
Pedro Mejia Alvarez, Ricardo Zavaleta
Vazquez, Susana Ortega Cisneros and Raul E.
Gonzalez Torres

Real-Time Database Systems:
Fundamentals, Architectures and
Applications

July 21, 2023

Springer Nature





Preface

A real-time database uses real-time processing to handle workloads whose state is
constantly changing. This differs from traditional databases that contain persistent
data, which are mostly unaffected by time. For example, a stock market changes very
rapidly and is dynamic. As a result, the stock graphs of the different markets appear
to be very unstable, yet a database must keep track of the current values of the market
(e.g., New York Stock Exchange). Real-time processing means that a transaction is
processed fast enough for the result to come back and be acted upon immediately
(i.e., based on a deadline). Real-time databases are helpful for accounting, banking,
law, medical records, multimedia, process control, reservation systems, scientific
data analysis, and many other applications.

Big Data applications have initiated much research to develop systems supporting
low-latency execution and real-time data analytics. Unfortunately, due to the high
access latency to hard disks, existing disk-based systems can offer only offer soft
real-time responses. The low performance is now also becoming an obstacle for
organizations providing a real-time service (e.g., real-time bidding, advertising,
social gaming). For instance, trading companies must detect sudden changes in
the trading prices and react instantly (in several milliseconds), which is difficult to
achieve using traditional disk-based processing-storage systems. Therefore, to meet
the strict (hard) real-time requirements for analyzing mass amounts of data and
servicing requests within milliseconds, an in-memory database system is necessary
to keep the data in the random access memory (RAM) all the time.

These emergent applications (like big data) and classic ones (like industrial control
systems) are data-driven, meaning that critical decisions are based on the analysis and
interpretation of collected data. Moreover, under some circumstances (e.g., contact
tracing during a pandemic), this data processing must be performed in a timely
fashion.

The book is organized into four main sections:

1. An Overview of Real-Time Database Systems: Here, we delve into the realm of
RTDBS. We discuss the specific requirements, transaction models, and scheduling
algorithms that set RTDBS apart from conventional DBMS.

vii



viii Preface

2. Experimental Real-Time Databases: This section presents various experimental
RTDBS developed in academia with their architectures, features, and implemen-
tations. Experimental real-time database systems refer to database management
systems (DBMS) that are developed and implemented for research purposes to
explore and evaluate novel techniques, algorithms, and approaches in handling
real-time data. These systems are not typically intended for production environ-
ments but serve as testbeds for researchers and developers to investigate and
validate new ideas, algorithms, and architectures.

3. Commercial Real-Time Databases: This section presents various commercial
RTDBS with their architectures, features, and implementations. Commercial real-
time database systems refer to database management systems (DBMS) that are
developed and offered by commercial vendors as products or services. These
systems are designed to meet the requirements of real-time data processing and
management in various industries and domains. Unlike experimental systems,
commercial real-time database systems are intended for production environments
and are backed by professional support, maintenance, and ongoing development.

4. Applications of Real-Time Database Systems: The final section showcases var-
ious applications of RTDBS across different domains, highlighting the versatility
and necessity of RTDBS in the contemporary world.

This book encapsulates the vast expanse of RTDBS, providing a systematic ap-
proach to understanding, designing, and implementing them. Whether you are a
student, a researcher, a software professional, or a technology enthusiast, we hope
this book helps your path in exploring Real-Time Database Systems.

CINVESTAV-Guadalajara, Mexico Pedro Mejia-Alvarez
Oracle-MDC, Zapopan, Jalisco, Mexico, Ricardo Zavaleta-Vazquez
CINVESTAV-Guadalajara, Mexico Susana Ortega-Cisneros
CINVESTAV-Guadalajara, Mexico Raul. E. Gonzalez-Torres



Contents

1 An Overview of Real-Time Database Systems . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Challenges in Real-Time Database Systems . . . . . . . . . . . . . . . . . . . . . 2
1.2 Soft vs. Hard Real-Time Database Systems . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contrast with Conventional Database Systems . . . . . . . . . . . . . . . . . . 4
1.4 Real-Time Database Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Data and Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Real-Time Database System Transactions . . . . . . . . . . . . . . . . 6

1.5 Real-Time Database System: Transaction and Query Processing . . . . 8
1.5.1 Scheduling Real-Time Transactions . . . . . . . . . . . . . . . . . . . . . 8

1.6 Admission Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Concurrency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7.1 Priority Inversion in Real-Time Transactions . . . . . . . . . . . . . 12
1.7.2 Locking Concurrency Control Protocols . . . . . . . . . . . . . . . . . 13
1.7.3 Optimistic Concurrency Control Protocols . . . . . . . . . . . . . . . 16
1.7.4 Comparison of Concurrency Control Protocols . . . . . . . . . . . 18
1.7.5 Deadlocks in Concurrency Control Protocols . . . . . . . . . . . . . 19

1.8 Real-Time Distributed Databases and Commit Protocols . . . . . . . . . . 20
1.9 Recovery in Real-Time Database Management Systems . . . . . . . . . . . 22
1.10 Input/Output Scheduling in Real-Time Database Systems . . . . . . . . . 24

1.10.1 Feasible Deadline SCAN (FD-SCAN) . . . . . . . . . . . . . . . . . . . 25
1.10.2 Highest Priority Group First (HPGF) . . . . . . . . . . . . . . . . . . . . 26
1.10.3 Adaptive Earliest Deadline First (A-EDF) . . . . . . . . . . . . . . . . 26
1.10.4 Adaptive Feasible Deadline SCAN (A-FDSCAN) . . . . . . . . . 27
1.10.5 Dynamic I/O Scheduling for Real-Time Systems . . . . . . . . . . 27
1.10.6 Machine Learning-based Scheduling . . . . . . . . . . . . . . . . . . . . 28

1.11 Buffer Management in Real-Time Database Management Systems . . 29
1.11.1 Deadline-Driven Page Replacement (DDPR) Algorithm . . . . 30
1.11.2 Priority-Driven Buffer Management (PDBM) Algorithm . . . 30
1.11.3 Adaptive Real-Time Buffer Management (ARTBM)

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.12 Related Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



x Contents

1.12.1 Main-Memory Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.12.2 Real-Time Data Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.12.3 Time-Series Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.12.4 NoSQL Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Experimental Real-Time Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1 STRIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1.1 STRIP Real-Time Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.2 Data Sharing Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.3 Streams Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.4 View Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 BeeHive Real-Time Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.1 Beehive Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2 Beehive Real-Time Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.3 General Beehive Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.4 Native BeeHive Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 RTSORAC: A Real-Time Object-Oriented Database Model . . . . . . . 50
2.3.1 RTSORAC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.2 Real-time Scheduling Characteristics in RTSORAC . . . . . . . 52
2.3.3 Architecture of RTSORAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 The COMET approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4.1 Components and Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4.2 Aspect Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5 Feedback Control-Based QoS Management on Real-Time Databases 59
2.5.1 Feedback Control Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5.2 Controller Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5.3 Applications in Real-Time Database Management Systems . 60
2.5.4 Advantages and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.5.5 Feedback Control Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 QeDB: A Quality-Aware Embedded Real-Time Database . . . . . . . . . 62
2.6.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6.2 Data and Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6.3 Real-Time Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.6.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.6.5 I/O deadline and CPU deadline . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6.6 QoS Management Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7 RT-MongoDB: A NoSQL Database Solution . . . . . . . . . . . . . . . . . . . . 68
2.7.1 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.7.2 RT-MONGODB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.8 V4DB Real-Time Database Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.8.1 The V4DB System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.8.2 V4DB Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.8.3 Database granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.8.4 Description of the Transactions . . . . . . . . . . . . . . . . . . . . . . . . 77
2.8.5 System Test Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



Contents xi

2.9 Chronos Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.9.1 Architecture of Chronos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.9.2 Client-Server Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.9.3 Adaptive Update Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.9.4 Experiments in Chronos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Commercial Real-Time Database Systems . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.1 SQLite Database Management System . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.1.1 SQLite in RTOS Environments . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2 ITTIA DB: Time Series Platform for Building Embedded Systems

and IoT Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2.1 Overview of ITTIA DB SQL . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2.2 Supported 3rd Party Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2.3 Real-Time Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.3 Raima Database Manager (RDM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.3.1 Non-SQL and SQL Database Design and Manipulation . . . . 95
3.3.2 Product Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.3.3 Transactional File Server (TFS) . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3.4 Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3.5 Circular Tables support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4 eXtremeDB-RT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4.1 Temporal Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.4.2 RT Transaction Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.4.3 Methods to Enforce Deadlines . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.4.4 Supported platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Applications of Real-Time Database Systems . . . . . . . . . . . . . . . . . . . . . . 103
4.1 Military Command and Control Systems (MCCS) . . . . . . . . . . . . . . . 104
4.2 Energy and Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3 Online Gaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4 Environmental Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5 Sensor Network Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.6 Web-based Real-Time Data Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115





Chapter 1
An Overview of Real-Time Database Systems

Real-Time Database Systems (RTDBS) emerge from the convergence of real-time
systems and database systems. As real-time systems become more complex and
require the management of a growing volume of information, incorporating databases
becomes necessary. However, conventional database systems may not adequately
support the timing and temporal requirements. RTDBS offers a solution to this issue
by maintaining the integrity of the database and meeting the urgency of transaction
execution.

This chapter provides a detailed exploration of real-time database systems specifi-
cally designed to handle data in real-time environments where timing constraints are
crucial. The chapter begins by introducing the concept of real-time database systems,
highlighting the unique challenges they face compared to conventional database sys-
tems. It explores the distinction between soft and hard real-time database systems,
emphasizing the criticality of meeting strict timing requirements in hard real-time
scenarios.

Characterizing real-time database systems is a key focus of this chapter. It dis-
cusses the essential characteristics that distinguish them from other database systems,
such as predictability, responsiveness, and consistency. Furthermore, the chapter
draws a contrast between real-time and conventional database systems, emphasizing
the additional considerations and complexities introduced by real-time requirements.
The real-time database model is examined in detail, focusing on data and consistency
management aspects. It also covers real-time database system transactions and their
significance in ensuring data integrity and timeliness. The chapter further explores
transaction and query processing in real-time environments, including scheduling
real-time transactions to meet timing constraints.

Admission control, a critical component of real-time database systems, is dis-
cussed to highlight its role in managing system resources and ensuring the timely
execution of transactions. Concurrency control mechanisms are examined, address-
ing the challenges of data access and conflict resolution in real-time settings. The
chapter also explores real-time distributed databases and the commit protocols re-
quired to maintain consistency across distributed environments. Recovery mech-
anisms specific to real-time database management systems are covered, focusing

1



2 1 An Overview of Real-Time Database Systems

on the ability to recover from failures while adhering to timing constraints. Other
important aspects covered in the chapter include input/output scheduling, which
ensures timely data transfer between the database and external devices, and buffer
management to optimize data storage and retrieval operations.

1.1 Challenges in Real-Time Database Systems

Real-Time Database Systems (RTDBS) are designed to handle time-constrained data
and transactions, which require timely and predictable responses to meet deadlines.
These systems are employed in various domains, including industrial control, finan-
cial services, and telecommunication networks [79]. However, numerous challenges
arise when designing and implementing RTDBS. In this section, we discuss some of
the primary challenges related to concurrency control, data consistency, and recovery
mechanisms in RTDBS.

1. Concurrency Control: Concurrency control is crucial in RTDBS to ensure data
consistency and transaction isolation while allowing multiple transactions to
execute simultaneously [39]. Unfortunately, traditional concurrency control tech-
niques, such as two-phase locking (2PL) and timestamp-based methods, can
lead to priority inversion and unbounded blocking times, which are unsuitable
for real-time applications. To overcome these limitations, researchers have pro-
posed various real-time concurrency control techniques like priority inheritance,
priority ceiling, and optimistic concurrency control [4, 36, 90]. However, these
techniques may still experience challenges, such as increased transaction abort
rates and complex implementation, which affect the system’s predictability and
performance.

2. Data Consistency and Temporal Constraints: Maintaining data consistency
and addressing temporal constraints are significant challenges in RTDBS. While
traditional databases focus on maintaining consistency through serializability,
this notion may not be suitable for real-time applications due to the strict tim-
ing requirements [35]. To ensure timely data access, researchers have proposed
alternative consistency models, such as epsilon serializability, probabilistic seri-
alizability, and real-time serializability [15, 76, 98]. These models aim to relax
the consistency requirements and provide a trade-off between data freshness and
response time.

3. Recovery Mechanisms: Recovery mechanisms in RTDBS must guarantee data
durability and system availability while minimizing the impact on ongoing trans-
actions [7]. Traditional recovery techniques, such as logging and checkpointing,
may not be directly applicable to real-time systems due to their sequential nature
and lack of time awareness. Researchers have proposed real-time logging and
recovery algorithms, such as SPLIT and ARUN [96], which divide the data into
equivalence classes based on transaction and data attributes. These algorithms
allow for partial recovery, reducing the recovery time and enabling transactions
to proceed without waiting for the entire system to recover.



1.2 Soft vs. Hard Real-Time Database Systems 3

As real-time applications become more complex and diverse, new challenges
emerge in the design and implementation of RTDBS. For example, integrating
emerging technologies, such as solid-state disks (SSDs) and non-volatile memory,
can improve the performance and predictability of RTDBS [33]. Additionally, de-
veloping adaptive and self-tuning database systems that can dynamically adjust their
behavior based on workload characteristics and system requirements is a promising
research direction [50].

1.2 Soft vs. Hard Real-Time Database Systems

Speed is a selling point in everything, from cars to meal delivery to data management.
The term real-time has been used by most in the database system industry to mean fast.
For example, real-time processing enables more-or-less immediate results versus the
previous century’s typical overnight batch processing. However, a difference must
be noted between real-time processing and real-time systems. In the latter, real-time
means “various operations . . . that must guarantee response times within a specified
time (deadline)”. A fast database is suitable for real-time processing, but a real-time
database aware of deadlines is required for real-time systems. It should also be noted
that there is a crucial distinction between soft and hard real-time systems and the
need for speed.

A soft real-time system wants speed and reliability and for all tasks to complete
within the developer’s scheduled window. Faster is usually better, but a missed
deadline is not a life-or-death matter. One such example is voice-over IP or VoIP. If
a task runs past its deadline, it might result in poor call quality or even a dropped
call. It might feel essential and frustrating to the telemarketer on the phone, but the
entire system doesn’t fail, and no lives are lost.

The complete system failure of a soft real-time system is averted because a soft
real-time system has the luxury of tolerating missed deadlines. A hard real-time
database system must enforce set transaction deadlines without fail. Speed might be
desirable, but it is not a necessity. Ultra-fast might feel fun when test-driving a new
sports car, but is it fast enough to apply the brakes and avoid hitting that pedestrian
who was texting instead of looking at the crossing light? Most would prefer a braking
system with guaranteed deadlines and therefore guaranteed response time under such
circumstances.

Hard real-time database system transactions are only allowed if they finish within
their deadline. Transactions destined to be late are identified, interrupted, and forced
to initiate rollback in time to satisfy deadlines. The real-time database system’s goal
is not to ensure speed (that is the purview of the real-time system developer that
determines appropriate deadlines) but to maximize the number of transactions that
meet their deadline. Speed can kill without a firm deadline for transaction rollback
or commit. Or, to put it another way, speed is only good under certain circumstances
if you have reliable brakes.



