
Power-Optimized Scheduling Server for Real-Time Tasks

Pedro Mejia-Alvarez ; Eugene Levnert Daniel Mosse f

Abstract

In this paper we propose a novel scheduling framework
for a dynamic real-time environment with energy con-
straints. This framework dynamically adjusts the CPU
voltage/frequency so that no task in the system misses
its deadline and the total energy savings of the system
are maximized. In this paper we consider only realistic,
discrete-Ievel speeds.

Each task in the system consumes a certain amount of
energy, which depends on a speed chosen for execution.
The process of selecting speeds for execution while maxi-
mizing the energy savings of the system requires the ex-
ploration of a large number of combinations, which is too
time consuming to be computed on-line. Thus, we propose
an integrated heuristic methodology which executes an op-
timization procedure in a low computation time. This
scheme allows the scheduler to handle power-aware real-
time tasks with low cost while maximizing the use of the
available resources and without jeopardizing the temporal
constraints of the system. Simulation results show that
our heuristic methodology is able to generate power-aware
scheduling solutions with near-optimal performance.

1 Introduction

Power management is increasingly becoming a
design factor in portable and hand-held comput-
ing/ communication systems. Energy minimization is crit-
ically important for devices such as laptop computers,
PCS telephones, PDAs and other mobile and embedded
computing systems simply because it leads to extended
battery lifetime. Further, the need for power-efficient de-
signs is not solely associated with portable computing sys-
tems. Power dissipation has become a design constraint in
virtually every type of computing system including desk-

top computers, network routers and switches, set..top en-
tertainment systems and the most performance-hungry
computer servers.

The problem of reducing and managing energy con-
sumption was addressed in the last decade with a multi-
dimensional effort by the introduction of engineering com-
ponents and devices that consume less power, low power
techniques involving VLSI/IC designs, algorithm and
compiler transformations, and by the design of computer
architectures and software with power as a primary source
of performance. Recently, hardware and software man-
ufacturers have introduced standards such as the ACPI
(Advanced Configuration and Power Interface) [9] for en-
ergy management of laptops, desktops and servers that
allow several modes of operation, several" sleep" levels,
and the ability to turn off some parts of the computer
(e.g., the disk) after a preset period of inactivity. More
recently, variable voltage scheduling (VVS), has been pro-
posed as an alternative to energy management. In VVS
the voltage and frequency (hence, the CPU speed) is ad-
justed dynamically. Because the power consumption is
linearly dependent on the time and quadratically depen-
dent on voltage, reducing the frequency and voltage (we
call this reducing the speed), operations will consume less
energy, but take longer to complete.

In this paper, the VVS problem in real-time systems is
to assign appropriate speeds (from a set of discrete speeds)
to a set of dynamically arriving and departing periodic
tasks, such that no task misses its predefined deadline
while the total energy savings in the system is maximized.
The identification of feasible options that maximize our
optimality criteria (expressed as the total energy savings
of the system) requires the exploration of a large combina-
torial space of solutions. This optimization problem is for-
mulated as a multiple-choice knapsack problem (MCKP)
with binary variables [18].

In order to cope with the high computation costs of
the dynamic real-time environment, we have developed
a low-cost power-aware scheduling scheme. Our Power-
Optimized Real- Time Scheduling (PORTS) Server con-
sists of four stages: (a) an acceptance test for deciding if
and when dynamically arriving tasks can be accepted in
the system, (b) a reduction procedure which transforms
the original multiple-choice knapsack optimization prob-~

*CINYESTAY-IPN, Seccion de Computacion, AY. IPN. 2508,
Mexico. DF. pmejia@cs.cinvestav .mx

tHolon Academic Institute of Technology, Department of Com-
puter Science, 52 Golomb ST, Holon 58102 Israel. levner@hait.ac.il

fComputer Science Department, University of Pittsburgh, Pitts-
burgh, PA 15260. mosse@cs.pitt.edu. This author was supported in
part by DARPA PARTS (Power-Aware Real-Time Systems) project
under Contract F33615-00-C-1736 and through NSF-ITR medium
grant.

1

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

tions are provided where each real-time tasks have dif-
ferent power consumption characteristics [1, 5]. A recent
survey of such methods, considering continuous voltage
has shown how many different algorithms behave [24].

Although systems which are able to operate on an al-
most continuous voltage spectrum are rapidly becoming a
reality thanks to advances in power-supply electronics [3],
it is a fact nowadays that most of the microprocessors that
support dynamic voltage scaling use a few discrete voltage
levels. Some examples of processors that support discrete
voltage scaling are: (a) the Crusoe processor [27] (200-
700 MHz in 33 MHz steps, 1.1-1.6V); (b) the ARM7D
processor [10] (20 or 33MHz, 5V or 3.3V); (c) the Intel
StrongARM SA1100 processor [10] (59-221 MHz in 14.7
MHz Steps); and (d) the Intel XScale (150MHz-l~Hz).

3 System and Energy Models

We consider a set T = {TI, ...,Tn} of n periodic pre-
emptive real-time tasks running on one processor. Tasks
are independent (i.e., do not share resources) and have no
precedence constraints. Each task Ti arrives in the sys-
tem at time ai. The Earliest Deadline First (EDF) [15]
scheduling policy will be considered. The life-time of each
task Ti consists of a fixed number of instances Ti, that is,
after the execution of Ti instances, the task leaves the sys-
tem. The period of Ti is denoted by Pi, which is equal to
the relative deadline of the task.

Examples of event-driven real-time systems exhibit-
ing this behavior include: (1) video-on-demand systems,
where media streams are generated aperiodically; each
stream contains a fixed number of periodic instances
which are transmitted over the network, and (2) digital
signal processing, where each task processes source data
that often arrives in a bursty fashion. These types of sys-
tem can be found in communication satellites, which have
an extreme need for extending power management (for in-
stance, a 10% increase in battery life for a satellite with
a 5-year estimated lifetime would make the satellite func-
tional -and profitable- for an extra 1/2 year).

