ideal model fi(x)

Figure 4: Defect Density for the Ideal Case

6. A Tool for the Evaluation Process

Testing a web-based software system is different from
testing traditional software systems. In a traditional soft-
ware system there are no multiple accesses to the system,
and a single testing software can test the system. In a web-
based software there may be frequent accesses from many
users using different computing platforms, therefore web-
based testing must ensure that concurrenttestersvalidate
the execution of the system.

We developed a Testing Tool for our SOGU system in
Java (under a Linux platform). This tool is used to evalu-
ate the quality attribute under real conditions. Evaluation is
conducted by our testing tool using concurrent test threads
(system testers). Each test thread is responsible for execut-
ing an specific functionality test specified on its correspond-
ing test case file. Test cases are generated randomly and

test data is prepared to perform functionality tests. On each
test case an specific test profile indicates an specific path
of navigation (type of test) and the view that the tester will
test. The test thread have access to test cases (which con-
tain the test data and the test profile) and theactivity log
files. The activity log files are files that contain the activ-
ities performed by the test thread. The analyzer reads the
activity log files and produces an error log file which con-
tains the specific faults detected and the defect density com-
puted. In our tool, it is possible to perform multiple simula-
tions and compute averages from the results of the simula-
tions.

As shown in Figure 5, our testing tool was built in three
modules, the initialization module, the tester module and
the analyzer module. The initialization and the tester mod-
ules were developed in Java, while the analyzer module was
developed using scripts. The initialization module build the
structure model of the web site to evaluate. That is, it finds
all navigation paths of the web site. Also, this module is re-
sponsible for activating the system testers. Any error found
during the testing process is recorded into an HTML error-
log file. The second module perform the navigation and test-
ing of the SOGU system, according to its web-site structure
and its test case file. The third module analyzes the data ob-
tained from the testing process and computes the defect den-
sity and the mean time to failure (MTTF).

Script system

General Testers Analizer

Java System

tester

 SOGU

General

n

1

Web Structure

System

Model

Data

HTML files

Evaluation

Tester nTester 1

Testers

HTML files

Analyzer Evaluation
Report

Analizer
General Test

Report

Evaluation

Model

Test

Testers

Testers Activation

Figure 5: Modules of the Evaluation Tool

6.1. Evaluation of the quality attribute under real
conditions

1. Initial conditions under the real case.
The Initial conditions for the real case are as follows.

The evaluation of the real case is performed using the test-
ing tool described in previous section. The views of the ex-
ecution testers were: Professors, Students and General pub-
lic. All modules from the SOGU system were evaluated us-
ing functional testing. A test case file was generated ran-
domly, containing a large number (1000) of threads of ex-

ecution (specific navigation paths) associated with a given
execution profile. The web server used consisted of a PC ex-
ecuting at 500 MHz. In the real case, 500 evaluations were
conducted. The average of the results from the simulations
for the real case are shown in the Histogram illustrated in
Figure 6. For each evaluation the testing time was 100 sec-
onds. The time between the arrival of each tester was com-
puted following a exponential distribution with mean equal
to µ = 4 seconds. Each tester is allowed to execute fort
time units. The value oft is generated following a normal
distribution with meanµ = 3 seconds, and varianceσ = 1
seconds.

2. Quality attribute selection and its corresponding met-
rics. As in the ideal case the quality attribute to evaluate is
the reliability, and its metric was the defect density.
3. Measurement Process. All modules from the SOGU
system were tested. During the execution of the system only
3 evaluations were discarded for being anomalous. The spe-
cific errors found on each of the modules from the SOGU
system are not detailed in the paper because of space re-
strictions.

4. Evaluation and model selection. The results shown in
the histogram of Figure 6 indicate for example show that
for 63 evaluations a defect density of errors of 10 (10 er-
rors occurred in average). From the Histogram we can note
that the highest frequency of errors occur with a density of
10, and the smallest frequency of errors occur with a den-
sity of 1, 26 and 32.

The probability law associated with the population and
its correspondingα andβ parameters are the same as those
described in Equations 1, 2 and 3 respectively.

The values obtained from the Equations are:

α = 2.16 andβ = 12.8.

Substituting theα andβ values in Equation 1 we obtain,

fi(x) =
{

0.00876x1.16e−(x/12.8)2.16
If x ≥ 0

0 Otherwise

Based on Equationfi(x), we illustrate the performance
of the reliability attribute for the ideal and real cases in Fig-
ure 7. It is possible to note from the Figure that the results
obtained from the real case improve the results obtained
from the ideal case.