4 1 An Overview of Real-Time Database Systems

1.3 Contrast with Conventional Database Systems

The designer of a Real-Time Data Base System, such as the ones mentioned pre-
viously, might be tempted to use a traditional database management system as the
backend. However, since its beginning, the term Real-Time has been a subject of
misconceptions. Therefore, it is worth taking just a moment to enumerate some dif-
ferences between real-time and conventional databases. In 1988, Stankovic noticed
this situation and wrote a paper to clarify. In [103], he states that the results in the
area we have today were possible thanks to the precise definition of the concept of
a real-time system. By 1999, Stankovic also mentioned that the area of Real-Time
databases was similar to the one we had in 1989 regarding Real-Time Systems. So, a
new paper was required to shed some light on what a real-time database was. The fol-
lowing paragraphs summarize some crucial differences between these two flavors of
database systems. One initial difference is this: in contrast to conventional database
systems, RTDBS must often deal with an external environment that imposes new
relations between the data objects in the database and the dynamic real-world objects
they model.

The relation to the external environment introduces new consistency constraints
besides the internal constraints in traditional databases [52] [55] [61]. These con-
sistency restrictions are the temporal restrictions discussed in the previous section.
In other words, we have two types of restrictions: on the one hand, stock index infor-
mation in the database of a stock trading system must be sufficiently kept up to date.
On the other hand, we have restrictions like the values of two data objects, such as
the ones involved in the position of a vehicle, which must be sufficiently correlated
in time.

Other challenges also arise. For example, one misconception is that advances in
hardware will take care of the requirements of the real-time systems and the real-
time databases [103]. However, advances in hardware will not ensure that real-time
transactions be adequately scheduled to meet their deadlines. Similarly, they will
only ensure that the data used is temporarily valid. Furthermore, more than faster
hardware will be needed to solve the challenges of real-time transactions. Real-Time
is about something apart from being fast but having a predictable response time. Fast
computing only minimizes the average response time.

Advances in database technology are not enough, either. Real-Time transactions
require time-cognizant protocols for concurrency control, committing, and transac-
tion scheduling. Even with the popularity of in-memory databases, the challenges
of real-time transactions will not be solved because disk access is only one source
of unpredictability. Given these ideas, it is evident that studying real-time databases
as a problem is required. Of course, we can take advantage of modern hardware or
modern operating systems techniques. Still, it is essential to keep in mind that the
area of real-time database systems has its problems and must be dealt with separately.



1.4 Real-Time Database Model 5

1.4 Real-Time Database Model

Real-time systems consist of two main components: the controlling system and the
controlled system [63]. The controlled system is the environment that interacts with
the computer and its software. In contrast, the controlling system interacts with its
environment based on data collected from various sensors, such as distance and speed
sensors. Therefore, the state of the environment must align with its current state with
a high degree of precision. Otherwise, the actions taken by the controlling systems
could lead to disastrous outcomes. Thus, it is necessary to monitor the environment
in real-time and promptly process the information gathered from it. Often, the data
collected is processed to generate new data.

This section explores the characteristics of data and transactions in real-time
database systems.

1.4.1 Data and Consistency

Timing constraints in real-time database systems arise from the continuous need to
monitor the environment and the necessity to supply data to the controlling system
for its decision-making activities. The need to maintain consistency between the
actual state of the environment and the state depicted by the contents of the database
gives rise to the concept of temporal consistency. Temporal consistency comprises
two elements:

• Absolute consistency: This consistency implies that data remains valid only
between absolute points in time. It is necessary to maintain database consistency
with the environment.

• Relative consistency: This consistency suggests that different data items used to
generate new data must be temporally consistent with each other. A set of data
items used to produce a new data item must form a relative consistency set 𝑅.
A data item 𝑑 is considered temporally consistent if and only if it is absolutely
consistent and relatively consistent.

Each data item in a real-time database contains the object’s current state (i.e., the
current value stored in that data item) and two timestamps. These timestamps indicate
the time when the committed transaction last accessed this data item. These times-
tamps are utilized in the concurrency control method to ensure that the transaction
only reads from committed transactions and writes after the most recent committed
write. Formally,

Definition 2.1 A data item in the real-time database is represented as:

𝑑 : (𝑣𝑎𝑙𝑢𝑒, 𝑅𝑇𝑆,𝑊𝑇𝑆, 𝑎𝑣𝑖) (1.1)

where 𝑑𝑣𝑎𝑙𝑢𝑒 indicates the current state of 𝑑, 𝑑𝑅𝑇𝑆 shows when the last committed
transaction read the current state of 𝑑, 𝑑𝑊𝑇𝑆 denoted when the previous committed



6 1 An Overview of Real-Time Database Systems

transaction wrote 𝑑, i.e., when the observation relating to 𝑑 was made, and
𝑑𝑎𝑣𝑖 represents 𝑑’s absolute validity interval, i.e., the length of the time interval
following 𝑅𝑊𝑇𝑆 during which 𝑑 is considered to be absolutely valid.

A set of data items used to generate a new data item forms a relative consistency
set 𝑅. Each such set 𝑅 is linked to a relative validity interval.

An individual data item is part of a relative consistency set, 𝑅, which is associated
with a relative validity interval. For a data item 𝑑 ∈ 𝑅, it is considered to have a
correct state only when:

1. The value of 𝑑 is logically consistent, meaning it satisfies all the integrity con-
straints.

2. The data item 𝑑 is temporally consistent, which further breaks down into two
criteria:

• A data item 𝑑 ∈ 𝑅 is deemed absolutely consistent if and only if the difference
between the current time and the time of observation of 𝑑 is less than or equal
to the absolute validity interval of 𝑑.

• Data items are relatively consistent if and only if for all 𝑑′ ∈ 𝑅, the absolute
difference between the timestamps of 𝑑 and 𝑑′ is less than or equal to the
relative validity interval of 𝑅.

In simpler terms, every data item in a real-time database has a specific current state
value along with two timestamps. These timestamps record when the last transaction
that was committed accessed this data item. These timestamps significantly manage
the system’s concurrency, ensuring that transactions only read from other committed
transactions and write after the latest committed write operation.

1.4.2 Real-Time Database System Transactions

This section discusses transactions in a real-time database system in terms of their
data usage, time constraints, and the consequences of not meeting specified time
constraints. A formal definition of transactions is required to analyze transactions
and the correctness of management algorithms. For simplicity, it is assumed that
each transaction reads and writes a data item at most once. From now on, 𝑟 , 𝑤, 𝑎,
and 𝑐 represent read, write, abort, and commit operations, respectively.

Definition 2.2: A transaction 𝑇𝑖 is a partial order with an ordering relation ≺𝑖

where:

1. 𝑇𝑖 = 𝑟𝑖 (𝑥), 𝑤𝑖 (𝑥) | 𝑥 is a data item ∪ 𝑎𝑖 , 𝑐𝑖;
2. 𝑎𝑖 ∈ 𝑇𝑖 if and only if 𝑐𝑖 ∉ 𝑇𝑖;
3. If 𝑡 is 𝑐𝑖 or 𝑎𝑖 , for any other operation 𝑝 ∈ 𝑇𝑖 , 𝑝 ≺𝑖 𝑡; and
4. If 𝑟𝑖 [𝑥], 𝑤𝑖 [𝑥] ∈ 𝑇𝑖 , then either 𝑟𝑖 [𝑥] ≺𝑖 𝑤𝑖 [𝑥] or 𝑤𝑖 [𝑥] ≺𝑖 𝑟𝑖 [𝑥].

A transaction is a subset of read, write, and abort or commit operations. If the
transaction executes an abort operation, it will not execute a commit operation. If a



1.4 Real-Time Database Model 7

particular operation 𝑡 is aborted or committed, the ordering relation dictates that all
other operations precede the operation 𝑡 in the execution of the transaction. If both
read and write operations are executed on the same data item, the ordering relation
defines the order between these operations.

A real-time transaction is a transaction with additional real-time attributes, such
as timing constraints, criticalness, value function, unfinished work after the deadline,
computation already executed, slackness, resource requirements, expected execution
time, data requirements, periodicity, time of occurrence of events, and other seman-
tics like transaction type (read-only, write-only, etc.). Based on the values of these
attributes and the availability of information, real-time transactions can be charac-
terized as having implications of missing deadlines (hard, critical, or soft real-time),
arrival patterns (periodic, sporadic, or aperiodic), data access patterns (predefined
or random), data requirements (known or unknown), runtime requirements (known
or unknown), and accessed data types (continuous, discrete, or both). The most
used parameters for real-time transaction scheduling algorithms are deadlines and
criticality, which are often in conflict. This section discusses scheduling techniques
found in the literature and how to determine which tasks are eligible for service, and
how to assign priorities.

The first decision a scheduler must make is determining which transactions are
eligible for execution. Transactions can be divided into two sets: eligible and non-
eligible. The system could choose one of the following three alternatives:

• All jobs are eligible for service.
• Only non-tardy transactions are eligible for service.
• Only jobs with feasible transactions are eligible for service.

These three possibilities require increasing information about the transactions.
For example, knowing which transactions are feasible requires knowledge about
execution time or response time. Priorities must be assigned once the system knows
which jobs can be executed. The real-time database system employs three types
of transactions: write-only item transactions, update transactions, and read-only
Transaction processing and concurrency control. A real-time database system should
prioritize the criticalness of the transactions. However, when used in a real-time
environment, traditional methods for transaction processing and concurrency control
can lead to undesired behaviors. Below are four typified problems where priority
signifies either the scheduling priority or criticality of the transaction:

• Wasted wait: This happens when a lower priority transaction waits for the com-
mit of a higher priority transaction, and later the higher priority transaction is
discarded due to missing its deadline.

• Wasted restart: This occurs when a higher priority transaction aborts a lower
priority transaction, and later the higher priority transaction is discarded due to
missing its deadline.

• Unnecessary restart: This occurs when a transaction in the validation phase is
restarted despite history being serializable.



8 1 An Overview of Real-Time Database Systems

• Wasted execution: This situation arises when a lower-priority transaction in the
validation phase is restarted due to a conflicting higher-priority transaction that
hasn’t finished yet.

Traditional two-phase locking methods suffer from the problems of wasted restart
and wasted wait. In contrast, optimistic methods struggle with the issues of wasted
execution and unnecessary restart.

1.5 Real-Time Database System: Transaction and Query
Processing

In this section, we delve into transaction and query processing aspects and their
various characteristics. Transactions and queries possess time constraints, and failing
to meet these constraints can lead to a wide range of consequences [65]. Therefore,
predictability is a critical factor in transaction processing [71]. For example, missing
a deadline for a real-time transaction could result in catastrophic consequences,
making it essential to ensure that such transactions are completed within the specified
deadlines. Achieving this goal requires predicting the worst-case execution time and
understanding the transaction’s data and resource demands.

Unpredictability in database systems can arise from multiple sources [65]:

• The transaction’s execution order depends on data values.
• Conflicts related to data and resources. Dynamic item paging and I/O operations.
• Transaction aborts, leading to rollbacks and restarts.
• Communication delays and site failures in distributed databases.

The execution route of a transaction may rely on the accessed data items, com-
plicating worst-case execution time predictions. Refraining from using unbounded
loops, recursive, or dynamically created data structures in real-time transactions is
also advisable. Employing main memory databases can help mitigate the unpre-
dictability of dynamic paging and I/O [52]. Additionally, deadlines and priority-
driven I/O controllers (e.g., [99, 111]) can help reduce I/O unpredictability. Trans-
action rollbacks contribute to unpredictability, and it is thus advisable to limit a
transaction to writing only within its memory area. Once the transaction is con-
firmed to commit, the modifications can be reported to the database [54].

1.5.1 Scheduling Real-Time Transactions

Real-time database system transactions are distinct due to their time constraints.
While the performance goal in a conventional database system often focuses on
average response time, the objective in an RTDBS is to minimize transactions that
breach timing constraints [3]. The Timely Transactions Per Second (TTPS) metric
demonstrates this aim [48].



1.5 Real-Time Database System: Transaction and Query Processing 9

Real-time job scheduling research primarily addresses CPU scheduling, but trans-
action scheduling involves additional resources. The following equation represents
transaction execution time:

𝑡𝑒𝑥𝑒𝑐 = 𝑡𝑑𝑏 + 𝑡𝐼/𝑂 + 𝑡𝑖𝑛𝑡 + 𝑡𝑎𝑝𝑝𝑙 + 𝑡𝑐𝑜𝑚𝑚 (1.2)

Where: 𝑡𝑑𝑏 signifies DB operations processing 𝑡𝐼/𝑂 denotes I/O processing 𝑡𝑖𝑛𝑡
represents transaction interference 𝑡𝑎𝑝𝑝𝑙 refers to non-DB application processing
𝑡𝑐𝑜𝑚𝑚 is the communication time

Predictability is crucial for real-time transaction processing [63]. The above equa-
tion highlights various unpredictability sources, such as data and resource conflicts
among transactions, dynamic paging, and I/O operations; the transaction aborts, lead-
ing to rollbacks and restarts, and more. Managing these sources of unpredictability
is a complex and challenging task.

Scheduling policies significantly impact database system performance as they
determine individual transaction priority selection [3]. Ramamritham elaborates
in [78] on applying various scheduling techniques to different RTDBS types. He
differentiates between hard and soft real-time systems and attempts to frame the
real-time transactions problem as a generic real-time scheduling issue. He proposes
that scheduling hard real-time transactions necessitates knowing when transactions
are likely to be invoked. This information is readily available for periodic transac-
tions. Still, an alternative approach may be required for aperiodic transactions, such
as considering the smallest separation between two consecutive invocations as the pe-
riod. Other essential information includes deadlines and worst-case execution times.
Armed with this information, we can employ table-driven schedulers or preemptive
priority-driven schedulers. It is crucial to ensure that the worst-case execution time
exhibits minimal variance, as any variance will influence the generated schedule,
possibly leading to extensive idle times between executions.

A transaction scheduling policy defines the priorities assigned to individual trans-
actions [99]. The goal of transaction scheduling is to guarantee that as many trans-
actions as possible meet their deadlines. Numerous transaction scheduling policies
exist in the literature, but only a few are discussed here. Real-time database transac-
tions can often be compared to tasks in a real-time system [99]. Scheduling involves
allocating resources and time to tasks to fulfill specific performance requirements. A
typical real-time system comprises multiple tasks that require concurrent execution.
Each task has a value, representing the gain for the system if the task is completed
within a specific time frame. Each task also has a deadline, specifying the time limit
beyond which the computation result is considered worthless.

This discussion classifies transactions as hard, soft, and firm [99]. This classi-
fication reflects the value the system gains when a transaction meets its deadline.
In systems using priority-driven scheduling algorithms, the value and deadline are
employed to determine the priority [12].

Most real-time scheduling algorithms adopt priority-based scheduling [99]. In
this context, transactions are assigned priorities based on their deadlines, criticality,
or both. The criticality of a transaction indicates its level of importance. However,



10 1 An Overview of Real-Time Database Systems

these two criteria may sometimes conflict. For example, transactions with short
deadlines might not be critical, and vice versa. In such cases, transaction criticality
is used instead of the deadline when selecting the appropriate priority value. This
approach avoids the dilemmas of priority scheduling while integrating criticality
and deadline to ensure that more critical transactions also meet their deadlines. The
objective is to maximize the net worth of executed transactions for the system.

Different types of value functions can be associated with transactions, but the
following simple functions are most common:

• Hard deadline transactions could result in disastrous consequences if the deadline
is missed. In these cases, it can be argued that a large negative value is added to
the system if a hard deadline is missed. These are usually safety-critical activities,
such as those addressing life-threatening or environmental emergencies.