We denote by Ci the number of processor cycles re-
quired by Ti in the worst-case. Under a constant speed
~ (given in cycles per second), the execution time of the
task is ti = W. A schedule of periodic tasks is feasible if
each task Ti is assigned at least Ci CPU cycles before its
deadline at every instance. The utilization of a task is pro-
cessor load that a task demands for execution: Ui = k

(or ~). According to EDF, a set of tasks are feasible
(no tasks misses its deadline) if E Ui ~ 100%. Although
we assume EDF in this paper, the scheme can be easily
extended to fixed-priority schedulers [15, 12].

We assume that the CPU speed can be changed at dis-
crete levels between a minimum speed V min (correspond-
ing to a minimum supply voltage level necessary to keep
the system functional) and a maximum speed V ma"'.

lem into a standard knapsack problem, (c) a greedy heuris-
tic algorithm used to solve the transformed optimization
problem, and (d) a restoration algorithm which restores
the solution of the original problem from the transformed
problem. The PORTS methodology provides a novel ap-
proach to real-time scheduling which yields a near-optimal
solution for the problem of selecting speeds of execution
of all tasks in the system. The solution developed sat-
isfies the condition of maximizing the energy savings of
the system while guaranteeing the deadlines of all tasks
in the system. The performance of the PORTS Server
and its heuristic algorithms will be compared with the
performance of known algorithms.

The rest of this paper is organized as follows. In Sec-
tion 2 related models and previous work are reviewed.
In Section 3, the system and energy models used are de-
fined. In Section 4, the power-optimized scheduling is
formulated as an optimization problem. In Section 5, the
Power-Optimized Real- Time Scheduling (PORTS) Server
is described and in Section 6 we analyze the merit of the
optimization procedure of the PORTS server using an ex-
ample, and compare its performance against other known
algorithms. In Section 7, simulation results are presented
to show the performance of the PORTS Server. Finally,
Section 8 presents concluding remarks.

2 Related Work
In this paper we only address the issue of reducing

power consumption of processors through dynamically
changing the speed (i.e., voltage and frequency) of a pro-
cessor. This technique can be classified as static and dy-
namic. Static techniques, such as static scheduling, com-
pilation for low power [19] and synthesis of systems-on-a-
chip [8], are applied at design time. In contrast, dynamic
techniques use runtime behavior to reduce power when
systems are serving dynamically arriving real-time tasks
or variable workloads.

Static (or off-line) scheduling methods to reduce power
consumption in real-time systems were proposed in [28,
11, 6] .These approaches address task sets with a single
period or aperiodic tasks. Heuristics for on-line scheduling
of aperiodic tasks while not hurting the feasibility of off-
line periodic requests are proposed in [7]. Non-preemptive
power-aware scheduling is investigated in [6]. Recent work
on VVS includes the exploitation of idle intervals in the
context of the Rate Monotonic and Earliest Deadline First
(EDF) scheduling frameworks [23, 13, 2, 17]. Following
the same VVS technique, other work [20, 21] consider the
fact that some real-time tasks not always execute their
worst-case execution times, and have the ability to dy-
namically reclaim unused computation time to obtain ad-
ditional energy savings.

Most of the above research work on VVS assumes that
all tasks have identical power functions. Using an alter-
nate assumption, efficient power-aware scheduling solu-

2

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

accrued by all the tasks in the system during ak+l -ak,
that is, Sk = }:::;~=l sf .

The aim of this optimization problem is to find an speed
level j E Ni for each task Ti, such that the sum of energy
savings for all tasks is maximized without having the uti-
lization sum to exceed the capacity of the system (i.e.,
100%). That is, Problem Po is defined as follows.

maximize Zo = }:::~=1 }:::jENi Sij Xij

subject to }::::=1 }:::jENi Uij Xij .5: 100%

}:::jENi Xij = 1, i = 1, ..., n

1 if speed j E Ni for task Ti is chosen

O otherwiseXij

~j denotes the speed of execution of an instance of
task Ti when executes at speed j, and Uij denotes the
utilization of task Ti executing at speed j. The power
consumption of the task Ti is denoted by gi(V), assumed
to be a strictly increasing convex function [3], specif-
ically a polynomial of at least second degree. If the
task Ti occupies the processor during the time interval
[t1, t2] , then the energy consumed during this interval is
E(t1,t2) = Jtt12gi(V)dt. We assume that the speed re-
mains the same during the execution of a single instance.
Finally, a schedule is energy-optimal if it is feasible and
the total energy consumption for the entire execution of
the system is minimal.

While applying voltage-clock scaling under EDF
scheduling, we make the following two additional assump-
tions. First, the time overhead associated with voltage
switching is negligible, that is, the voltage change over-
head can be incorporated in the worst-case workload of
each task. Second, different tasks have different power
consumptions, that is, the power dissipation is dependent
on the nature of the running software of each task in the
system. For example, a task may use more memory or
the floating point unit more than others, and a task may
ship the tasks to specialized processors (e.g., DSPs, micro-
controllers, or FPGAs).

4 Formulation of the Problem
The problem we address can be formulated as follows.

Each time a new task Ti arrives or leaves the system, de-
termine the speed of execution for each task in the system
such that no task misses its deadline and the energy sav-
ings of the system is maximized. Note that a solution to
this problem must be computed each time a new task ar-
rives or leaves the system; thus, the solution should have
low computation complexity.

4.1 The Optimization Problem

We define a set of speeds, Ni, for each task Ti. Each
level of speed j E Ni has a Energy Saving computed by

Sij = (Eil -Eij} (I)

where Eij is the energy consumed by task Ti executing at
speed j (j = 1 means maximum speed1.

Furthermore, each task running at speed Vij, will have
utilization Uij = A. It is assumed that the items.,' r,
j E Ni are arranged in non-decreasing order, so that Sil
and Uil are the items with the smallest values.