7. PSP Implementation
The Personal Software Process [3] is a process improve-

ment methodology aimed at individual software engineers.
It claims to improve software quality (in particular defect
content), effort estimation capability, and process adapta-
tion and improvement capabilities. We have tested some of
these claims in our SOGU web-based system to compare
the defect reduction before and after PSP. Our aim is to in-
clude PSP in our Ei process discussed before.

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

F
re

cu
en

cy

Defect density

Figure 6: Defect Density Histogram for the Real Case

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35

f(
x)

x Defect density

Ideal model fi(x)
Real model fr(x)

Figure 7: Graph for the Ideal and Real Cases

The goals of the PSP are that individual Software Engi-
neers learn:

• How to accurately estimate, plan, track and re-plan the
time required for individual software development.

• How to work according to a well-defined process, and
how to re-define this process.

• How to use reviews effectively and efficiently for im-
proving software quality and productivity.

• How to avoid software defects.

• How to analyze measurement data for improving esti-
mation, defect removal and defect prevention.

PSP consists of a series of scripts that define tasks or
forms for recording data, and standards that govern such
things as coding practices, size counting, and the assign-
ment of defect types. The first step in PSP is to first plan the
work ahead and document the plan. As this work is done,
the development times are recorded and every defect found
is tracked and reported. At the end of the project, PSP in-
cludes a postmortem analysis and a complete project plan
summary report. PSPs quality improvements result from
three key aspects: First, by tracking all defects, software de-
velopers are sensitized to the mistakes they personally make
and therefore become more careful in their work. Second,
when they analyze their defect data, they gain a clearer un-
derstanding of the cost of removing defects and thus ap-
ply the most effective ways of finding and fixing them. And

third, PSP introduces a number of quality practices that have
proved effective in preventing defects and in efficiently find-
ing and fixing them.

PSP has been implemented after the phase ofevaluation
of the quality attribute under real conditionsin our SOGU
system. The improving in reliability will be measured by
comparing the evaluation procedure before and after PSP
implementation. In the application of PSP into our SOGU
web-based system only 1 Engineer (without previous expe-
rience in applying PSP) was involved. The results obtained
from the implementation of PSP [4] are illustrated in Fig-
ures 8,9,10, 11 and 12. Since we were only interested on
detecting defects, other results obtained from PSP, are not
shown in this paper.

In Figure 8 theyield versus program numberis illus-
trated. Yield is the principal PSP quality measure. Total pro-
cess yield is the percentage of defects found and fixed in
the web-based software system. From this Figure we con-
clude that the yield tend to improve while our Engineer ap-
plied PSP to more programs. Defect trends are shown in
Figure 9. While the defect trend fluctuated while develop-
ing more programs, we can observe that in general there is
was a reduction of defects/KLOC while PSP was applied to
more programs. In Figures 10 and 11, we illustrate thede-
fects elimination rateand thedefects introduction ratere-
spectively. From these Figures, it is possible to observe a
sharp decrease in the defects elimination and introduction
rate while applying PSP to more programs. Finally, Figure
12 shows the improvement in A/FR from the application of
PSP to our SOGU system.

From the above results we conclude that the application
of PSP allowed us to detect and eliminate many defects
from our SOGU system, and that most of the defects de-
tected (and eliminated) were found on the coding phases.

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18

Yi
el

d
pe

rc
en

ta
ge

Program number

Figure 8: Yield versus program number

8. Evaluation of the Quality Attribute after
PSP

After implementing PSP for the SOGU system several
improvements were detected. This section is devoted to the
presentation of the results obtained for the evaluation of the
quality attribute after PSP.

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16 18

D
ef

ec
ts

/K
LO

C

Program number

Figure 9: Defects per KLOC trend

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18

D
ef

ec
ts

/H
ou

r

Program number

Revision code
Compiling

Test

Figure 10: Defects elimination rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 6 8 10 12 14 16 18

D
ef

ec
ts

/H
ou

r

Program number

Desing
Codifcation

Figure 11: Defects introduction rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14 16 18

AF
/R

Program number

Figure 12: AF/R versus program number

Phases 1,2 and 3 from the evaluation process were simi-
lar to those from the evaluation before PSP.