• Soft deadline transactions maintain some value even beyond their deadlines.
Typically, the value drops to zero at some point after the deadline.

• Firm deadline transactions add no value to the system once their deadlines expire;
in other words, the value drops to zero at the deadline.

1.6 Admission Control

Real-time database management systems (RTDBMS) are designed to handle time-
critical applications that require strict timing constraints and deadlines for data
transactions. One of the essential components of an RTDBMS is admission control,
which is responsible for deciding whether to accept or reject incoming transactions
based on their temporal requirements and the current system workload. This section
presents an overview of admission control in real-time database management sys-
tems, discussing various techniques, examples, and equations relevant to the topic.

Several admission control techniques have been proposed for use in RTDBMS.
Some of the most common approaches include the following.

• Static Admission Control:
In static admission control, the decision to accept or reject a transaction is made
based on the system’s design-time parameters, such as the maximum number of
concurrent transactions and the worst-case execution time for each transaction
type. A typical static admission control approach is to use the utilization control
algorithm, which can be expressed as:

𝑈 (𝑛) =
𝑛∑︁
𝑖=1

𝐶𝑖

𝑇𝑖
≤ 𝑛 · (2 1

𝑛 − 1), (1.3)

where 𝑈 (𝑛) is the system’s total utilization, 𝑛 is the number of tasks, 𝐶𝑖 is the
worst-case execution time of task 𝑖, and 𝑇𝑖 is the period of task 𝑖 [64].



1.6 Admission Control 11

• Dynamic Admission Control:
Dynamic admission control makes decisions based on runtime parameters and
system state. In addition, it considers factors such as current workload, deadlines,
and resource availability. Examples of dynamic admission control techniques
include the EDF-based (Earliest Deadline First) admission control [105], and
the IMpact-Based Admission Control (IMPAC) [117]. The EDF-based admission
control calculates the slack time (𝑆𝑇) for each incoming transaction, defined as
the difference between the transaction’s deadline and its estimated completion
time. If the slack time is positive, the transaction is accepted, and if it is negative,
the transaction is rejected:

𝑆𝑇𝑖 = 𝐷𝑖 − (𝐸𝑖 + 𝑆𝑖), (1.4)

where 𝑆𝑇𝑖 is the slack time for transaction 𝑖, 𝐷𝑖 is the deadline of transaction 𝑖,
𝐸𝑖 is the estimated completion time of transaction 𝑖, and 𝑆𝑖 is the start time of
transaction 𝑖.
The Impact method, on the other hand, computes an impact factor for each
transaction based on the degree to which it may affect the timeliness of other
transactions in the system. The impact factor (𝐼𝐹) is calculated as:

𝐼𝐹𝑖 =
∑︁

𝑗∈𝐶𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡𝑖𝑛𝑔𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑖)

𝑊𝑖 · 𝐶 𝑗

𝐷 𝑗 − 𝐸 𝑗

, (1.5)

where 𝐼𝐹𝑖 is the impact factor of transaction 𝑖, 𝑊𝑖 is the weight of transaction 𝑖,
𝐶 𝑗 is the execution time of transaction 𝑗 , 𝐷 𝑗 is the deadline of transaction 𝑗 , and
𝐸 𝑗 is the estimated completion time of transaction 𝑗 . A transaction is accepted if
its impact factor is lower than a pre-defined threshold.

• Hybrid Admission Control:
Hybrid admission control techniques combine the strengths of both static and
dynamic approaches to provide more robust admission control decisions. One
such approach is the Predictive Dynamic Real-Time Admission Control (PDR-
TAC) [74]. This method uses a prediction model to estimate future system work-
load, taking into account both historical and current workloads. Based on the
predicted workload and available resources, the algorithm dynamically decides
whether to accept or reject a transaction.
One recent example of Admission Control can be found in [48]. Kang et al.
define a degree of timing constraint violation, 𝛿, which is calculated periodically
using the following formula:

𝛿(𝑘) = 𝑡𝑚 (𝑘) − 𝑡𝑠
𝑡𝑠

(1.6)

where 𝑘 refers to the measurement period, 𝑡𝑚 refers to the average service delay
and 𝑡𝑠 is the desired delay bound. Depending on the workload, the calculated 𝛿(𝑘)
may vary abruptly. A smoother value can be obtained by using an exponential
moving average over several measurement periods:



12 1 An Overview of Real-Time Database Systems

𝛿𝑠 (𝑘) = 𝛼 · 𝛿(𝑘) + (1 − 𝛼) · 𝛿𝑠−1 (𝑘) (1.7)

where 0 ≤ 𝛼 ≤ 1 is a parameter in the system, but in [48] a value of 𝛼 = 0.5
is used. Notice that a smaller 𝛼 implies considering a longer history of 𝛿s, while
𝛼 = 1 implies using only the current value of 𝛿.

1.7 Concurrency Control

In database systems, simultaneous access to database items by various transactions
through read and write operations must be managed to maintain database consistency.
Concurrency Control (CC) protocols address conflicts between transactions. These
protocols ensure the correctness of an execution history by checking Serializability,
which means the transaction output should be the same as if they were executed
sequentially, one after another [14].

To develop a real-time transaction scheduling algorithm, two requirements must
be met:

1. Defining transaction priorities
2. Resolving conflicts between transactions using parameters like deadline, critical-

ity, slack time, etc.

Real-time databases have extensively studied concurrency control in literature.
The challenge is balancing transaction urgency while maintaining system consis-
tency. Traditional concurrency control protocols are unsuitable for real-time transac-
tions due to frequent priority inversions [56]. Many time-aware concurrency controls
have been proposed, often extending two-phase locking (2PL), timestamp, and opti-
mistic concurrency control protocols.

1.7.1 Priority Inversion in Real-Time Transactions

The problem of priority inversion comes when a high priority transaction needs a
lock held by a low priority transaction [51]. The regular 2PL protocol would let
the high priority transaction wait until the low priority transaction releases the lock.
For example, imagine the case where 𝑇0 is blocked by 𝑇3 for accessing some data
object, then 𝑇3 is blocked by 𝑇2, and the priorities are such that 𝑇0 > 𝑇2 > 𝑇3. In this
situation, the high priority transaction might end up missing its deadline, impact-
ing the performance metrics of the real-time database. Priority inversion is highly
undesirable in real-time applications because the delay may become unbounded.



1.7 Concurrency Control 13

1.7.2 Locking Concurrency Control Protocols

Pessimistic concurrency control uses locks to synchronize concurrent actions. The
most common protocol for traditional systems is Two-Phase Locking (2PL). 2PL
blocks a requesting transaction if the data is already locked in an incompatible
mode. In this protocol, all lock operations occur before the first unlock operation in
the transaction. The phase where locks are obtained is the expanding phase, and the
phase where locks are released is the shrinking phase. 2PL can be used in real-time
transactions, but it has two main issues: deadlocks and priority inversion.

One initial solution for priority inversion is simply aborting the lower-priority
transaction. This algorithm, shown in Algorithm 1, is called the High-Priority
Protocol. In this case, there is no blocking, resulting in rapid resolution.

Algorithm 1 𝐻𝑖𝑔ℎ𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑇𝑅, 𝑇𝐻 )
if 𝑝𝑟 (𝑇𝑅 ) > 𝑝𝑟 (𝑇𝐻 ) then

𝑇𝑅 aborts 𝑇𝐻
else

𝑇𝑅 waits
end if

The High-Priority protocol has two issues. First, aborting transactions wastes
resources. Second, depending on the priority assignment function, an aborted trans-
action may restart with a higher priority than before. For instance, if the system uses
the least slack to assign priorities, the new incarnation of a transaction may have
the least slack and, therefore, a higher priority. This problem is known as cyclic
restart. The High Priority without cyclic restart protocol addresses this issue by
also analyzing the priority of the future incarnation of the current holder transaction.
The algorithm is listed in Algorithm 2.

Algorithm 2 𝐻𝑖𝑔ℎ𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑁𝑜𝐶𝑦𝑐𝑙𝑖𝑐𝑅𝑒𝑠𝑡𝑎𝑟𝑡 (𝑇𝑅, 𝑇𝐻 )
if 𝑝𝑟 (𝑇𝑅 ) > 𝑝𝑟 (𝑇𝐻 ) AND 𝑝𝑟 (𝑇𝑅 ) > 𝑝𝑟 (𝑇𝐴

𝑅
) then

𝑇𝑅 aborts 𝑇𝐻
else

𝑇𝑅 waits
end if

The system could be designed to execute the blocking transaction (low priority)
with the priority of the blocked transaction (high priority) to avoid aborting the
low-priority transaction. This is a way of reflecting the urgency of completing the
low-priority transaction. This approach is called Wait Promote, and its pseudocode
is shown in Algorithm 3. The advantage of this approach is that the intermediate
blocking is eliminated. However, the system still blocks the high-priority transaction.



14 1 An Overview of Real-Time Database Systems

Algorithm 3𝑊𝑎𝑖𝑡𝑃𝑟𝑜𝑚𝑜𝑡𝑒(𝑇𝑅, 𝑇𝐻 )
if 𝑝𝑟 (𝑇𝑅 ) > 𝑝𝑟 (𝑇𝐻 ) then

𝑇𝑅 waits
𝑇𝐻 inherits the priority of 𝑇𝑅

else
𝑇𝑅 waits

end if

Algorithm 4 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑅𝑒𝑠𝑡𝑎𝑟𝑡 (𝑇𝑅, 𝑇𝐻 )
𝐸𝐻 := estimated remaining running time of 𝑇𝐻
𝑆𝑅 := estimated slack time of 𝑇𝑅
if 𝑝𝑟 (𝑇𝑅 ) > 𝑝𝑟 (𝑇𝐻 ) AND 𝑝𝑟 (𝑇𝑅 ) > 𝑝𝑟 (𝑇𝐴

𝑅
) then

if 𝑆𝑅 >= 𝐸𝐻 then
𝑇𝑅 waits
𝑇𝐻 inherits the priority of 𝑇𝑅

else
𝑇𝑅 aborts 𝑇𝐻

end if
else

𝑇𝑅 waits
end if

Another option to deal with the priority inversion is to do a conditional restart of
the low-priority transaction. The decision would be based on the estimated length of
the transaction. In other words, the low-priority transaction could inherit the priority
of the other only if it is close to completion; abort it otherwise. This approach is
known as Conditional Restart Protocol. The pseudocode is shown in Algorithm 4.
The problem with this idea is that estimates of transaction lengths must be available.

In [90], the RWPCP (Read-Write Priority Ceiling Protocol) is proposed as a
pessimistic concurrency control protocol suitable for periodic hard real-time trans-
actions. RWPCP is an extension of the PCP (Priority Ceiling Protocol). RWPCP
proposes priority levels for writing and reading (𝑊𝑃𝐿𝑖 and 𝑅𝑃𝐿𝑖 , respectively).
𝑊𝑃𝐿𝑖 is the highest priority of all transactions that may write 𝑂𝑖 . 𝑅𝑃𝐿𝑖 is the
highest priority of all transactions that may read or write 𝑂𝑖 . The idea is that if a
transaction wants to lock a data object𝑂𝑖 , its priority has to be greater than 𝑅𝑊𝑃𝐿𝑖 ,
where 𝑅𝑊𝑃𝐿𝑖 is 𝑊𝑃𝐿𝑖 if 𝑂𝑖 is read-locked and it is 𝐴𝑃𝐿𝑖 if it is write-locked.
If the transaction happens to have a priority greater than 𝑅𝑊𝑃𝐿𝑖 , then the priority
of the blocking transaction is increased (i.e., it inherits the priority of the blocked
transaction).

To understand 𝑅𝑊𝑃𝐶𝑃 better, let us review one example given in [56]. Suppose
that we have 3 transactions 𝑇1, 𝑇2, and 𝑇3 with priorities 1, 2, and 3, respectively.
The lower the number, the higher the priority. Suppose also that 𝑇1 reads object
𝑂1, 𝑇2 writes object 𝑂1 and reads object 𝑂2, and 𝑇3 writes object 𝑂2. This means
that 𝑂1 has 𝑊𝑃𝐿1 = 2 and 𝐴𝑃𝐿1 = 1, according to the previous definition. 𝑂2 has
𝑊𝑃𝐿2 = 3 and 𝐴𝑃𝐿2 = 2. Figure 1.1 shows how the transactions would be executed.



1.7 Concurrency Control 15

𝑇3 write-locks object 𝑂2 successfully and 𝑅𝑊𝑃𝐿2 = 𝑊𝑃𝐿2 = 2. Then 𝑇2 arrives
and preempts 𝑇3 because it has a higher priority, but it fails to acquire the write-lock
on 𝑂1 because it would require a priority higher than 2. 𝑇3 later releases the lock for
𝑂2 and 𝑇2 is now able to acquire the write lock. At that point, 𝑅𝑊𝑃𝐿1 = 𝐴𝑃𝐿1 = 1.
𝑇1 kicks in and preempts 𝑇2 but fails to acquire the read lock for 𝑂1 because it
does not have a priority higher than 1. Later, 𝑇2 acquires a read lock on object 𝑂2
successfully. Once the locks on 𝑂1 and 𝑂2 are released by 𝑇2, 𝑇1 comes in, and it
can now acquire the read lock on object 𝑂1.

As mentioned earlier, this protocol is suitable for periodic hard real-time transac-
tions. Still, it requires information about the set of possible transactions in the system
and a fixed set of data objects. Also, notice that a high-priority transaction may, in
some cases, be blocked for a long time. The advantage, though, is that it allows at
most only one priority inversion for every transaction [91].

Fig. 1.1 Example of RWPCP Schedule [56]

2VPCP (Two-version priority ceiling protocol) [54] was proposed to reduce the
time that high priority transactions are blocked. It uses the notion of a local and
a consistent version of the data objects. Read operations read from the consistent
version; write operations update the local versions; committed transactions update
the consistent version. Before a transaction commits, it has to convert its write locks
into "certify" locks. The certify locks grants the permission to update the consistent
version of the data. For the case of 2VPCP, 𝑅𝑊𝑃𝐿𝑖 = 𝑊𝑃𝐿𝑖 when a transaction
acquires a read or write lock. 𝑅𝑊𝑃𝐿𝑖 = 𝐴𝑃𝐿𝑖 when a transaction acquires a certify
lock. Let us see an example to understand the protocol better. Let us use the same
set of transactions, objects, and priorities described before (See Figure 1.2).



16 1 An Overview of Real-Time Database Systems

𝑇3 acquires the write lock on 𝑂2 successfully and 𝑅𝑊𝑃𝐿2 = 𝑊𝑃𝐿2 = 3. 𝑇2 then
preempts𝑇3 and tries to acquire a write lock on𝑂1 and in this case it succeeds because
it has a priority 2, which is higher than 𝑅𝑊𝑃𝐿2 = 3. Now 𝑅𝑊𝑃𝐿1 = 𝑊𝑃𝐿1 = 2.

Later 𝑇1 arrives and wants a read lock on 𝑂1. Since it has a higher priority than
𝑅𝑊𝑃𝐿1 = 2 and 𝑅𝑊𝑃𝐿2 = 3, it acquires the lock successfully. Then 𝑇1 unlocks the
objects and commits.𝑇2 then wants to commit and has to acquire a certify lock for the
written object 𝑂1. It succeeds because the priority of the transaction is greater than
𝑅𝑊𝑃𝐿2 = 3. At that point, 𝑇2 copies its local version to the consistent version. In
this case, we can observe that low priority transactions do not block higher priority
transactions because high priority transactions utilize the consistent version of the
objects.