Each task Ti in the system accrues an accumulated
energy savings Sf upon executing a number of instances
during the interval of time between different tasks arrivals
ak and ak+l. Sk denotes the amount of energy savings

By achieving the optimality criteria, whenever a new
task arrives or departs from the system, we intend to max-
imize the accumulated energy savings Sk obtained after
scheduling the entire set of tasks for the complete duration
of the schedule.

We have formulated the power saving problem as a
Multiple-Choice Knapsack Problem (MCKP) with 0-1
variables [18]. However, the MCKP is known to be NP-
hard [18] which implies that it is very unlikely to design
a fast (polynomial-time) exact method for its solution.
From a practical point of view this means that exact
methods, such as dynamic programming [18], Lagrange
multipliers [1], mixed-integer linear programming [26] and
enumeration schemes [7] , do not satisfy realistic temporal
requirements for solving any reasonable size MCKP (that
is, cannot generate a solution with milliseconds).

5 PORTS: Power-Optimized Real-Time

Scheduling Server
The Power-Optimized Real-time Scheduling Server

PORTS, is an extension of the Earliest Deadline First
scheduling policy (EDF [15]). The PORTS Server is capa-
ble of handling dynamic real-time tasks with power con-
straints, such that the energy savings of the system is
maximized and the deadlines of the tasks are always guar-
anteed. In order to meet our optimality criteria, when new
tasks arrive in the system, the PORTS Server adjusts the
load of the system by controlling the speed of execution
of the tasks.

The PORTS Server is activated whenever a new task
arrives in the system. The proposed method consists of
five basic parts, or stages, as illustrated in Figure 1, and
described in detail in the following subsections.

The PORTS Server first executes a Feasibility Test
(FT) to decide whether or not the new task can be ac-
cepted for execution in the system. If the new task is
accepted, an optimization procedure is executed to calcu-
late the speeds of execution of all tasks in the system.

This optimization procedure consists of three parts:

1 Note that, Sil = Eil -Eil = 0; that is executing at maximum

speed yields no energy savings.

3

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

1. A reduction algorithm, which converts the original
MCKP to a standard KP.

5.2 Reduction Scheme from MCKP to the
Standard KP

2. An approximation algorithm (e.g. Enhanced Greedy
Algorithm) capable of finding an approximate solu-
tion to the reduced KP, and

3. A restoration algorithm, which re-constructs the SO-
lution of the MCKP from the solution of the standard
KP.

The solution provided by the optimization procedure is
such that no task in the system misses its deadline and
the speeds of execution chosen for all tasks, maximizes
the energy savings of the system. After the optimization
procedure is executed, the Total Bandwidth Server [16] is
used to compute the start time of the new task. Finally,
with the start time of the new task computed and the
solution provided by the optimization procedure (the set
of speeds for execution), the PORTS Server will schedule
the new task in the system.

The PORTS Server is also activated when a task leaves
the system, in which case, the Feasibility Test does not
need to be executed since the system utilization is de-
creased when a task terminates.

5.1 Activating the PORTS Server and Fea-
sibility Test

The two conditions for activating the PORTS Server
and their procedures are:

I. Task Arrival. When a new task Tj arrives in the
system, the feasibility test is executed. The task is re-
jected when running all tasks (including Tj) at the maxi-
mum speed (minimum utilization) the system is not fea-
sible. Otherwise, the new task is accepted:

After a new task has been accepted in the system, the
next problem is to choose the speed of execution of each
task in the system. This problem is related to our opti-
mization problem because by choosing a speed for the ex-
ecution of task Ti we will obtain its corresponding energy
savings achieved. Obviously, energy savings are minimum
when all tasks execute at their maximal speeds. There-
fore, our goal is to choose the speed for execution of each
task such that our optimization criterion is met.

2. Task Departure. The PORTS Server is also ac-
tivated when a task leaves the system. In this case, the
optimization procedure is executed to satisfy the optimal-
ity criteria for the new set of tasks in the system. In this
case, the Feasibility Test is clearly not needed.

Our approximation algorithm is based on the reduction
of the MCKP to the equivalent KP using the convex hull
concept [18]. In order to reduce the MCKP, denoted by
Po, the following auxiliary problems will be used:

P1: The Truncated MCK Problem

Problem P1 is constructed from Po, by extracting the
lightest item (i.e., the item with the minimum Uij value)
from each class and assuming that all these items are in-
serted into the knapsack. The sum of the lightest items
from each class is denoted by Smin = E~=1 Sit and
Umin = E~=1 Uil. When formulating Pl, we have to con-
sider the new capacity of the system equal to (c- Umin)
and we have to write EjEN; Xij < 1 (instead of
EjEN; Xij = 1) because the lightest items are assumed to

be already inserted into the knapsack. Therefore, some or
even all classes in Problem P1 may contain no items, that
is, it may happen that EjEN; Xij = 0 for the optimal so-
lution of Problem Pl. Notice that c = 1.0 (or c = 100%)
denotes the maximum capacity of the system.

Problem P1:
Maximize Z1 = E~=1 EjEN; (Sij -SiI) Xij

subject to E~=1 EjEN; (Uij -Uil) Xij ~ (c- Umin),
EjEN; Xij ~ 1, i = 1, ..., n,
Xij = 0 or 1, for j E Ni, i = 1, ..., n.

P2: The Truncated Relaxed MCK Problem

Problem P2 is constructed from Problem P1 byallowing
a relaxation on the variable integrality condition: 0 ~
Xij ~ 1, in other words, Xij values are not necessarily 0
or 1. Let Z2 be the objective function of Problem P2.
The reason for introducing this problem is that its exact
solution can be found in low computation time, which in
turn, provides a good approximation solution to Problem
PI and hence a good approximation solution to Po [25].
Problem P2 can be solved by the following P3 and P4

problems [14, 25, 18, 22].

P3: The Relaxed MCK Problem on the Convex
Hull

Given P2, a convex hull of items in each class can be
found [18]. The elements constituting the convex hull will
be called P-undominated and denoted by (Rij, Hij) (this
notion will be explained below in more detail).