4. Evaluation and model selection.
Figure 13 illustrates the Histogram produced after imple-

menting PSP. The probability law associated with the pop-
ulation and its correspondingα andβ parameters are the
same as those described in Equations 1, 2 and 3 respec-
tively.

The values obtained from the Equations are:
α = 1.26 andβ = 5.19.

Substituting theα andβ values in Equation 1 we obtain,

fi(x) =
{

0.158x0.26e−(x/5.19)1.26
If x ≥ 0

0 Otherwise

Based on Equationfi(x), we illustrate the performance
of the reliability attribute on Figure 14. From Figure 14 it is
possible to observe that the reliability of the SOGU system
after implementing the PSP process improves. The curve for
the model after PSP indicates that now the reliability is near
the ideal case. The conclusion from this evaluation process
is that the reduced defect density observed in Figure 14 for
the model indicates that fewer errors were found in the sys-
tem after implementing PSP.

0

20

40

60

80

100

120

0 5 10 15 20 25

F
re

cu
en

cy

Defect density

Figure 13: Defect Density Histogram for the Real Case af-
ter PSP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35

f(
x)

x = Defect density

Ideal model fi(x)
Real model fr(x)

Real model after PSP fpsp(x)

Figure 14: Graph from the Real Case after PSP

9. Conclusions

In this paper we introduce a methodology for reliabil-
ity testing and improvement of web-based software appli-
cations.

This methodology introduce aV &V + Process improve-
ment process as part of the quality assurance process of a
web-based system. The Personal Software Process (PSP) is
used in our methodology to improve the reliability of the
web-based software application. We apply statistical mod-
eling and related reliability analysis [6] for effective web
quality assurance. These techniques help on detecting soft-
ware errors based on user requirements. Structural testing is

used to obtain information about the defect density and the
mean software fault occurrence. A Testing Tool was devel-
oped for our SOGU system to evaluate the quality attribute
under ideal and real conditions. We tested our methodology
on a Web-based Software for an On-line application to grad-
uate courses in a University (SOGU). Overall, we conclude
that this methodology provides an effective framework for
assessing and improving reliability of web-based software
applications.

Our future goals are to test our methodology in a more
complex web-based software applications, and to extend it
to include the markov-chain statistical testing models. Since
our testing tool was developed ad-hoc for our web-based ap-
plication we plan to develop a more general testing tool that
integrate our methodology.

References

[1] B. Beizer. Software Testing Techniques, Second Edition.
Int. Thompson Computer Press, 1990.

[2] E. Clarke, O. Grumberg, and D. Long, Software Engi-
neering Institute. Model checking and Abstraction.ACM
Transactions on Programming Languages and Systems,
Vol. 16, No. 5, pp. 1512-1542, January 1994.

[3] W.S. Humphrey.Introduction to the Personal Software
Process.Addison Wesley. 1997.

[4] W. S. Humphrey, Using A Defined and Measured Personal
Software Process. IEEE Software, Vol. 13, No. 3, pp 77-
88, May 1996.

[5] C. Kallepalli, Jeff Tian, Measuring and Modeling Usage
and Reliability for Statistical Web Testing.IEEE Transac-
tions on Software Engineering.Vol. 27, No. 11, November
2001.

[6] S. H. Kan.Metrics and Models in Software Quality Engi-
neering, Second Edition.Addison - Wesley, 2003.

[7] A. M. Law, W. David Kelton.Simulation Modeling and
Analysis. Third Edition.McGraw - Hill , 2000.

[8] E. Miller. The Website Quality Challenge.Software Re-
search Inc. 2000

[9] T. Murata,Petri Nets: Properties, Analysis and Applica-
tionsProceedings of the IEEE, Vol. 77, No 4, April, 1989,
pp. 541-580.

[10] J.D. Mussa.Software Reliability Engineering.New York,
Mc. Graw Hill, 1998.

[11] H.Q. Nguyen.Testing Applications on the Web.Willey
2001.

[12] J. Offutt. Quality Attributes of Web Software Applica-
tions.IEEE Software, 0740-7459/02.March/April 2002.

[13] http://www.redhat.com
[14] http:// www.mysql.com
[15] http:// www.apache.org
[16] http:// www.php.com
[17] D.R. Wallace,Practical Software Reliability Modeling

Proceedings of the 26th. Annual NASA Goddard Software
Engineering Workshop (SEW’01), IEEE Computer Soci-
ety Press, 2002.