Fig. 1.2 Example of 2VPCP Schedule [56]

1.7.3 Optimistic Concurrency Control Protocols

We have previously discussed the Pessimistic approach to concurrency control.
However, an optimistic method of handling concurrency exists, which we will discuss
in this section.

Optimistic concurrency control protocols (OCC) are those where data conflicts
are not checked during the execution of a transaction. A transaction executed under
this model follows these phases:

1. Read phase: Retrieve values from the database and update local copies.



1.7 Concurrency Control 17

2. Validation phase: Conduct a backward or forward validation and execute a
conflict resolution algorithm if needed.

3. Write phase: If validation is successful, write the local copies to the database. If
not, discard updates and restart the transaction.

The validation step is the most intriguing part of an OCC protocol. As previ-
ously discussed, the concurrency control scheduler must find a serializable schedule.
Therefore, an OCC protocol needs to ensure during the validation phase that if a
transaction 𝑇𝑖 is serialized before transaction 𝑇𝑗 , this schedule satisfies the following
two rules [38]:

1. R/W rule. Data items modified by 𝑇𝑖 should not have been read by 𝑇𝑗 at the time
of the modification.

2. W/W rule. Modifications performed by 𝑇𝑗 should not be overwritten by 𝑇𝑖 .

If either of these rules are not met, one of the following conflict resolution options
can be employed:

1. The first option is known as Broadcasting commit. This option does not consider
priority. Instead, the transaction𝑇 always commits, and all conflicting transactions
are aborted. This approach is inefficient in real-time databases due to the potential
number of rollbacks.

2. The Sacrifice Policy (or OPT-Sacrifice) mandates that the transaction 𝑇 that
detects the conflict. However, there’s no guarantee that the other transaction(s)
will commit. If all transactions in the history abort, then 𝑇 is unnecessarily
aborted.

3. Another approach is to wait and see if the transactions in the history commit.
If they do, transaction 𝑇 must commit. This approach is known as Wait Policy
(or OPT-Wait). The problem with waiting is that if the conflicting history’s
transactions commit, and if 𝑇 it is a low-priority transaction, it may not have
enough time to restart and commit. Moreover, the longer 𝑇 stays around, the
higher the likelihood of conflicts.

4. Another attempt to solve the problem is by allowing 𝑇 to commit unless there is
more than 𝑋 percent of conflicting transactions. This approach is called Wait-X
Policy (or OPT-Wait-X), and it is a compromise between sacrifice and wait.
Wait-X can be seen as a generalization of OPT-Sacrifice and OPT-Wait policies. If
𝑋 = 0, we get the sacrifice policy, whereas if 𝑋 = 100, we get the Wait policy. [34]
shows that 𝑋 = 50 yields the best results.

5. Another example of an optimistic concurrency control protocol is provided in [62].
This protocol utilizes timestamp intervals, which are adjusted throughout the
execution of the algorithm. If an interval is null at the end of a transaction, the
transaction is aborted.
The transactions are initially assigned a timestamp interval spanning𝑇 𝐼𝑖 = [0,∞).
When another transaction executes, its validation phase, 𝑇 𝐼𝑖 , is adjusted to reflect
the data or access dependencies. The pseudocode of 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒() and 𝑎𝑑𝑗𝑢𝑠𝑡 () are
shown in Algorithm 5 and Algorithm 6, respectively.



18 1 An Overview of Real-Time Database Systems

Algorithm 5 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒(𝑇𝑣)
Select a 𝑇𝑆 (𝑇𝑣 ) from 𝑇𝐼 (𝑇𝑣 )
for all 𝑇𝛼 in its read phase do

𝑎𝑑 𝑗𝑢𝑠𝑡 (𝑇𝛼 )
end for
Read and write timestamps for data objects

Thus far, we have noticed that 2PL protocols suffer from unnecessary restarts
and unproductive waits, while optimistic methods suffer from wasted execution and
unnecessary restarts. However, optimistic protocols are non-blocking and deadlock-
free. The question of which approach is superior remains open. Two studies on this
topic have been conducted in the literature. In the first one [34], 2PL (High Priority)
was compared against OCC (Broadcasting commit), and it was found that under the
overload management policy of discarding tardy transactions, OCC can outperform
2PL. However, a 1991 study [38] compared 2PL vs. OCC (OCCL-SVW) and found
that OCC outperforms 2PL when data contention is low; otherwise, 2PL outperforms
OCC.

Algorithm 6 𝑎𝑑𝑗𝑢𝑠𝑡 (𝑇𝛼)
for all 𝑂𝑖 in 𝑅𝑆 (𝑇𝑣 ) do

if 𝑂𝑖 in 𝑊𝑆 (𝑇𝛼 ) then
𝑇𝐼 (𝑇𝛼 ) = 𝑇𝐼 (𝑇𝛼 ) ∩ [𝑇𝑆 (𝑇𝑣 ) ,∞]

end if
if 𝑇𝐼 (𝑇𝛼 == [ ] then

restart 𝑇𝛼

end if
end for
for all 𝑂𝑖 in 𝑊𝑆 (𝑇𝑣 ) do

if 𝑂𝑖 in 𝑅𝑆 (𝑇𝛼 ) then
𝑇𝐼 (𝑇𝛼 ) = 𝑇𝐼 (𝑇𝛼 ) ∩ [0, 𝑇𝑆 (𝑇𝑣 − 1) ]

end if
if 𝑂𝑖 in 𝑊𝑆 (𝑇𝛼 ) then

𝑇𝐼 (𝑇𝛼 ) = 𝑇𝐼 (𝑇𝛼 ) ∩ [𝑇𝑆 (𝑇𝑣 ) ,∞]
end if
if 𝑇𝐼 (𝑇𝛼 ) == [ ] then

restart 𝑇𝛼

end if
end for

1.7.4 Comparison of Concurrency Control Protocols

Each concurrency control protocol has its advantages and disadvantages. For exam-
ple, locking-based ensures serializability but may suffer performance issues due to



1.7 Concurrency Control 19

lock contention and priority inversion. On the other hand, timestamp-based protocols,
such as BTO, CTO, and OCC, allow transactions to execute concurrently without
locks, leading to better performance in systems with low contention. However, these
protocols may suffer from a high abort rate in systems with high contention.

When choosing a concurrency control protocol, it is essential to consider the
specific requirements and characteristics of the system. Factors to consider include:

• The degree of contention: Systems with low contention may benefit from the
optimistic approach of timestamp-based protocols, while systems with high con-
tention may require the stricter control provided by locking-based protocols.

• Priority requirements: If priority scheduling is essential, consider using protocols
that support priority-based conflict resolution, such as 2VPCP or CTO.

• Storage requirements: Protocols that require maintaining multiple versions of data
objects, such as 2VPCP, may increase storage and complexity requirements.

• Performance and scalability: Locking-based protocols can suffer from perfor-
mance issues due to lock contention, while timestamp-based protocols can offer
better performance and scalability in certain situations.

In practice, many database systems employ a combination of concurrency con-
trol protocols to provide the best balance of performance, consistency, and isolation
for the specific workload and system requirements. Additionally, modern database
systems often include mechanisms for dynamically adjusting the concurrency con-
trol strategy based on the current system state and workload, further optimizing
performance and resource utilization.

On the other hand, The choice between pessimistic and optimistic concurrency
control protocols depends on a real-time database system’s specific requirements and
environment. For example, pessimistic protocols, such as 2PL, can be more suitable
for high data contention scenarios. In contrast, optimistic protocols, like OCC, can
be advantageous when data contention is low or the system requires a deadlock-
free and non-blocking approach. Both methods have their strengths and weaknesses.
Pessimistic approaches can result in unnecessary restarts and unproductive waits,
while optimistic methods can suffer from wasted execution and unnecessary restarts.
Ultimately, the decision should be based on analyzing the system’s requirements,
workload, and performance expectations. By understanding the trade-offs involved,
designers can select the most appropriate concurrency control protocol to achieve the
desired consistency, efficiency, and reliability level in a real-time database system.

1.7.5 Deadlocks in Concurrency Control Protocols

Deadlocks represent another common issue in concurrency control protocols, arising
when a group of transactions is caught in a circular wait. Consider the example in
Figure 1.3, where three transactions block each other: Transaction 1 requires a lock
on object 𝑂2, which is held by Transaction 2. Thus, Transaction 1 must wait for
Transaction 2 to complete. However, Transaction 2 is also waiting for Transaction 3



20 1 An Overview of Real-Time Database Systems

to release a lock on object 𝑂3. Similarly, Transaction 3 is unable to release the lock
on object 𝑂3 until it locks 𝑂1.

Fig. 1.3 Example of a deadlock between 3 transactions

Various solutions exist to address this situation, with the fundamental idea being
that the system must select one transaction to abort. In the example above, breaking
the cycle resolves the issue, transforming the problem into one of choosing the best
transaction to abort. Some options include:

• Aborting the transaction that has exceeded its deadline.
• Aborting the transaction with the most distant deadline.
• Aborting the least important transaction.

Notably, deadlocks usually involve two transactions, as mentioned in [24]. As
a result, implementing a straightforward deadlock-breaking protocol could be more
beneficial, as proposed by [51].

1.8 Real-Time Distributed Databases and Commit Protocols

Commit protocols play a critical role in ensuring data consistency and concurrency
control in RTDDBs. They are responsible for coordinating the actions of distributed
transactions and guaranteeing that either all the changes are committed or none are
committed in case of failure. The most widely used commit protocol in traditional
distributed databases is the two-phase commit (2PC) protocol [32]. However, the 2PC
protocol is unsuitable for RTDDBs because it needs to consider the time constraints
and dynamic workloads inherent in real-time systems [37].



1.8 Real-Time Distributed Databases and Commit Protocols 21

To address the limitations of the 2PC protocol, researchers have proposed var-
ious real-time commit protocols that consider the timing requirements and other
characteristics of RTDDBs. Some prominent real-time commit protocols include:

• Real-time Two-Phase Commit (RT-2PC): This protocol extends the traditional
2PC protocol by introducing timing constraints and priority-based scheduling
of commit processing [41]. RT-2PC protocol uses a coordinator to manage the
commit process and ensure that higher-priority transactions are processed before
lower-priority ones. The coordinator also aborts transactions that cannot be com-
pleted within their deadline to ensure the timely completion of higher-priority
transactions [100].

• Real-time Optimistic Commit Protocol (ROCP): ROCP is an optimistic com-
mit protocol that assumes conflicts are rare and uses timestamps to detect and
resolve conflicts during the commit phase [102]. ROCP involves three phases:
the read phase, the validation phase, and the write phase. During the read phase,
transactions read data items without acquiring locks. In the validation phase,
transactions check for conflicts and determine whether they can commit. Finally,
the write phase is responsible for making the changes permanent. As a result,
ROCP has the advantage of lower communication overhead and better concur-
rency compared to 2PC-based approaches [102].

• Priority-Based Commit Protocol (PBCP): PBCP is a commit protocol that pri-
oritizes transactions based on their deadlines and uses a decentralized approach
to reduce communication overhead and improve performance [57]. PBCP elim-
inates the need for a central coordinator and allows transactions to commit or
abort independently, based on local decisions at each site. This decentralized ap-
proach reduces the likelihood of contention and prioritizes transactions with tight
deadlines. PBCP has been shown to improve system performance and reduce the
number of aborted transactions in RTDDBs [57].

• Real-time Three-Phase Commit Protocol (RT-3PC): The RT-3PC protocol ex-
tends the traditional Three-Phase Commit (3PC) protocol by incorporating timing
constraints and dynamic priority assignment [29]. In RT-3PC, transactions are
assigned priorities based on their deadlines, and these priorities are dynami-
cally adjusted during the commit process to ensure that transactions with tighter
deadlines receive preferential treatment. RT-3PC has the advantage of being non-
blocking, which means that the protocol can continue to make progress even in
the presence of failures [29].

Real-time distributed databases face the challenge of meeting stringent timing
requirements while ensuring data consistency and concurrency control in a dis-
tributed environment. Commit protocols are an essential component of RTDDBs,
responsible for coordinating the actions of distributed transactions and ensuring data
consistency. Researchers have proposed various real-time commit protocols, such
as RT-2PC, ROCP, PBCP, and RT-3PC, which consider the timing requirements
and other characteristics of RTDDBs. The choice of a commit protocol in RTDDBs
depends on factors such as workload characteristics, the frequency of conflicts, and
the requirements for fault tolerance and performance. Each real-time commit proto-



22 1 An Overview of Real-Time Database Systems

col discussed above has its own set of advantages and trade-offs, making it suitable
for different types of RTDDB applications. Therefore, it is essential for database
designers and administrators to carefully evaluate the requirements of their real-
time applications and choose the appropriate commit protocol to ensure the timely
execution of transactions and maintain data consistency in their RTDDB systems.

As real-time applications continue to grow in importance and complexity, further
research into real-time commit protocols and other aspects of RTDDBs is necessary
to address the emerging challenges and requirements in this field. The future of
real-time distributed databases and commit protocols lies in continuously exploring
and developing new techniques to meet the ever-growing demands of real-time
applications. Some potential research directions include:

• Adaptive commit protocols: Developing commit protocols that can adapt to the
changing workloads and system conditions in real-time applications is crucial.
These adaptive protocols can help improve the system’s overall performance and
resource utilization by dynamically adjusting the commit processing based on the
current system state [1].

• Machine learning-based commit protocols: Machine learning techniques can
be employed to predict transaction conflicts, resource utilization, and deadline
violations. These predictions can be used to develop intelligent commit protocols
that optimize the commit process and improve the performance of RTDDBs [119].

• Fault-tolerant commit protocols: Ensuring fault tolerance in real-time dis-
tributed databases is essential, as failures can lead to severe consequences in crit-
ical real-time applications. Developing commit protocols that efficiently handle
failures and maintain system availability is an important research direction [42].

In conclusion, real-time distributed databases and commit protocols are critical
components of many real-time applications. The continuous advancements in this
field will help address the emerging challenges and requirements of modern real-time
systems, ensuring that they can provide the necessary performance, consistency, and
fault tolerance to support the demands of their applications.

1.9 Recovery in Real-Time Database Management Systems

Real-time database management systems (RTDBMS) are designed to handle time-
critical applications that require strict timing constraints and deadlines for data
transactions. In addition to satisfying these temporal requirements, RTDBMS must
also ensure the consistency and durability of data in the face of failures. This section
provides a comprehensive overview of recovery techniques in real-time database
management systems.

Several recovery techniques have been proposed for use in RTDBMS. We will
discuss each of these methods, considering the contributions of various researchers
in the field.



1.9 Recovery in Real-Time Database Management Systems 23

1. Logging-Based Recovery: Logging-based recovery methods involve recording
database changes in a log, which can be used to recover the database to a consistent
state following a failure. One such logging-based technique is the Write-Ahead
Logging (WAL) [32], which ensures that its associated log records are written to
stable storage before a transaction is committed. The ARIES (Algorithm for Re-
covery and Isolation Exploiting Semantics) [69] is another well-known recovery
method that uses logging and considers transaction semantics during recovery.
This approach allows for fine-grained recovery actions and ensures that only the
relevant portions of the log are processed during recovery.