Let us start by denoting the savings without the light-
est item in P2 by Sij = Sij -Sit and analogously denote
the utilization by Uij = Uij -Uil.

The following Dominance Criterion (Sinha and Zolt-
ners [25]) is applied to reduce the set of items in the con-
vex hull.

4

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

Greedy

Algorithm

p. I - ~3 -p.-
TruncatedKelo.ed Coavex Hun Equlv~ent

-, PI
Truncaled i

NeW-~~~ -

~ AClivotlngthePORTsServer: :

i I Feasibility ~
i I Test I i :

!Ic~!!'!"t~!!~~~~~~.~!~.~.p
(2) (3)(I)

[IJ~~ .1.J TMIJIeaJed

Iniliol T",lICated Relaxed

~~!'!~!!~'!!!!1~~'!~!'!!!1~~!!giI!.8J~"!~I!!!"!

(4)

Figure 1. Methodology for Handling Power-Aware Real- Time Tasks

order and according to Equation (2). Because of the or-
dering of the items, the upper convex hull can be found in
O(m tog m) time [25]. Recall that m = Z:;:=1 ni. The ob-
tained Multiple-Knapsack Problem on the Upper Convex
Hull is denoted as Problem P3.

Dominance Criterion 1. If two items r and q in the
same class Ni in Problem P2 satisfy Sir ~ Siq and Uir :;?:
Uiq then item r is said to be dominated by item q. In every
optimal solution of P3, Xir = 0, that is, the dominated
items do not enter into the optimal solution.

Dominance Criterion 2. If some items r, q, t from the
same class Ni are such that Sir ~ Siq ~ Sit, Uir ~ Uiq ~
Uit, and

(2)
(Siq -Sir) < (Sit -Siq)

(Uiq -Uir) -(Uit -Uiq)

then Xiq = O in every optimal solution of P2.
The item q E Ni, depicted in Figure 2, is called P-

dominated[25]. In what follows, we exclude P-dominated
items from each class N i when solving the relaxed
Problem P3 to optimality. The items remaining after
we excluded all the P-dominated items are called P-
undominated. All the P-undominated items belonging to
the same class, if depicted as points in the two dimensional
space, form the upper convex hull of the set Ni [18], and
denote the new set of P-undominated items {(Rij, Hij)},
as illustrated in Figure 2. Note that R denotes energy
savings and H denotes utilization.

Problem P3:
Maximize Z3 = L~=l LjENi Rij yij

subject to L~=l LjENi Hij yij ~ (c- Umin),
LjENi yij ~ I, i = I, ..., n,
O ~ Yij ~ I, for j E Ni, i = I, ..., n.

As described in [25], some items belonging to the
class Ni (i.e., Yij = I) can be included into the so-
lution entirely; they are called integer variables. On
the other hand, some items may exceed the constraint:
L~=l LjENi (Hij Yij) ~ (c -Umin) and only part of it
could be included into the solution. These items are called
fractional variables.

P4: The Equivalent Knapsack Problem (EKP)

The equivalent Knapsack Problem P4 is constructed
from P3. In each class, slices or increments are defined as

follows:

Pij=(Rij-Ri,j-l); i=I,...,n;j=2,...,CHi (3)

Wij=(Hij-Hi,j-l); i=I,...,n;j=2,...,CHi (4)

where CHi is the number of the P-undominated items in
the convex hull of class Ni. When solving the (contin-
uous) Problem P3, we may now discard2 the condition
LjENi yij ~ I,i = I, ...,n, and solve the problem of se-
lecting slices in each class.

Energy
Savings

(R) P-Undoininated Poil.ts

"

.'4'=P-riOminated Points
q

! r

:

I i I I I. i

Utilization (H)

Figure 2. Problem P3: Convex Hull.

Problem P4 :
Maximize Z4 = E~=l EjENi Pij Zij

subject to E~=l EjENi (Wij Zij) ~ (c- Umin),
O ~ Zij ~ I, for j E Ni, i = I, ..., no

2This condition is discarded because after Problem ?4 we will
include all items from all tasks into a single class in the Enhanced
Greedy Algorithm discussed in the next Section.

The set of all P-undominated items may be found by
examining all the items in each class Ni in an increasing

5

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

.Rule 1. When computing the solution of P4 take into
, A

account Z4 = {(Pmaz), Z4}, where Pmaz = max{Pi}
is the maximal energy saving item in the truncated
MCKP P2 and 7;4 = PI +P2+. ..+Pk-I is the solution
obtained by the Standard Greedy Algorithm (SGA).

.Rule 2. After finding the break-slice, the remaining
empty space is filled in by slices from the non-break
classes in decreasing order of the ratios ~ .

The SGA algorithm is executed until the first break-
slice is found.

The Enhanced Greedy Algorithm (EGA) algorithm, in
contrast to SGA, does not stop when the first break-slice
is found; it is executed for all remaining slices in the single
class PW. According to Rule 2, break-slices are not con-
sidered to be part of the solution in the EGA algorithm.
The SGA and EGA algorithms are illustrated in Figure
3.

From the analysis of Problem P4 [25, 14] it follows that,
in all integer classes: if some variable is equall (e.g., the
variable is chosen) then all preceding variables are also
1; if some variable is equal zero (e.g., the variable is not
chosen) then all subsequent variables are also zeros. From
this fact the following important properties of Problem P4
follow.

Property 1: The combination of all items (slices) from
class Ni (i = 1, ..., n) yielding an optimal solution to
Problem P4, cofTesponds to a specific item to be cho-
sen from class Ni in Problem P3; namely, if k denotes
this specific item, then E{jENi}(Pij Xij) = Rik and
E{jENi}(Wij Xij) = Hik. In each class all the slices are

numbered in the decreasing order of their ratios, .:-!LWPi... .'1
Property 2: There should not be a gap in a set of slices
cofTesponding to a solution in any class.