2. Checkpoint-Based Recovery: Checkpoint-based recovery methods periodically
create a snapshot of the database, known as a checkpoint, which is used as the
starting point for recovery after a failure. Elmasri et al. [26] proposed a fuzzy
checkpointing technique, which allows ongoing transactions to continue during
the checkpointing process. This technique reduces the checkpointing overhead by
minimizing the impact on transaction execution. Vrbsky and Liu [114] introduced
a soft checkpointing approach for maintaining the consistency of the database
during recovery, which involves periodically saving a consistent snapshot of the
database without blocking transaction execution.

3. Combined Recovery Methods: Combined recovery methods integrate both log-
ging and checkpointing techniques to achieve a balance between recovery time
and I/O overhead. Ramamritham and Haritsa [79] introduced a two-level recovery
mechanism that combines selective checkpointing and redoes logging to improve
recovery efficiency. The Adaptive Recovery Technique (ART) proposed by Son
and Krishna [101] dynamically adjusts the logging and checkpointing rates based
on the system’s workload and failure history.

4. Concurrency Control Mechanism: Ulusoy proposed a concurrency control
mechanism called Deadline Oriented Concurrency Control (DOCC) that inte-
grates recovery with the scheduling of real-time transactions [113]. This mech-
anism combines transaction scheduling and concurrency control to reduce the
probability of deadline misses. In case of a failure, the DOCC mechanism uses
logging to recover the state of the database to a consistent state.

5. Epsilon Serializability: Sivasankaran et al. [95] introduced Epsilon Serializ-
ability (ESR) is a relaxed consistency criterion for RTDBMS that can enhance
recovery efficiency. ESR allows for a controlled level of inconsistency in the
database to provide better concurrency and reduce the overhead of maintaining
strict serializability. By tolerating a certain degree of inconsistency during recov-
ery, the system can achieve faster recovery times and better overall performance.

6. Real-Time Two-Phase Commit Protocol: Shu et al. [94] developed a real-time
variant of the traditional two-phase commit protocol (RT-2PC) to improve the re-
covery process in RTDBMS. The RT-2PC protocol incorporates time constraints
and priorities to optimize the commit process and minimize the impact of failures
on the system’s performance. Furthermore, in case of failures, the RT-2PC proto-
col employs logging and coordination among participating nodes to ensure that
the recovery process is efficient and the consistency of the distributed real-time
database is maintained.



24 1 An Overview of Real-Time Database Systems

7. Recovery Reintegration Framework: DiPippo et al. [25] proposed a reintegra-
tion framework for real-time databases that focuses on the efficient reintegration
of a failed node into a distributed RTDBMS. The framework aims to minimize the
disruption of real-time transactions during recovery and maintain the system’s
overall performance. The reintegration process involves transferring data from
a backup node to the failed node and synchronizing the state of the real-time
database across all nodes.

8. The Multi-version Concurrency Control Approach: Abbott and Garcia-Molina
[2] proposed a multi-version concurrency control approach that leverages mul-
tiple versions of data items to increase concurrency and facilitate recovery in
RTDBMS. This approach allows transactions to access older versions of data
items, thus reducing the need for rollback and improving the system’s perfor-
mance during recovery.

1.10 Input/Output Scheduling in Real-Time Database Systems

A key challenge in RTDBS is designing efficient Input/Output (I/O) scheduling
algorithms that ensure timely data retrieval and storage. I/O scheduling is the process
of determining the order and priority of data requests in a real-time database system.
The main objective of I/O scheduling is to minimize the response time and meet the
deadlines of transactions. The problem can be mathematically described as follows:

Given a set of transactions 𝑇 = {𝑇1, 𝑇2, ..., 𝑇𝑛}, where each transaction 𝑇𝑖 has an
arrival time 𝑎𝑖 , a deadline 𝑑𝑖 , and a set of data requests 𝑅𝑖 = {𝑟𝑖1, 𝑟𝑖2, ..., 𝑟𝑖𝑚}, the
goal is to find an optimal I/O scheduling that satisfies the following constraints:

min
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1
𝑤𝑖 𝑗 (𝐶𝑖 𝑗 − 𝑎𝑖) (1.8)

s.t. 𝐶𝑖 𝑗 ≤ 𝑑𝑖 ,∀𝑖, 𝑗 (1.9)

Here,𝐶𝑖 𝑗 represents the completion time of request 𝑟𝑖 𝑗 , and 𝑤𝑖 𝑗 is a weight associ-
ated with request 𝑟𝑖 𝑗 that can represent its relative importance. The objective function
in (1) aims to minimize the total weighted completion time of all requests, while
the constraint in (2) ensures that all requests are completed before their respective
deadlines.

In a traditional disk-based database system, disk I/O is one activity that occupies
most of the execution time. One reason for that comes from the seeking time because
the disk head has to move to the appropriate disk sector or track to perform reads or
writes. Let us see an example to understand better why this is a problem.

In Figure 1.4, the disk head is located in the track 𝑥 of the disk, and there are four
I/O requests in the queue. The question is in which direction should move the head.
If the I/O requests are associated with a priority, then the head could choose to order



1.10 Input/Output Scheduling in Real-Time Database Systems 25

Fig. 1.4 Example of the disk head servicing four I/O requests

the request based on that priority (that is, using a High-Priority First Scheduling).
Specifically, if we had that:

𝑝𝑟 (𝑅1) > 𝑝𝑟 (𝑅2) > 𝑝𝑟 (𝑅3) > 𝑝𝑟 (𝑅4) (1.10)

then one possible schedule is 𝑅1, 𝑅2, 𝑅3 and 𝑅4.
This schedule may not be acceptable, though, because it needs to consider the

number of tracks the head has to traverse to attend to all four requests. In this example,
the head would have to move 32 tracks.

In contrast, more straightforward scheduling like 𝑅4, 𝑅2, 𝑅3, and 𝑅1 would
involve moving only through 11 tracks. This is the resulting schedule of the Elevator
Algorithm. The idea is to move the head in one direction until all requests in such
order are satisfied. Then the head can run in the opposite direction. Although, in this
particular example, the Elevator Algorithm requires less movement, the resulting
ordering considers the requests’ priority. Notice that in this case, the algorithm
attends the at the end.

Research on I/O scheduling in real-time database systems can be broadly classified
in the following sections.

1.10.1 Feasible Deadline SCAN (FD-SCAN)

The Feasible Deadline SCAN (FD-SCAN) algorithm [81] is an extension of the EDF
algorithm that considers the disk arm’s current position and movement direction.
This algorithm selects the request with the earliest deadline among those that can be
serviced without violating the deadlines of other requests.

Example: Consider a disk with tracks numbered from 1 to 10 and data requests
𝑅 = {𝑟1, 𝑟2, 𝑟3} with track numbers 𝑇1 = 4, 𝑇2 = 8, and 𝑇3 = 2 and deadlines 𝐷1 = 5,
𝐷2 = 3, and 𝐷3 = 7, respectively. If the disk arm is currently at track 6 and moving
towards the higher-numbered tracks, the FD-SCAN algorithm schedules the requests
in the following order:



26 1 An Overview of Real-Time Database Systems

𝑟2 → 𝑟1 → 𝑟3

1.10.2 Highest Priority Group First (HPGF)

The Highest Priority Group First (HPGF) algorithm [31] schedules data requests
based on their priorities, which can be assigned based on factors such as transaction
criticality, deadline tightness, or data request size. The algorithm groups request with
the same priority level and services them using the SCAN disk scheduling method
within each group. For example, let 𝑃𝑖 𝑗 denote the priority of request 𝑟𝑖 𝑗 . The HPGF
algorithm can be described as follows:

Sort data requests in descending order by 𝑃𝑖 𝑗 .
For each priority group, apply SCAN to schedule requests.

Example: Consider a disk with tracks numbered from 1 to 10 and data requests
𝑅 = 𝑟1, 𝑟2, 𝑟3 with track numbers 𝑇1 = 4, 𝑇2 = 8, and 𝑇3 = 2 and priorities 𝑃1 = 3,
𝑃2 = 1, and 𝑃3 = 2, respectively. If the disk arm is currently at track 6 and moving
towards the higher-numbered tracks, the HPGF algorithm schedules the requests in
the following order:

𝑟_1 → 𝑟_3 → 𝑟_2

1.10.3 Adaptive Earliest Deadline First (A-EDF)

Adaptive Earliest Deadline First (A-EDF) is an enhancement of the Earliest Deadline
First (EDF) algorithm, which considers the history of disk accesses to predict and
adapt to future disk access patterns. In the original EDF algorithm, I/O requests
are prioritized based on their deadlines, with the earliest deadline request served
first [60].

A-EDF enhances the EDF algorithm by considering the access history of the disk.
It calculates a moving average of previous deadlines to predict the deadline of the
subsequent request. This prediction is then used to adjust the scheduling of the new
requests. A-EDF uses a weighted moving average to give more importance to recent
deadlines, allowing it to adapt more quickly to changes in the system’s behavior.
The main goal of A-EDF is to improve system throughput and reduce overall missed
deadlines.

Suppose there are three I/O requests, R1, R2, and R3, with deadlines D1, D2, and
D3, respectively. In the EDF algorithm, the requests are scheduled according to their
deadlines, i.e., R1, R2, and R3. However, in A-EDF, the scheduler also considers the
disk access history. Suppose the access history suggests that requests with similar



1.10 Input/Output Scheduling in Real-Time Database Systems 27

deadlines to D2 and D3 will likely be issued soon. In that case, the scheduler might
adjust the scheduling order, for example, to R1, R3, and R2, to improve overall
system performance.

1.10.4 Adaptive Feasible Deadline SCAN (A-FDSCAN)

Adaptive Feasible Deadline SCAN (A-FDSCAN) is an extension of the Feasible
Deadline SCAN (FD-SCAN) algorithm that incorporates an adaptability mechanism
[60]. FD-SCAN combines the deadline information with the SCAN algorithm, where
the disk arm moves in one direction and serves requests along the way, reversing
direction only when there are no more requests in the current direction.

A-FDSCAN enhances FD-SCAN by considering the current system state and the
history of previous deadlines. It dynamically calculates a threshold that influences
the scheduling decision. This threshold is determined by considering the moving
average of prior deadlines and the current system load. The main goal of A-FDSCAN
is to improve the disk scheduling performance by adaptively considering the trade-
off between serving requests based on their deadlines and minimizing disk arm
movements.

Suppose there are three I/O requests, R1, R2, and R3, with deadlines D1, D2, and
D3, respectively, and located on tracks T1, T2, and T3. In FD-SCAN, the requests
would be scheduled based on the SCAN order while considering the feasibility of
meeting their deadlines. A-FDSCAN adds an adaptive component to this scheduling
by adjusting the order based on a calculated threshold. Suppose the access history
suggests that the calculated threshold should be reduced. In that case, the scheduler
may prioritize reducing disk arm movement, potentially changing the scheduling
order from R1, R2, and R3 to R1, R3, and R2, for example.

1.10.5 Dynamic I/O Scheduling for Real-Time Systems

This research presents a dynamic I/O scheduling algorithm designed for real-time
systems [22]. The algorithm combines deadline and track distance information in a
heuristic approach to schedule disk requests in real-time environments. The algo-
rithm aims to minimize the number of missed deadlines by considering the system’s
current state and dynamically adjusting the scheduling strategy.

Suppose there are three I/O requests, R1, R2, and R3, with deadlines D1, D2, and
D3, respectively, and located on tracks T1, T2, and T3. The dynamic I/O scheduling
algorithm evaluates each request based on a heuristic that considers both the deadline
and the distance to the request’s track. This approach allows the scheduler to balance
the need to meet deadlines with the need to minimize disk arm movement. For
example, if R1 has the earliest deadline but is on a track much farther away from the
current disk arm position than R2 and R3, the scheduler may choose to serve R2 or R3



28 1 An Overview of Real-Time Database Systems

first, depending on their deadlines and track distances. This could potentially lead to
an improved overall system performance and a reduced number of missed deadlines.
While the dynamic I/O scheduling algorithm was not specifically designed for real-
time databases, its heuristic-based approach and consideration of system dynamics
could potentially be adapted for real-time database systems.

1.10.6 Machine Learning-based Scheduling

Recent research has explored the application of machine learning techniques, such
as reinforcement learning and neural networks, to optimize I/O scheduling in real-
time database systems [116,118]. These approaches aim to learn the best scheduling
policy from historical data or online experiences.

1.10.6.1 Machine Learning-based I/O Scheduler for Real-time Database
Systems

In the paper Machine Learning-based I/O Scheduler for Real-time Database Systems
by Zhang et al. [118], the authors present an I/O scheduling framework that employs
machine learning techniques to optimize the performance of real-time database
systems. The proposed framework focuses on reinforcement learning, a type of
machine learning where an agent learns to make decisions by interacting with an
environment to achieve a goal.

The framework consists of three main components: State Space, Action Space,
and Q-learning Algorithm. The State Space represents the system’s current state,
considering factors such as I/O request deadlines, disk arm position, and system load.
The Action Space comprises available scheduling actions for the current state, like
choosing which I/O request to serve next. Finally, the Q-learning Algorithm learns
the optimal scheduling policy by iteratively updating the Q-values, representing the
expected cumulative reward for each state-action pair.

Suppose there are three I/O requests, R1, R2, and R3, with deadlines D1, D2, and
D3, respectively, and located on tracks T1, T2, and T3. The reinforcement learning-
based I/O scheduler would consider the system’s current state (e.g., the disk arm
position and request deadlines) and take actions based on its learned Q-values. It may
prioritize R1 because the Q-learning algorithm has learned that serving requests with
the earliest deadlines usually leads to a higher cumulative reward. As the scheduler
continues interacting with the environment and receiving feedback through rewards,
it refines its policy to make better scheduling decisions.

The authors in [118] evaluated their proposed scheduler using simulation exper-
iments, comparing it to traditional I/O scheduling algorithms such as FCFS, SSTF,
and SCAN. The results indicated that the machine learning-based I/O scheduler out-
performed the traditional algorithms in various real-time scenarios, achieving lower
average response times and higher system throughput.



1.11 Buffer Management in Real-Time Database Management Systems 29

1.10.6.2 A Deep Reinforcement Learning-based I/O Scheduler for Real-time
Database Systems

In the paper A Deep Reinforcement Learning-based I/O Scheduler for Real-time
Database Systems by Wu et al. [116], the authors propose a deep Q-network (DQN)
based model to learn an optimal I/O scheduling policy for real-time database systems.
The DQN model uses a neural network to approximate the optimal action-value
function, allowing the scheduler to make better decisions by considering complex
relationships between I/O requests and the current system state.

The authors develop a state representation that captures the characteristics of
the I/O requests, including their deadlines, arrival times, and disk track locations.
The action space consists of choosing which I/O request to serve next. The deep
Q-network is trained using a variant of Q-learning, incorporating techniques like
experience replay and target network updating to stabilize learning.

Assume there are three I/O requests, R1, R2, and R3, with deadlines D1, D2, and
D3, respectively, and located on tracks T1, T2, and T3. The DQN-based scheduler
encodes the current state and feeds it into the neural network. The network then
predicts the Q-values for each possible action. Suppose the Q-values indicate that
serving R2 would result in the highest cumulative reward; the scheduler selects R2
to serve next. As more I/O requests are processed, the DQN continues to learn and
refine its policy, adapting to the changing system dynamics.

The authors evaluated their DQN-based scheduler using simulation experiments
and compared its performance to traditional I/O scheduling algorithms such as EDF,
SSTF, and SCAN. The results demonstrated that the deep reinforcement learning-
based I/O scheduler achieved better performance than conventional algorithms in
meeting deadlines and reducing response times. In addition, the DQN-based sched-
uler proved to be more adaptive to various system workloads, dynamically adjusting
its scheduling policy based on the current state and characteristics of the I/O requests.