To exemplify Property 1, assume that P1,1 = 1642,
P1,2 = 2764, and P1,3 = 2074 are the slices from class
N1° This optimal solution of Problem P4 correspond to
R1,3 = 6480 from Problem P3. To exemplify Property 2,
let us consider the class N j containing the slices r, q and
t. According to Property 2, the following solutions are
valid: {}, {r }, {r, q} and {r, q, t}, while {q}, {t}, {r, t} and
{q,t} are invalid. Note that, {r,t} is invalid because slice
q is not included, causing a gap in the solution.

1
2

3:
4:
5:
6:
7:
8:
9:
10

Enhanced Greedy Algorithm: (EGA Algori thm)
input: a set of slices Pj and Wj from P4

ordered by the ratio ;fc = (C-Umin). n: (number of items on P4) .

output: Xi. (p. , W.) : (solution set) ;
begin

p. = 0; w. = 0;
for j = 1 to n do

if Wj > c then
Xj = 0; break-slice = j ;
remove the remaining slices from

the break class (Property 2)
exit; (condition for SGA algorithm)

else
Xj =1; c=c-Wj;
.. + .. +p = p Pj; w = w Wj

11:

12:

13:

14:

15: end;

Figure 3. Greedy Algorithms: SGA, EGA

Restoring the Solution from the EKP to
the MCKP

5.4

An approximate solution to Problem P4 is obtained as
follows:

,
.SGA Algorithm: Z4 = max{pmaz, (PI + P2 + ...+

Pk-I) }
"

.EGA Algorithm: Z4 = max{pmaz, (PI + P2 + ...+

Pk-I + a)}

The term a is a possible increment caused by using
Rule 2, that is, the profits of additional items from

non-break classes.

5.3 Enhanced Greedy Algorithm

In order to solve the equivalent knapsack Problem P4,
we may collect all slices from all classes {following a de-
creasing order of their ratios, ~WPi...) as candidates for in-

'1
cluding them into a single clMs: PW. With all slices in
the single class PW, now the problem becomes the stan-
dard knapsack problem.

The main idea of the Standard Greedy Algorithm
{SGA) for solving the standard knapsack is to insert the
slices, {Pi,Wi} {obtained from the single class PW) inside
the available capacity of the knapsack {c- Umin) in or-
der of decreasing ratio;;; , until the knapsack capacity is
completely full, or until no more slices can be included. If
the knapsack is filled exactly to its full capacity {C-Umin)
in the mentioned order, then this is the optimal solution.
While inserting slices into the knapsack, one of them may
not fit into the available capacity of the knapsack. This
slice is called the break-slice [18], and its corresponding
class is called the break-class.

Contrary to the solution proposed by Pisinger [22], our
method does not consider fractional items to be part of the
solution. Therefore, we will discard the break-slices, and
consequently {following Property 2) all remaining slices
from the same break-class.

To the greedy scheme of [22] we add the following two
rules.

6

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

1: Optimization Procedure:

2: input: set of Sij (energy savings)and Uij (utilization) from problem Po

3: c: (size of the knapsack)

4: output: Xij. (p* , u*) : (solution :

5: begin

6:

7:

8:

9: Pi

10: Ps

11:

12:

13:

14:

15:

16:

17: P4:

18:

19:

20:

21:

22: end

vector, energy savings and utilization)

Smin = l::~=t Sit; Umin = l::~=1 Uit ; (Savings and Utilization at maximum speed)
for j = 1 to n do

begin
Sij=Sij-Sil; Uij=Uij-Uil; C=(C-Umin);
for (all items in 1Vi) (items r, q and t belong to 1Vi)

if (Sir $ Siq and Uir ~ Uiq) then
rernove item 'r' from class JVi; (Dominance Criterion 1)

if (~ $ ~"Sit
t :::S"i.) then .q .P ..q

rernove item 'q' from class JVi; (Dominance Criterion 2)
for (all P-undominated items in JVi) do

Rij = Sij ; Hij = Uij ; (Convex Hull with P-undominated items)

Pij=(Rij-Ri,j-l); Wij=(Hij-Hi,j-l);j=2,...,CHi (slices)
end
Insert all (P,W) items in order of ~ into array PW
Execute the Greedy Algorithm vi th PW as input. (output: Xij , p. , w.)
P = Smin + p. ; W = Umin + W. ; (energy savings and utilization solution)

Figure 4. Optimization Procedure

The approximate solution to the Problem Po is defined
as Z4 + Smin. Recall that Smin = E~=t Sit, are the ele-
ments truncated in Problem PI.

5.5 Scheduling the New Task

From the definition of the slice (described in Equations
3 and 4) and Property I, it follows that if several slices
(for example s,r and t in that order) belonging to the
same class N j are chosen to be part of the solution of
the greedy algorithm, then the item corresponding to the
slice t is considered to be part of the solution of Po, On
the other hand, if no slice is chosen from class N j to be
part of the solution, then the truncated item considered
in Problem PI (SjI and UjI) is chosen to be part of the
solution.

The above criteria allows us to construct the corre-
sponding items (speeds) from each class from Problem P4
that are part of the solution of Problem Po.

After the optimization procedure is executed, the To-
tal Bandwidth Server (TBS) [16] will calculate the start
time of the new task. It is well known that TBS Server
provides low response times for handling aperiodic tasks.
As described in [4], the TBS Server assigns a deadline
dTBS = maX(ta, da-l) + ~ to new aperiodic requests Ta
that arrive at time t = ta. In our framework, Ca denotes
the computation time of the new task and U s denotes the
server utilization factor. U s is computed in our frame-
work as Us = 1- Ei Ui. If the deadline of the new task
obtained by the TBS is greater than the actual deadline
of the new task, dTBS > da, then the scheduling time of
the new task is modified to t~ = dTBS -ta. On the other
hand, if da > dTBS the new task is scheduled at its arrival
time (ta). In any case, old tasks may be preempted by the
new task.

Finally, with the start time of the new task computed
by the TBS server, and the solution provided by the opti-
mization procedure (the set of speeds for execution), the
PORTS Server will schedule the new task in the system
following the EDF scheduling policy.