1.11 Buffer Management in Real-Time Database Management
Systems

Buffer management is fundamental to database management systems (DBMS), in-
cluding real-time database management systems (RTDBMS). The buffer manager is
responsible for managing memory buffers that temporarily store disk pages fetched by
the DBMS. Therefore, buffer management’s efficiency directly impacts the DBMS’s
performance. However, the buffer management problem becomes more complex
in RTDBMS due to the additional constraint of meeting deadlines associated with
real-time transactions.

The primary objective of buffer management algorithms in RTDBMS is to mini-
mize the number of page faults while adhering to real-time constraints. A page fault
occurs when a requested page is unavailable in the buffer, requiring the system to
fetch the page from the disk. Disk accesses are significantly slower than memory



30 1 An Overview of Real-Time Database Systems

accesses, so a high page fault rate can lead to increased response times and missed
deadlines for real-time transactions. Therefore, practical buffer management algo-
rithms must consider the deadlines and priorities of real-time transactions to ensure
that the most critical pages are readily available in the buffer.

1.11.1 Deadline-Driven Page Replacement (DDPR) Algorithm

The Deadline-Driven Page Replacement (DDPR) algorithm, proposed by Abbott
and Garcia-Molina [4], focuses on real-time constraints by prioritizing pages in the
buffer based on their associated deadlines. When a page fault occurs, DDPR replaces
the page with the earliest deadline among the pages that belong to incomplete
transactions.

DDPR uses two data structures: the Buffer Table and the Deadline Table. The
Buffer Table is an in-memory index that maps a page identifier to its buffer frame,
whereas the Deadline Table contains entries sorted by deadlines.

To maintain the Deadline Table, DDPR updates it whenever:

1. A transaction begins: the deadline of the new transaction is added to the table.
2. A transaction ends: the deadline associated with the completed transaction is

removed from the table.
3. A page is accessed: the deadline entry for the accessed page is updated.

When a page fault occurs, DDPR proceeds with the following steps:

1. Determine the victim page by finding the page with the earliest deadline in the
Deadline Table.

2. If the victim page is dirty (i.e., modified but not yet, written to disk), issue a write
request to save the changes to disk.

3. Issue a read request to fetch the requested page from disk.
4. Update the Buffer Table and Deadline Table to reflect the new state.

Although DDPR can improve the likelihood of meeting real-time constraints by
prioritizing pages with urgent deadlines, it may suffer from high page fault rates,
mainly when transactions with similar deadlines compete for buffer space. This issue
can be mitigated by incorporating other factors, such as page access frequencies, into
the replacement policy.

1.11.2 Priority-Driven Buffer Management (PDBM) Algorithm

The Priority-Driven Buffer Management (PDBM) algorithm, proposed by Kamath
et al. [45], combines deadline-driven and LRU page replacement strategies. PDBM
divides the buffer into two segments: one for real-time transactions and another for
non-real-time transactions.



1.11 Buffer Management in Real-Time Database Management Systems 31

PDBM uses two data structures to manage the buffer: the Real-Time Segment
(RTS) Table and the Non-Real-Time Segment (NRTS) Table. The RTS Table contains
buffer frame entries sorted by transaction deadlines, while the NRTS Table maintains
buffer frame entries following an LRU order.

The steps in PDBM are as follows:

1. When a page fault occurs, determine whether the request belongs to a real-time
or non-real-time transaction.

2. If the request is for a real-time transaction, use the RTS Table to find the page
with the earliest deadline among the real-time pages in the buffer and mark it as
the victim page for a replacement.

3. If the request is for a non-real-time transaction, use the NRTS Table to find the
least recently used non-real-time page in the buffer and mark it as the victim page
for a replacement.

4. If the victim page is dirty, issue a write request to save the changes to disk.
5. Issue a read request to fetch the requested page from disk.
6. Update the RTS Table and NRTS Table to reflect the new state.

By combining deadline-driven and LRU-based strategies, PDBM aims to balance
the performance requirements of both real-time and non-real-time transactions while
ensuring that real-time deadlines are met. However, PDBM uses a fixed-size buffer
segment for real-time transactions, which may not be optimal under varying system
workloads.

1.11.3 Adaptive Real-Time Buffer Management (ARTBM) Algorithm

The Adaptive Real-Time Buffer Management (ARTBM) algorithm, proposed by
Huang et al. [40], addresses the limitations of PDBM by dynamically adjusting
the size of the real-time buffer segment according to system workload and transac-
tion deadlines. ARTBM also combines deadline-driven and LRU page replacement
strategies.

ARTBM maintains the same RTS Table and NRTS Table as PDBM, but it also
uses a global table called the Free Frame Pool (FFP). The FFP contains buffer frames
not currently allocated to the RTS or NRTS segments.

When a page fault occurs, ARTBM follows these steps:

1. Determine if the request belongs to a real-time or non-real-time transaction.
2. If the request is for a real-time transaction and there is an available frame in the

FFP, allocate it to the RTS segment. Otherwise, use the RTS Table to find the
page with the earliest deadline among the real-time pages in the buffer and mark
it as the victim page for a replacement.

3. If the request is for a non-real-time transaction, use the NRTS Table to find the
least recently used non-real-time page in the buffer and mark it as the victim page
for a replacement. If there is an available frame in the FFP, allocate it to the NRTS
segment.



32 1 An Overview of Real-Time Database Systems

4. If the victim page is dirty, issue a written request to save the changes to disk.
5. Issue a read request to fetch the requested page from disk.
6. Update the RTS Table, NRTS Table, and FFP to reflect the new state.

By dynamically adjusting the size of the real-time buffer segment based on the
system’s state, ARTBM ensures more efficient utilization of memory resources and
improves the overall performance of the RTDBMS.

1.11.3.1 Prediction-Based Buffer Management (PBBM) Algorithm: Detailed
Description

The Prediction-Based Buffer Management (PBBM) algorithm, proposed by Zhu and
Chiueh [120], relies on access pattern predictions to optimize buffer management.
PBBM identifies frequently accessed pages by analyzing their access patterns and
keeps these pages in the buffer to minimize page faults.

PBBM consists of three main components: the Pattern Detector, the Pattern
Predictor, and the Buffer Manager. The Pattern Detector analyzes the access history
of each page to identify recurring patterns. The Pattern Predictor uses the detected
patterns to forecast future page accesses. Finally, the Buffer Manager replaces pages
in the buffer based on the predictions provided by the Pattern Predictor.

When a page fault occurs, PBBM follows these steps:

1. Check the Pattern Predictor’s forecasts to determine which pages are expected to
be accessed in the near future.

2. If the requested page is predicted to be accessed frequently, replace a page in the
buffer that is not predicted to be accessed in the near future, marking it as the
victim page for a replacement.

3. If the requested page is not predicted to be accessed frequently, replace the least
recently used page in the buffer, marking it as the victim page for a replacement.

4. If the victim page is dirty, issue a written request to save the changes to disk.
5. Issue a read request to fetch the requested page from disk.
6. Update the access history and re-evaluate the access patterns as necessary.

Using access pattern predictions, PBBM can make informed decisions on which
pages should be kept in the buffer and which should be replaced. As a result, this
approach minimizes page faults and improves the system’s overall performance.

1.12 Related Developments

Real-time database systems are a dynamic and rapidly developing area in the field of
computer science. The need for real-time access to data has increased across various
domains, including telecommunications, financial services, healthcare, and many
others. As a result, several research areas and recent developments have emerged to



1.12 Related Developments 33

address the challenges and needs of real-time database systems. In this section, we
show few examples of related developments to real-time database systems.

1.12.1 Main-Memory Databases

In the context of real-time database systems, main memory databases (MMDBs)
have been increasingly significant in the recent past. The primary objective of these
databases is to maintain high-speed data processing while dealing with the volume of
modern data transactions. As opposed to traditional disk-based databases, MMDBs
store all data in the primary memory (RAM), bypassing the time-consuming disk I/O
operations and thus fulfilling the stringent timing requirements of real-time systems.

Main memory databases primarily leverage the high-speed access of RAM to
provide swift data transaction. The fundamental premise is to eliminate the bottle-
neck of disk I/O, which has been a crucial issue in traditional databases. MMDBs
are essential for applications with stringent time constraints such as financial trading
systems, telecommunications, real-time analytics, and high-speed online transaction
processing (OLTP). In essence, MMDBs are designed to take advantage of the de-
creasing cost of RAM, the growing need for real-time data access, and the continuing
advancements in multi-core and multi-processor technology.

The architecture of an MMDB is designed to optimize memory utilization and
exploit the benefits of high-speed data access. Unlike disk-based databases, which
employ a page-oriented approach, MMDBs use structures like T-trees, B+ trees, or
hash indexes for data storage and retrieval, to provide quick and direct access to
memory locations. The concurrency control mechanisms are specifically designed
to manage simultaneous data access and modifications, ensuring data consistency.
Recovery mechanisms are also established to handle system failures, with strate-
gies such as shadow paging and checkpointing, which ensure data durability and
reliability, even when entirely residing in volatile memory.

The most significant advantage of MMDBs is their high performance in data
processing. By eliminating the disk I/O operations, they can execute transactions
several times faster than traditional databases. Additionally, they can support real-
time applications with stringent time requirements, providing almost instantaneous
response times. Despite their benefits, MMDBs are not without their challenges. The
primary constraint is the volatile nature of RAM. Power failures can lead to data
loss, mitigated only by backup and recovery mechanisms. Cost is another factor, as
even though memory prices are declining, RAM is still considerably more expensive
than disk storage. Additionally, existing database systems might require significant
modifications to adapt to an MMDB system.



34 1 An Overview of Real-Time Database Systems

1.12.2 Real-Time Data Analytics

In an era characterized by high-speed digital transformation, the capability to analyze
and interpret data instantaneously has become critical. Real-time data analytics, a
technology that provides immediate processing and analysis of data, is significantly
influencing the design and functionality of real-time database systems. This chapter
delves into the role of real-time data analytics, its mechanisms, and how it shapes
the evolution of real-time database systems.

Real-time data analytics pertains to the immediate processing and analysis of
data as it is created and ingested into the system. It endeavors to deliver insights and
extrapolate patterns with minimal latency, often within milliseconds to a few seconds.
Such quick turnaround times facilitate immediate decision-making and responses,
providing a competitive edge in fields like finance, health care, e-commerce, and
logistics. Diverging from the traditional batch-processing model, real-time analytics
processes data in a continuous stream as it is generated. This approach is powered
by real-time stream processing technologies such as Apache Kafka, Apache Flink,
and Apache Storm. These technologies are adept at processing and analyzing live
data streams, thus empowering real-time database systems to generate instantaneous
insights and actionable intelligence.

“Streaming data” or “real-time data” is dynamic data continuously generated from
various sources like sensors, cameras, social media feeds, and cameras. Examples
of real-time data are e-commerce purchases, geo-location tracking, server activity,
health data, website activity, weather events, and utility service usage. When com-
panies can process all that data as it’s coming in, they can near-instantaneously gain
insight and understand exactly what’s going on with their customers or internal busi-
ness processes, but data on its own doesn’t lead to business-building breakthroughs.

Real-time (streaming) analytics make sense of all the real-time data that flows
into a company. When businesses can analyze data in real-time, they can generate
insights while the data is in the stream, instead of storing and analyzing it in batches.
Traditionally, data analysis happens once the data has been captured and stored.
Then any business insights are pushed out from storage. But real-time data analysis
replaces that process, helping companies make more accurate decisions and take
action significantly faster.

Real-time data analytics is a technique that analyzes data as it happens. It takes
advantage of the fact that, for many applications, traditional batch analytics tools
are actually working in the wrong direction – not just by analyzing data at a later
time, but by actually waiting for data to arrive. That data gap can cause lags in
decision-making that can cost companies time, money, and energy.

Streaming data is almost always more profitable data. Companies know that most
data has a short shelf life, so the faster they can turn information into insight, the
more valuable all that data will be.

Companies can use real-time data analytics to:

• Predict customer behaviors.
• Solve the technical problems associated with typical data batching processing.



1.12 Related Developments 35

• Make more efficient Decision-Making.
• Scale faster.
• Help to provide anomaly detection.
• Make better business decisions.
• Act proactively to maximize customer satisfaction.
• Increase operational efficiency and reaction time.
• Create more intelligent products and services.
• Improve and automate business processes.

1.12.3 Time-Series Databases

Time-series databases (TSDBs) have emerged as a critical component in the sphere
of real-time database systems. As organizations deal with an ever-growing volume
of time-stamped data, the utility of databases specifically designed to handle this
type of data has become increasingly evident. This chapter provides an in-depth
understanding of time-series databases, their importance, and their influence on
real-time database systems.

A time-series database is a database management system optimized for handling
time-stamped or time-series data. Time-series data is a sequence of data points
collected over time, typically consisting of successive measurements made over a
time interval. Examples of time-series data include stock prices, weather data, sensor
data, and server metrics.

Time-series databases are designed to efficiently collect, store efficiently, and
query time-series data with high write and query speeds. They handle the time
aspect of data in a more explicit and optimized way compared to traditional databases.
Examples of time-series databases include InfluxDB, OpenTSDB, and TimescaleDB.

The integration of time-series databases into real-time database systems yields
several transformative effects:

• High-Performance Data Analysis: Time-series databases are specifically opti-
mized for high-speed data writes. This is essential for real-time database systems,
which often need to handle a substantial influx of real-time data.

• Efficient Data Querying: TSDBs are designed to allow efficient querying of
time-series data. This efficiency makes them well-suited to real-time database
systems, where users often need to retrieve and analyze historical time-series data
in real time.

• Scalability: TSDBs are typically built to be scalable, making them suitable for
real-time database systems that need to handle large volumes of data.

• Data Compression: TSDBs can compress time-series data, saving storage space
while still allowing efficient querying. This feature is critical in real-time database
systems, where large volumes of data are generated continuously.

Despite the evident benefits, the incorporation of time-series databases into real-
time database systems presents several challenges:



36 1 An Overview of Real-Time Database Systems

• Complexity of Time-Series Data: Time-series data can be complex and multi-
dimensional. Managing and extracting useful information from this data can be a
challenging task.

• Data Retention and Storage: Given that time-series databases deal with data that
is continuously generated, determining how long to store data, when to archive
it, and when to discard it are crucial considerations.

• Data Privacy and Security: As with any database system, ensuring data privacy
and security is a paramount concern for time-series databases.

1.12.4 NoSQL Databases

With an exponential increase in data volume and variety, traditional SQL databases
have often struggled to meet the evolving requirements of real-time database systems.
This has led to the emergence of NoSQL databases, which provide a flexible, scalable,
and efficient solution for managing complex data in real time. This chapter aims to
explore the nature of NoSQL databases, their significance, and their transformative
impact on real-time database systems.

NoSQL, which stands for "Not Only SQL," is a type of database that provides a
mechanism for storage and retrieval of data modeled in means other than the tabu-
lar relations used in relational databases. NoSQL databases are particularly useful
for handling unstructured, distributed, and large volumes of data. They are catego-
rized into four main types: document databases, key-value databases, wide-column
databases, and graph databases. NoSQL databases, such as MongoDB, Cassandra,
and Couchbase, offer scalability, flexibility, and high performance, making them
well-suited for real-time database systems.