The solution from Problems PI, P2 and P4 can be ob-
tained in O(m) time (lines 6 to 18 from Figure 4), while
the EGA Algorithm obtains solutions in O(m log m) time
(lines 19 to 22 from Figure 4).

The Algorithm that describes the Optimization Proce-
dure defined in Section 5, is illustrated in Figure 4. The
Reduction Algorithm (Problems Pl, P3 and P4), is exe-
cuted in lines 7 to 19. The Approximation Algorithm is
executed in lines 20 and 21, and the Restoration Algo-
rithm is executed in lines 22 and 23.

6 Example

The purpose of this section is to illustrate the execu-
tion of our algorithms and to compare their performance
against several other known algorithms:

~

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

Speed Levels

1.0 0.9 0.7 0.5

.Dynamic Progmmming (DP): This algorithm was de-
signed to solve to optimality the MCKP problem [18]

.Maximum Speed (MS). In this algorithm, the proces-
sor is set to its maximum speed (in this case, maxi-
mum speed = 1.0).

.Static Continuous (Sa) and Static Discrete (SD) Al-
gorithms. In the SC algorithm [1], the processor
speed for all tasks is set to the system utilization
(i.e., Vi = E Uil). The static discrete solution uses
the continuous solution (SC) and approximate its re-
sults. For example, if the speed levels of the processor
are 1.0, 0.75, 0.5 and 0.25, and the utilization of the
task set is 0.6, then the speeds of all tasks are set to
0.75.

.Optimal Continuous OP(c) and Optimal Discrete Al-
gorithms OP(d). The continuous algorithm OP(c)
[1] considers tasks with different power characteris-
tics and provides a continuous solution. The discrete
solution OP(d) approximates the continuous solution
using discrete levels of speed, in the same way that
SD approximates SC.

Consider the real-time workload described in Table 1.
The value of c used in this example is 1000 (this value
denotes 100% of the size of the knapsack). The workload
described was computed assuming maximum speed levels
for each task, obtaining a total load of Ei Ui = 60%.
In this example, a power consumption function gi(V) =
k .V3 is considered, where k is shown in Table 1. Table
2 shows the energy consumption Eij, energy savings Sij
and utilization Uij for the set of speeds of all tasks, Ni =

{1.0,0.9,0.7,0.5,0.3}.

1642 and U11 = Uij -Umin = 150 -135 = 15. After
building Table 3 all minimum items from each task are
included into the knapsack. So, the remaining size of the
knapsack is: c = (1000- Umin) = 408.

The result of the slicing procedure of Problem P4 is
shown in the right hand side of Table 3. FolloWing the
slicing procedure of Problem P4, it is easy to verify that
P14 = 814- 813 = 7862- 6480 = 1382 and VV14 = U14 -
U13 = 315- 135 = 180. Finally, ordering the elements in
Table 3 by decreasing energy/utilization ratio produces
the array PVV , which is shown in Table 4.

Following the execution of the greedy algorithms (see
Table 4) it is easy to verify that the solution for the greedy
algorithms is,

SGA Algorithm: 8 = 49583, and U = 340.
EGA Algorithm: 8 = 51334, and U = 406.

Note that slice (5956,111) in PVV , is the break-slice (B-
S). According to our Restoring algorithm, the minimal el-
ements from each class that were truncated in Problem P1
must be added to the solution. Then 8min = E:=l 8i,1 =
0 and Umin = E:=l Ui,l = 592, must be added to the
solution. Therefore, the solution to the MCKP Problem
Po is as follows.

SGA Algorithm: 8 = 49583, U = 932, and sblution
vector = [3,3,4,3]

EGA Algorithm: 8 = 51334, U = 998, and solution
vector = [3,4,4,3]

In Table 5, the energy consumption solution for several
algorithms is shown, along with the solution vector, the
run-time (measured in microseconds on a PII-233 MHz)
and the percentage of energy savings normalized to the
SD algorithm.

Note that the OP(c) algorithm provides the best energy
consumption results. However, because of the fact that we
are using discrete levels of speed, its corresponding dis-
crete solution (obtained by the OP(d) Algorithm), gives

Table 1. Real- Time Workload and Parameter k

We will measure the energy consumption for a period

of 32,000 time units, which is larger than the least com-

mon multiple of all the task periods Pi. Since the energy

consumed by task Ti executing continuously in the inter-
val of time I is I.gi(~), the total energy consumed during

the interval is I. E(gi(~) -v?k). This is because * is the

number of instances of task Ti within the interval I, and
~ is the length of each instance.

Table 3 show the results of the truncation procedure

described in Problem PI. This Table is constructed with

elements from table 2, removing the elements with mini-

mum Uij value.

Note that, the elements 811 and U11 in Table 3, Prob-
lem PI, are computed by 811 = 8ij -8min = 1642- 0 =

8

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

The power functions for each task Ti used [13, 23, 26]
are of the form ki .Sf; , where ki and Xi are random vari-
abIes with uniform distributions between 2 and 10, 2 and 3
respectively. Then, the energy consumption for each task
and each speed V; is computed by Eij = I. (ki .V;x; v¥!P-i) ,

where I is a fixed interval, given by I = LC M .
The PORTS server execute at the speed of the cur-

rent executing task, and the input to our Optimization
Problem Po is computed by Equation (1).

The performance of our algorithms is measured at each
task arrival (and departure) according to the following
metrics:

.Percentage (%) of Energy Savings (%ES): The
solution obtained (in terms of Energy Consumption)
by each algorithm for all task gives us the total en-
ergy consumption Etot = L~=l Ei. The solution pro-
vided by each algorithm is then compared with the
solution obtained by algorithm SD, and the percent-
age of improvement is plotted in the graphs. The
results shown in the graphs represent the average
(X = (L~~~o %ES)/5000») or sample mean of a set
of 5000 experiments (each for every task arrival).
On each result of %ES we also compute their corre-
sponding confidence intervals (for the mean) assum-
ing a confidence level of 95%.

that, although unrealistic due to the lack of discrete speed
levels, the continuous OP(c) algorithm was also simulated
to give us an upper bound on the energy savings; it yields
between 26% and 30% energy savings, showing that our
heuristics perform very well with respect to energy sav-
ings.