The integration of NoSQL databases into real-time database systems brings trans-
formative changes:

• Flexible Data Models: Unlike SQL databases, which require a predefined
schema, NoSQL databases are schema-less. This allows for the storage of complex
and heterogeneous data, which is often the case in real-time database systems.

• High Scalability: NoSQL databases are designed to scale out by distributing the
data across many servers. This is critical for real-time database systems, which
often deal with large volumes of incoming data.

• High Performance: NoSQL databases are optimized for specific data models
(such as key-value pairs or graphs), which can lead to better performance when
dealing with large datasets in real-time.

Despite their advantages, the incorporation of NoSQL databases into real-time
database systems presents several challenges:

• Complexity: NoSQL databases can be complex to implement and manage due
to their distributed nature. Managing data consistency across distributed systems
can be particularly challenging.



1.12 Related Developments 37

• Security: While NoSQL databases have made strides in security features, they
still generally lag behind SQL databases in this regard. As real-time database
systems often handle sensitive data, this can be a significant concern.

However, the NoSQL field is advancing rapidly, with continuous improvements
being made in areas such as security, data consistency, and management tools. Future
directions will likely focus on further enhancements in these areas and in developing
more efficient data processing techniques.





Chapter 2
Experimental Real-Time Databases

Since the early ’90s, researchers have proposed numerous prototypes to study the
difficulties that arise in real-time databases. In this chapter, we shall review several
experimental implementations that depict the progress made in real-time databases
and whose development spans the last three decades. The first two, STRIP and
BeeHive, are significant because they set up the pathway for further advancements.

Experimental real-time database systems refer to database management systems
(DBMS) that are developed and implemented for research purposes to explore and
evaluate novel techniques, algorithms, and approaches in handling real-time data.
These systems are not typically intended for production environments but serve as
testbeds for researchers and developers to investigate and validate new ideas, al-
gorithms, and architectures. Experimental real-time database systems are designed
to address the unique challenges posed by real-time applications, which require
timely data processing, predictable response times, and adherence to strict timing
constraints. These systems aim to explore innovative solutions to achieve high per-
formance, determinism, and predictability in managing and processing real-time
data.

The primary objective of experimental real-time database systems is to advance
the understanding and development of real-time data management techniques. They
serve as platforms for researchers and developers to explore innovative ideas, validate
theoretical concepts, and identify potential areas for improvement in real-time data
processing. By utilizing experimental real-time database systems, researchers and
developers can gain insights into the performance characteristics, limitations, and
trade-offs of different approaches in handling real-time data. The knowledge gained
from such experiments can guide the design and development of more efficient and
effective real-time database systems for various applications and domains.

This chapter explores various experimental academic real-time database systems
and their approaches to handling real-time requirements. It provides an overview of
these systems, including their models, architectures, and unique characteristics.

39



40 2 Experimental Real-Time Databases

2.1 STRIP

STRIP (Stanford Real-time Information Processor) [6,19] is a soft real-time main
memory database for heterogeneous environments developed at Stanford between
1994 and 1996. It had special facilities for importing and exporting data and handling
derived data. STRIP was developed to run on standard Posix Unix and intended to
support soft timing constraints, high performance, and high availability and to allow
sharing of data with other components in a bigger system. This capability can be
seen in the process architecture of STRIP shown in figure 2.1.

Fig. 2.1 Process architecture of STRIP.

STRIP was explicitly designed to share data with other systems, both traditional
database systems and other entities, such as real-time market feeds. The first design
goal was to isolate the database user, as much as possible, from the knowledge of
where data originates or is sent. The second was to interface with as many different
types of systems as possible, including non-database systems.

2.1.1 STRIP Real-Time Scheduling

Tasks in STRIP are the units of scheduling. A task may contain zero or more
transactions but cannot span task boundaries. Associated with each task in STRIP is a
value function, as shown in Figure 2.2, which indicates how valuable it is to the system
to complete the task at a particular point in time. The release time, R, determines



2.1 STRIP 41

how long the database system holds a task before it can be scheduled. After being
released, its value function is composed of three linear segments connecting the
points A,B,C, and D. Points B, C, and D do not have to have positive value or have
the relative values shown in Figure 2.2. Further, the value of the function stays at its
value at D for all time beyond D.

Fig. 2.2 Specification of a value function in STRIP.

STRIP provides the following choices for task scheduling:

1. First in First Out (FIFO) - Tasks are scheduled in the order that they are released.
2. Earliest Deadline First (EDF) - The released task with the nearest deadline is

scheduled first (the deadline of a task is assumed to be the time it reaches point
C). Ties are resolved in FIFO order.

3. Highest Value first (HV) - The released task with the greatest maximum value is
scheduled first. Ties are resolved with FIFO.

4. Highest value density first (VD) - The released task with the largest ratio of value
at completion to time to completion is scheduled next. Ties are resolved with
FIFO. This algorithm requires an estimate of the time to completion.

STRIP only supports the scheduling of tasks. Although user tasks can contain
multiple transactions, some work in the system is performed outside of user tasks.
For instance, data import and export rule actions occur in particular system tasks.
The application can specify value functions for these tasks as described later in this
chapter. Hence a user cannot select an end-to-end value function for a series of
actions such as: importing a record, recomputing everything it derives, export the
newly derived values. Instead, the global value function must be decomposed into
value functions for each of the three component actions.



42 2 Experimental Real-Time Databases

2.1.2 Data Sharing Architecture

STRIP’s underlying data-sharing model is the publish/subscribe model. Data sources
publish tables which are then available by subscription to other system components.
The subscriber receives a real-time stream of information that allows it to maintain
a current copy of the table as it changes at the source. The format of the streams is
discussed in the next section. To isolate a naive user from publication and subscription
details, STRIP logically divides all of the sharing functionality into four levels, shown
in Figure 2.3. The remote level is implemented on the publisher’s machine, but the
other three levels are implemented within STRIP. Let us explore each level in turn.

Fig. 2.3 System Architecture of STRIP.



2.1 STRIP 43

1. Remote Level: The remote level is concerned with capturing data changes in
remote data sources and then translating them into a stream format that can be
understood by the import level (introduced next). The remote level is target-
specific; it may be based on relational systems, chronicles (append-only tables),
legacy systems, or conventional files. In the cases where the remote data is stored
(e.g., in a file system or a database system), it is the monitor’s job to extract the
information using the appropriate mechanisms.

2. Import Level: The import level converts remote data streams into local views.
This conversion presents the query level with a single paradigm for all imported
data regardless of its original format. The format of the local view does not have
to match that of the stream it is derived from. The mapping is described in the
view schema. The views defined in this level are limited, however, in that they
can be derived from only one stream (although one stream can generate many
views). Views that combine data from different streams must be defined at the
query level. The syntax for the import view definition is presented later in the
chapter.

3. Query Level: The query level contains the functionality typically associated
with a relational database system. Views and tables can be defined, modified,
and queried. Import views appear in the query level as read-only tables to the
application code. If the underlying data source has active rules, they can extract
the deltas without requiring changes to the application code.

4. Export Level: The external level allows applications to define the views exported
from STRIP. It then handles the details of the stream protocol to act as a data
publisher.

2.1.3 Streams Support

Streams provide the underlying support for the publish/subscribe model presented
to the user of STRIP. The stream format is very flexible, allowing the source to
send incremental changes to its table or complete refreshes. This and other options
are described below. The one restriction on the model is that streams only support
unidirectional flow. The subscribers cannot pose queries to the publishers through it.
However, if a query needs to be answered, the subscriber can contact the publisher
directly through its normal query interface. This decision simplifies the protocol
design without reducing the system’s functionality. The largest unit of information
transferred over a stream is an update. An update can be one of four types:

1. A physical delta update contains the tuples inserted into, deleted from, and updated
in the remote table.

2. A logical delta update contains SQL statements that have been performed on the
remote table to change it.

3. A snapshot update contains the entire set of tuples in the remote table. a control
update contains format or handshake information.



44 2 Experimental Real-Time Databases

2.1.4 View Definition

This section describes the view definition constructs provided by STRIP. They are
based on SQL/12, but extend the standard to support import and export views as well
as real-time constraints on update transmission. The extensions are outlined below.

create import view import-view-name
from stream-name
as select [all distinct] column-comma-list
where cond-exp
group by column-ref-commalist
having cond-exp
[ with ownership ]
[ schedule fusing value function value-function immediately]

Fig. 2.4 Data import SQL statements.

1. Import Views: The syntax of the import view definition is shown in Figure 2.4.
The stream named 𝑠𝑡𝑟𝑒𝑎𝑚 − 𝑛𝑎𝑚𝑒 defines the logical table upon which the view
is defined. Recall from the previous section that import views can be defined on
only one import stream. Thus import views are defined by single table queries
over the "table" published by a stream. Since it is over only one table, the query
cannot contain joins (including 𝑠𝑒𝑙 𝑓 − 𝑗𝑜𝑖𝑛𝑠); it is limited to selection, projection,
and aggregation. The new view will be named 𝑖𝑚𝑝𝑜𝑟𝑡 − 𝑣𝑖𝑒𝑤 − 𝑛𝑎𝑚𝑒, and will
contain the columns defined in 𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑐𝑜𝑚𝑚𝑎 − 𝑙𝑖𝑠𝑡.

2. Export Views and Tables:
The syntax for exporting data from STRIP is shown in Figure 2.5. The create
export command creates and publishes a new stream. The table or view to be
exported is specified by the send clause. The statement can specify an optional
list of destination addresses representing initial subscribers. This list can also be
modified later using the add subscribers and delete subscribers statements shown
in Figure 2.6. When a new subscriber is added for a stream, either at stream
creation or after using the add subscribers statement, a snapshot of the current
state of 𝑡𝑎𝑏𝑙𝑒−𝑣𝑖𝑒𝑤−𝑛𝑎𝑚𝑒 is sent. After that, export timing is determined by the
when clause, which specifies when updates for the supported table or view should
be marked for export to subscribers. When data is marked for exportation, a task
is created to send the data and scheduled according to the value function specified
in the export statement. STRIP provides three options for the when clause to
specify when rows should be marked for exportation. The first is when directed,
which leaves the decision entirely in the hands of the application programmer.
STRIP will not export any data until the application executes the flush export
stream statement shown in Figure 2.6. The user can create sophisticated export
schemes by embedding the flush export stream statement into the action of rules.



2.2 BeeHive Real-Time Database 45

3. View Mapping: The three levels present within STRIP (import, query and, export)
are conceptually defined by the application designer as tables and views. We call
the collection of these de
nitions the conceptual schema. Because the conceptual schema does not specify
which views are to be materialized and because the view hierarchy is designed for
clarity rather than efficiency, a straightforward implementation of the conceptual
schema may result in poor performance. Rather than forcing system designers
to manually tune the system (choosing which views to materialize, redefining
views in more efficient ways), STRIP should harness usage information provided
both by the designers and by run-time statistics to perform the transformation
automatically.

create export export-stream-name
send table-view-name
[to inet-address-list]
when f directed j changed j older than age using timestamp-colg
updates are f [strictly] physical j [strictly] logical j snapshots g
[inserts are fcomplete j partialg]
[deletes are fcomplete j partialg]
[modifies are fcomplete j partialg [after image only]]
[with ownership]
[value function value-function ]
inet-address-list ::= inet-address [inet-address-list]
inet-address ::= fip-address j machine-nameg : port-number

Fig. 2.5 Data export SQL statements.

add subscribers inet-address-list
for stream export-stream-name
delete subscribers inet-address-list
from stream export-stream-name
push export stream export-stream-name
where cond-exp

Fig. 2.6 Additional SQL statement for export streams.

2.2 BeeHive Real-Time Database

BeeHive resulted from collaborative work between the University of Virginia and
Hoseo University between 1997 and 2007 [106]. This system was used to investigate



46 2 Experimental Real-Time Databases

the impact of data validity intervals on the performance of real-time databases.
Unfortunately, most of the previous prototypes discussed so far only consider the
deadlines of the transactions.

The BeeHive system that is currently being defined has many innovative compo-
nents including:

• Real-time database support based on a new notion of data deadlines rather than
just transaction deadlines.

• Parallel and real-time recovery based on the semantics of data and system opera-
tional mode (e.g., crisis mode).

• Use of reactive information and a specification language to support adaptive fault
tolerance real-time performance and security.

• The idea of security rules embedded into objects together with the ability for
these rules to utilize profiles of various types

• Composable fault-tolerant objects that synergistically operate with the transaction
properties of databases and with real-time logging and recovery

• A new architecture and model of interaction between multimedia and transaction
processing.

• A uniform task model for simultaneously supporting hard real-time control tasks
and end-to-end multimedia processing and

• New real-time QoS scheduling resource management and renegotiation algo-
rithms.

2.2.1 Beehive Architecture

The BeeHive project builds upon these results and combines them into a novel design
for a global virtual database.

BeeHive consists of three components:

• BeeHive database server
• Transaction thread pool
• BeeKeeper resource manager

The arrangement of these three elements is depicted in Figure 2.7.
The BeeKeeper acts as the resource manager process. The service mapper acts

as a transaction generator. The admission controller receives transactions from the
mapper and determines if BeeHive has enough CPU and I/O resources. Once the
transaction is admitted, the real-time scheduler assigns a priority based on some
policy. Finally, the object manager generates a BeeHive object that encapsulates
the transaction and uses an RPC to connect to the BeeHive database server. The
architecture of the BeeHive database server is shown in figure 2.8. The listener thread
receives RPC connections from the BeeKeeper and gets a transaction thread from
a pool to service each connecting client. The transaction thread serves the received
RPC, which represents a transaction. The transaction process consists of executing



2.2 BeeHive Real-Time Database 47

Fig. 2.7 BeeHive Architecture.

Fig. 2.8 BeeHive Database Server Architecture.

the operations in the SHORE server. SHORE is a database system developed at the
University of Wisconsin that provides ACID transactions, concurrency control, and
disk I/O management.

The system manages two types of transactions: user transactions and sensor trans-
actions. Sensor transactions update the temporal data frequently, and user transaction
reads this data along with other non-temporal data. Temporal data, as discussed pre-
viously, includes an absolute data validity interval (AVI).



48 2 Experimental Real-Time Databases

2.2.2 Beehive Real-Time Scheduling

The BeeHive project evaluates three real-time scheduling policies: Earliest Deadline
First (EDF), Earliest Data-Deadline First (EDDF), and Earliest Deadline First with
Data Validity Check (EDF-DC). Notice that EDDF and EDF-DC are data-deadline
cognizant scheduling policies.

In [106], admission control is performed in two steps. Firstly, it calculates the
expected CPU utilization and the I/O utilization:

𝑈 (𝐶𝑃𝑈) =
(

𝑛∑︁
𝑖=1

𝐶𝑃𝑈𝑇𝑖𝑚𝑒(𝑇𝑖)
𝐷𝐿 (𝑇𝑖) − 𝑡

+ 𝐶𝑃𝑈𝑇𝑖𝑚𝑒(𝑇)
𝐷𝐿 (𝑇) − 𝑡

)
∗ 100 (2.1)

𝑈 (𝐼𝑂) =
(

𝑛∑︁
𝑖=1

𝐼𝑂𝑇𝑖𝑚𝑒(𝑇𝑖)
𝐷𝐿 (𝑇𝑖) − 𝑡

+ 𝐼𝑂𝑇𝑖𝑚𝑒(𝑇)
𝐷𝐿 (𝑇) − 𝑡

)
∗ 100 (2.2)

where 𝑇𝑖 is each of the transactions currently in the system, and 𝑇 is the incoming
transaction. 𝐼𝑂𝑇𝑖𝑚𝑒(𝑇𝑖) and 𝐶𝑃𝑈𝑇𝑖𝑚𝑒(𝑇𝑖) are pre-analyzed. In each experiment,
thresholds for each of these utilizations are defined. If the utilizations are higher than
the thresholds at this step, then the transaction 𝑇 is rejected.