The results shown in Figure 5 (right side) indicate the
low cost of the enhanced greedy algorithms. For the SGA
and EGA algorithms the run-time varies from 56 to 853
microseconds. Note the large difference in run-time ob-
tained by the EGA algorithms, when compared with the
DP and the OP(d) algorithms: OP(d) varies from 155 to
102500 microseconds, and DP varies from 2529 to 49653
microseconds. This points to the fact that our heuristics
are extremely powerful in dynamic situations.

Rejection ratio (RR) in this simulations is as follows.
From 0 to 30 tasks, rejection ratio is equal to RR = 0%.
For 40 tasks RR = 7.5%, which indicates that 3 out of
40 tasks, in average, are rejected from execution. For 50
tasks RR = 24%, for 60 tasks RR = 35%, for 70 tasks,
RR = 42.8%, and for 80 tasks, RR = 47.5%.

From the % of energy savings in Figure 5, the confi-
dence intervals computed for 10 to 80 tasks are within
the range [-7% %ES,+7% %ES]. Table 6 shows the
results of Figure 5 with 40 Tasks and their corresponding
confidence intervals (CI) (assuming a confidence level of
95%)..Run-Time: This metrics denotes the execution time

of each algorithm, which measures the physical time
in microseconds, using a PC Intel 233 MHZ with
48MB of RAM and running on the Operating Sys-
tem Linux. The function used for the measurements
is gettimeofday().

Table 6. Confidence Intervals for 40 Tasks.

.Rejection Ratio (RR): This metric denotes the
percentage of tasks rejected from execution. A new
task is rejected if it produces an overload. That is, a
new task is rejected if the following condition is met
}:i Ui > 100%, while setting all tasks at maximum

speed.

The results shown in Figure 6 indicate how important
is to consider an appropriate number of speed levels for
achieving a high percentage of energy savings. As shown
in Figure 6, under moderate, realistic number of speed lev-
els (between 3 and 30), the EGA algorithm outperforms
the OP(d) algorithm. However, for more than 30 speed
levels OP(d) algorithm outperforms the EGA algorithm,
because the system approaches a continuous voltage set-
ting, in which OP(d) is close to the optimal OP(c).

The run-time computed (shown in Figure 6), indicate
that the OP(d) algorithm has very little sensibility to the
number of speed levels: the run-time of the OP(d) algo-
rithm varied from 6900 to 7100 microseconds. In con-
trast, our Greedy Algorithms increased their run-time
with higher number of speed levels, but still remained well
under OP(d). For this experiments, the run-time of the
Greedy Algorithms varied from 99 to 1800 microseconds.
The DP algorithm is the most expensive, with one or two
orders of magnitude higher run-time than the EGA and
SGA algorithms.

We demonstrate the performance of our algorithms
with two simulation cases. The first case (Figure 5), con-
siders 10 speed levels, and the number of tasks is varied
from 5 to 80. In the second case (Figure 6), we show the
influence of the granularity of the speed changing steps:
the number of tasks is set to 30, and the speed level is
varied from 3 to 60. The results obtained by algorithm
EGA (shown in Figure 5) vary from 95% to 99% of the DP
Algorithm (we use DP as our optimal Algorithm), with %
of energy savings ranging from 23% to 25%.

The SGA performs from 92% to 96% of optimal, with
energy savings ranging from 19% to 22%. This results
show an improvement of over 80% from the results ob-
tained by the OP(d) algorithm. It is important to note

10

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

65536

16384
~

~

(/)
0>
"

">
"'

00
>-
0>
0;
"

w

0

01!

/4096
/

1024 e '

w
"0
c
O
o
Q)

(/)
e
o

~
Q)
E

i7
c
:I

a:

"..~..

~

256

~

J¥- DP-
SGA .
EGA s-

OPT(d) -*--

0".

64

16
0 10 20 30 40 50

Number of Tasks

60 70 80

Figure 5. % of Energy Savings and Run- Time (Microseconds)

30

25

I/)
01
C
>
'"

00
>.
01
0;
C
W

'0

~

20

15

-;;
-g
0(.)
0>
'8
ti

~
0>
E
i7
~
"
a:

10

5

0
0 10 20 30 40

Number of Speed Levels
50 60 0 10 20 30 40

Number of Speed Levels
50 60

Figure 6. % of Energy Savings and Run- Time (Microseconds)

speed of each tasks in the system, such that energy sav-
ings of the system is maximized. The process of selecting
levels of voltage/speed for each tasks while meeting the
optimality criteria requires the exploration of a poten-
tially large number of combinations, which is infeasible to
be done on-line. The PORTS Server finds near-optimal
solutions at low cost by using approximate solutions to
the knapsack problem.

Our simulation results show that our PORTS Server
has low overhead, and most importantly generates near-
optimal solutions for the scheduling of real-time systems
running on variable speed processors.

We are currently extending the PORTS Server with
algorithms for multiple processors and for real-time tasks
with precedence and resource constraints.

Rejection ratio for this simulations always yield 0%
meaning that no tasks were rejected from execution on
any single test.

Further tests were conducted (increasing the number of
speed levels) to check when the EGA algorithm and the
OP(d) algorithms have similar run-times; this happens
when the number of speed levels is approaching 100 (not
shown, due to space constraints) .

The results obtained in our simulations indicate that
the Enhanced Greedy Algorithms are a low cost and effec-
tive solutions for scheduling power-aware real-time tasks
with discrete speeds.

8 Conclusions
In this paper we proposed a power optimization

method for a real-time application running on a variable
speed processor with discrete speeds. The solution pro-
posed is based on the use of a Power-Optimized Real-
Time Scheduling Server (PORTS) which is comprised of
two parts: (a) a feasibility test, for testing the admission
of new dynamic tasks arriving in the system, and (b) an
optimization procedure used for computing the levels of

References

[1] Ho Aydin, Ro Melhem, Do Mosse, P. Mejia-Alvarez. "De-
termining Optimal Processor Speeds for Periodic Real-
Time Tasks with Different Power Characteristics" o Eu-
roMicro Conference on Real- Time Systems, June 2001.

11

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

[18] S. Martello and P. Toth. "Knapsack Problems. Algo-
rithms and Computer Implementations" .Wiley, 1990.

[19] D. Mosse, H. Aydin, B. Childers, R. Melhem. "Compiler
Assisted Dynamic Power- A ware Scheduling for Real- Time
Applications". In Workshop on Compiler and Operating
Systems for Low Power (COLP'OO), 2000.

[20] A. Dudani, F. Mueller, Y. Zhu. "Energy-Conserving Feed-
back EDF Scheduling for Embedded Systems with Real-
Time Constraints." ACM SIGPLAN Joint Conference on
Languages, Compilers and Tools for Embedded Systems
(LCTES'O2), June 2002.

[21] P. Pillai and K. G. Shin, "Real-Time Dynamic Voltage
Scaling for Low-Power Embedded Operating Systems" .
In Proceedings of the 18th. ACM Symposium on Operating

System Principles (SOSP'01), 2001. ACM Press.

[22] D. Pisinger. "A Minimal Algorithm for the Multiple-
Choice Knapsack Problem" , European Journal of Oper-
ational Research, 83. 1995.

[23] Y. Shin and K. Choi. "Power Conscious Fixed Priority
Scheduling for Hard Real- Time Systems" .In Proc. of the
Design Automation Conference. 1999.

[24] D. Shin, W. Kim, J. Jeon, J. Kim and S.L. Min.
"SIMDVS: An Integrated Simulation Environment for
Performance Evaluation of Dynamic Voltage Scaling Al-
gorithms". In Proc. of the Workshop on Power-Aware

Computer Systems (PACS'02), Feb, 2002

[25] P. Sinha, A. Zoltners. "The Multiple Choice Knapsack
Problem". Operations Research, May-June 1979.

[26] V. Swaminathan, K. Chakrabarty. "Investigating the Ef-
fect of Voltage-Switching on Low-Energy Task Scheduling
in Hard Real-Time Systems". In Proc. Asia South Pacific
-DAC Conference 2001.

[27] www.transmeta.com

[28] F. Yao, A. Demers, S. Shenker. "A Scheduling Model
for Reduced CPU Energy" .IEEE Annual Foundations of
Computer Science, 1995.

[2] H. Aydin, R. Melhem, D. Mosse, P. Mejia-Alvarez. "Dy-
namic and Aggressive Scheduling Techniques for Power-
Aware Real-Time Systems". IEEE Real-Time Systems
Symposium, Dec. 2001.

[3] T.D. Burd, T.A. Pering, A.J. Stratakos, R.W. Broder-
sen, "A Dynamic Voltage Scaled Microprocessor System",
IEEE J. of Solid-State Circuits, Vol. 35, No.11, Nov.
2000.

[4] G. Buttazzo and F. Sensini. "Optimal Deadline Assign-
ment for Scheduling Soft Aperiodic Tasks in Hard Real-
Time Environments" , IEEE 1ransactions on Computers,
Vol. 48, No.10, October 1999.

[5] F. Gruian, K. Kuchcinski. "LEneS:Task Scheduling for
Low Energy Systems Using Variable Supply Voltage Pro-
cessors". In Proc. Asia South Pacific -DAC Conference
2001, June 2001.

[6] I. Hong, D. Kirovski, G. Qu, M. Potkonjak and M. Sri-
vastava. "Power Optimization of Variable Voltage Core-
Based Systems". In Design Automation Conference, 1998.

[7] I. Hong, M. Potkonjak and M. B. Srivastava. "On-line
Scheduling of Hard Real-Time Tasks on Variable Volt-
age Processor" .In Computer-Aided Design (ICCAD) '98,
1998.

[8] I. Hong, G. Qu, M. Potkonjak and M. Srivastava. "Syn-
thesis Techniques for Low- Power Hard Real- Time Sys-
tems on Variable Voltage Processors" .In Proc. of 19th
IEEE Real- Time Systems Symposium, December 1998.

[9] Intel, Microsoft, Compaq, Phoenix and Toshiba. " ACPI

Specification" ,
http:! ! developer. intel. com!technology!IAPC !tech.

[10] Intel StrongARM SA-1100 microprocessor developer's
manual.

[11] T. Ishihara and H. Yasuura. "Voltage Scheduling Problem
for Dynamically Varying Voltage Processors" , In Proc.
Int 'I Symposium on Low Power Electronics and Design,
1998.

[12] M. Joseph, P. Pandya. "Finding Response Times in a
Real-Time System", Computer Journal, pp.390-395, Oct.
1986.

[13] C. M. Krishna and Y. H. Lee. "Voltage Clock Scaling
Adaptive Scheduling Techniques for Low Power in Hard
Real- Time Systems" .In Proc. of the IEEE Real- Time
Technology and Applications Symposium, 2000.

[14] E. Lawler. "Fast Approximation Algorithms for Knapsack
Problems" .M athematics of Operations Research, Nov.
1979.

[15] C.L. Liu, J. Layland. "Scheduling Algorithms for Mul-
tiprogramming in Hard Real-Time Environments", J.
ACM, 20(1). Jan. 1973.

[16] G. Lipari, G. Buttazzo. "Schedulability Analysis of Peri-
odic and Aperiodic Tasks with Resource Constraints" , J.
of Systems Architecture, (46). 2000.

[17] J.R. Lorch, A.J. Smith. "Improving Dynamic Voltage
Scaling Algorithms with PACE". In Proc. of ACM SIG-
METRICS Conference Cambridge, MA, June 2001.

12

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02)
0-7695-1739-0/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