The second step in the admission control process is performed when the transac-
tion is taken for execution, and it consists in checking for the system response time.
The system response time should be shorter than the transaction’s slack time, that is:

𝐷𝐿 (𝑇) − 𝑡 > 𝑐 ∗
∑𝑛

𝑖=1 𝐸𝑅𝑇 (𝑇𝑖)
𝑛

(2.3)

where 𝐷𝐿 (𝑇) is the deadline of the new transaction 𝑇 , 𝐸𝑅𝑇 (𝑇𝑖) is the execution
response time of transaction 𝑇𝑖 and 𝑐 is a constant. If the inequality holds, then the
transaction is executed.

The experiments presented in [106] vary transaction execution times, relative
deadlines (i.e., slack factors), and scheduling policy. Experiments with and without
the admission controller are also performed. The results indicated that data-deadline
cognizant scheduling policies are valuable when the data validity intervals are shorter
than transaction deadlines, especially when the system load is in the medium range.
However, when the system is overloaded, admission control makes a more significant
difference than the scheduling policy. This improvement is observed more clearly
when the transaction deadlines are shorter than the data validity intervals.

One of the drawbacks of BeeHive is that transaction execution times should be
determined offline for admission control. This approach is practical only when the
transactions and their arrival and data access patterns are known in advance [48],
which is only sometimes the case.



2.2 BeeHive Real-Time Database 49

2.2.3 General Beehive Design

BeeHive is an application-focused global virtual database system. BeeHive’s em-
phasis is on sensor data, the use of time-valid data level of support for adaptive
fault tolerance, support for real-time databases, security, and the unique features
that deal with crisis mode operation. Parts of the system can run on fixed secure
hosts, and other parts can be more dynamic such as mobile computers or general
processors on the Internet. The BeeHive design is composed of native BeeHive sites
and legacy sites ported to BeeHive and interfaces to legacy systems outside of Bee-
Hive. The native BeeHive sites comprise a federated distributed database model that
implements a temporal data model time-cognizant database and QoS protocols, a
specification model, a mapping from this specification to four APIs, the OS network,
fault tolerance, and security APIs and underlying novel object support. Any practical
application will include legacy databases. BeeHive permits porting these databases
into the BeeHive virtual system by a combination of wrappers and changes to the
underlying software of these systems. It is essential to mention that BeeHive, while
application focussed, is not isolated.

BeeHive can interact with other virtual global databases, Web browsers or individ-
ual non-application-specific databases via BeeHive wrappers. BeeHive will access
these databases via downloaded Java applets that include standard SQL commands.
In many situations, not only information must be identified and collected, but it must
be analyzed. This analysis should be permitted to use the vast computer processing
infrastructure that exists. For example, BeeHive will have a wrapper that can utilize a
distributed computing environment, such as the Legion system, to provide significant
processing power when needed.

2.2.4 Native BeeHive Design

The basic design of a native BeeHive site is depicted in Figure 2.8. At the applica-
tion level users can submit transactions, analysis programs, general programs, and
access audio and video data. For each activity, the user has a standard specification
interface for real-time QoS, fault tolerance, and security. At the application level,
these requirements are specified at a high-level manner. For example, a user might
select a deadline, full-quality QoS display, a primary-backup fault tolerance require-
ment, and a confidentiality level of security. For transactions, users operate with an
object-oriented database invoking methods on the data. The data model includes
timestamped data and data with validity intervals, as is needed for sensor data. As
transactions or other programs access objects, those objects become active, and a
mapping occurs between the high-level requirements specification and the object
API via the mapping module. This mapping module is primarily concerned with the
interface to object wrappers and with end-to-end issues. A novel aspect of our work
is that each object has semantic information also called reactive information, because
it is information about the object itself. Associated with it, it makes it possible to



50 2 Experimental Real-Time Databases

simultaneously satisfy the requirements of time, QoS, fault tolerance, and security
adaptively. For example, the information might include rules or policies and the
action to take when the underlying system cannot guarantee the deadline or level of
fault tolerance requested. This semantic information also includes code that makes
calls to the resource management subsystem to satisfy or negotiate the resource
requirements. The resource management subsystem further translates the require-
ments into resource-specific APIs, such as the APIs for the OS, the network, the
fault tolerance support mechanisms, and the security subsystem. For example, given
that a user has invoked a method on an object with a deadline and primary-backup
requirement, the semantic information associated with the object makes a call to
the resource manager requesting this service. The resource manager determines if it
can allocate the primary and backup to execute the method before its deadline and
inform the OS via the OS API of the module’s priority and resource needs. In terms
of this design, the main tasks to be undertaken include the full development of the
high-level specification, including how these requirements interact with each other,
the implementation of real-time object-oriented database support, the design, and
implementation of our semantics-enhanced objects the design and implementation of
the object-oriented wrappers, the mapping module’s development, and the resource
management, fault tolerance, and security subsystems.

2.3 RTSORAC: A Real-Time Object-Oriented Database Model

Real-Time Systems Object-Relational Active Database (RTSORAC) is a real-time
object-oriented database model designed to handle the unique requirements of real-
time applications. RTSORAC integrates the benefits of real-time systems, object-
oriented modeling, and active databases [92]. This section discusses the fundamental
concepts of RTSORAC, its applications, and a comparison with other real-time
database management systems (RTDBMS).

2.3.1 RTSORAC Model

RTSORAC extends the traditional object-oriented database model with real-time
features like deadlines, temporal consistency, and priority-based scheduling. It also
incorporates active rules to handle real-time events and constraints. The main
components of RTSORAC are real-time objects, real-time transactions, and active
rules [92].

• Real-Time Objects: Real-time objects in RTSORAC are instances of real-time
classes, encapsulating data and behavior. Each real-time object has associated at-
tributes, methods, and timing constraints. A real-time object is defined as follows:

𝑅𝑇𝑂𝑏 𝑗𝑒𝑐𝑡 = ⟨𝑂𝐼𝐷, 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠, 𝑀𝑒𝑡ℎ𝑜𝑑𝑠, 𝑅𝑇𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠⟩ (2.4)



2.3 RTSORAC: A Real-Time Object-Oriented Database Model 51

where𝑂𝐼𝐷 is the object identifier, 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 are object attributes, 𝑀𝑒𝑡ℎ𝑜𝑑𝑠 are
object methods, and 𝑅𝑇𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 are real-time constraints, such as deadlines
and minimum inter-arrival times [104].

• Real-Time Transactions: RTSORAC defines real-time transactions as a set of
operations performed on real-time objects. Real-time transactions must adhere to
timing constraints, such as deadlines and temporal consistency requirements. A
real-time transaction is defined as:

𝑅𝑇𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = ⟨𝑇 𝐼𝐷,𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑅𝑇𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠⟩ (2.5)

where 𝑇 𝐼𝐷 is the transaction identifier, 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 are transaction operations,
and 𝑅𝑇𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 are real-time constraints, such as execution time and deadline
[97].

• Active Rules: Active rules in RTSORAC are responsible for triggering actions
based on specific events and conditions. They help maintain real-time constraints
and ensure data consistency. An active rule is defined as:

𝐴𝑐𝑡𝑖𝑣𝑒𝑅𝑢𝑙𝑒 = ⟨𝑅𝐼𝐷, 𝐸𝑣𝑒𝑛𝑡, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝐴𝑐𝑡𝑖𝑜𝑛⟩ (2.6)

where 𝑅𝐼𝐷 is the rule identifier, 𝐸𝑣𝑒𝑛𝑡 is the triggering event, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is the
rule condition, and 𝐴𝑐𝑡𝑖𝑜𝑛 is the rule action. Active rules enable RTSORAC to
support event-driven systems and react to dynamic changes in the environment
[75].

• Concurrency Control: Concurrency control is a critical aspect of any real-
time database system. RTSORAC employs a priority-based concurrency control
mechanism that ensures the timely execution of real-time transactions while
maintaining data consistency. The priority assignment is based on the urgency of
the transaction, considering its deadline and criticality [78].

• Data Consistency and Integrity: Maintaining data consistency and integrity is
a crucial aspect of database management in RTSORAC. Real-time scheduling
algorithms are used to ensure that transactions are executed in an order that
maintains the consistency and integrity of the data, even in the presence of
timing constraints. This involves prioritizing transactions based on their deadlines
and ensuring that any dependencies between transactions are respected during
scheduling.

• Recovery and Fault Tolerance: In real-time systems, failures can lead to
missed deadlines and incorrect system behavior. RTSORAC incorporates real-
time scheduling algorithms with recovery and fault tolerance mechanisms, such
as checkpointing and logging, to ensure that the system can recover from failures
and continue to operate correctly. By considering the timing constraints of trans-
actions during recovery and fault tolerance, RTSORAC can minimize the impact
of failures on system performance and guarantee the temporal consistency of the
data.



52 2 Experimental Real-Time Databases

2.3.2 Real-time Scheduling Characteristics in RTSORAC

RTSORAC employs a priority-based scheduling algorithm to manage the execution
of real-time transactions. The scheduler considers factors such as deadlines, trans-
action priorities, and resource availability to make scheduling decisions [97]. This
approach ensures that high-priority transactions are executed promptly and reduces
the likelihood of deadline misses. The Earliest Deadline First (EDF) and Rate Mono-
tonic (RM) [64] scheduling algorithms are examples of priority-based scheduling
algorithms that can be used in RTSORAC.

The integration of real-time scheduling algorithms with database management in
RTSORAC is essential to ensure that tasks are executed within their deadlines while
maintaining the consistency and integrity of the data. By considering the timing
constraints of transactions during transaction management, concurrency control,
data consistency and integrity, and recovery and fault tolerance, RTSORAC can
provide an effective and efficient solution for real-time database systems.

Real-time scheduling plays a crucial role in RTSORAC, as it determines the order
in which tasks are executed to meet their deadlines and ensure temporal consistency.
In this subsection, we describe in detail the key characteristics of real-time scheduling
in RTSORAC.

1. Timeliness: In real-time systems, tasks have strict timing constraints that must be
met to ensure correct system behavior. RTSORAC employs real-time scheduling
algorithms that prioritize tasks based on their deadlines or periods to ensure that
the most time-critical tasks are executed first. This timeliness characteristic is
essential for maintaining the temporal consistency of the data and guaranteeing
the correct operation of real-time applications.

2. Determinism: Determinism is the property that ensures a task will always com-
plete within a predictable amount of time. Real-time scheduling in RTSORAC
must exhibit determinism, as any uncertainty in task completion times can lead
to missed deadlines and incorrect system behavior. By employing scheduling
algorithms and resource management techniques that guarantee predictable task
execution times, RTSORAC can maintain determinism in real-time systems.

3. Predictability: Predictability is the ability to estimate the completion time of
a task before its execution. For example, in RTSORAC, real-time scheduling
algorithms must provide predictability to enable the system to determine whether
a task can meet its deadline before it starts execution. This characteristic allows the
system to make informed decisions about task scheduling and resource allocation,
ensuring that deadlines are met, and resources are used efficiently.

4. Resource Management: Resource management is the process of allocating and
deallocating resources, such as CPU time, memory, and I/O devices, to tasks in a
real-time system. In RTSORAC, real-time scheduling algorithms must consider
resource management to ensure that tasks have the resources they need to exe-
cute within their deadlines. By managing resources effectively, RTSORAC can
minimize resource contention and maximize system throughput.



2.3 RTSORAC: A Real-Time Object-Oriented Database Model 53

5. Adaptability: Real-time systems often operate in dynamic environments where
task characteristics, such as execution times and deadlines, may change during
runtime. Therefore, RTSORAC’s real-time scheduling algorithms must adapt to
these changes and re-schedule tasks accordingly to ensure that deadlines are met,
and system performance is maintained.

6. Fault Tolerance: Fault tolerance is the ability of a system to continue operat-
ing correctly in the presence of failures. For example, in RTSORAC, real-time
scheduling algorithms must be fault-tolerant, as any failure in task execution
can lead to missed deadlines and incorrect system behavior. By incorporating
fault-tolerance techniques, such as redundancy, error detection, and recovery
mechanisms, RTSORAC can ensure the correct operation of real-time systems in
the face of failures.

Fig. 2.9 RTSORAC Architecture



54 2 Experimental Real-Time Databases

2.3.3 Architecture of RTSORAC

The RTSORAC model is built on a layered architecture that encapsulates various
components responsible for real-time object-oriented database management aspects
(Figure 2.9). In this section, we discuss the architecture of RTSORAC.

The layered architecture of RTSORAC comprises the following layers:

1. User Interface Layer
2. Real-Time Scheduling Layer
3. Active Rules Layer
4. Object-Oriented Database Layer

Each layer interacts with the adjacent layers to support real-time object-oriented
database management. We will now discuss each layer in detail.

1. User Interface Layer: The User Interface Layer serves as the entry point for
the users and applications to interact with the RTSORAC database. This layer is
responsible for accepting user queries, transforming them into real-time transac-
tions, and returning the results to the users or applications. The User Interface
Layer also plays a crucial role in enforcing access control and security measures
to protect the data stored in the database.

2. Real-Time Scheduling Layer: The Real-Time Scheduling Layer is responsible
for managing the execution of real-time transactions while considering their
timing constraints, such as deadlines and priorities. This layer integrates real-time
scheduling algorithms, such as Earliest Deadline First (EDF) and Rate Monotonic
Scheduling (RMS), to prioritize and schedule transactions according to their
timing requirements. In addition, the Real-Time Scheduling Layer works closely
with the Active Rules Layer and Object-Oriented Database Layer to ensure that
transactions are executed within their deadlines while maintaining the consistency
and integrity of the data.

3. Active Rules Layer: The Active Rules Layer manages the active rules associated
with the database objects. These active rules, also known as triggers or Event-
Condition-Action (ECA) rules, define the automatic actions that should be taken
when specific events occur and certain conditions are met. The Active Rules
Layer works in conjunction with the Real-Time Scheduling Layer to ensure that
the active rules are executed within their deadlines and that their actions do not
conflict with the ongoing transactions in the system.

4. Object-Oriented Database Layer: The Object-Oriented Database Layer is the
core of the RTSORAC model and is responsible for storing, retrieving, and
manipulating data as objects. This layer supports object-oriented features such
as encapsulation, inheritance, and polymorphism, allowing for a more natural
and expressive representation of real-world entities in the database. The Object-
Oriented Database Layer is also responsible for implementing concurrency con-
trol mechanisms, such as locking and optimistic concurrency control, to ensure
that transactions are executed in a manner that maintains the consistency and
integrity of the data.



2.4 The COMET approach 55

2.4 The COMET approach

COMET [110] is a customizable real-time embedded database platform designed to
cater to the requirements of diverse real-time and embedded applications. In the rest
of this section, we will discuss the pertinent aspects of the RTCOM model and aspect
packages, as they play a crucial role in COMET’s adaptability. Following that, we
will explain how COMET can be adapted for different applications by incorporating
new functionalities through aspect packages.

Fig. 2.10 Architecture of COMET with Aspect Packages

2.4.1 Components and Aspects

In COMET, tailorability mainly pertains to the adaptability of its software archi-
tecture (Figure 2.10), which is achieved by defining two fundamental and reusable
architectural units: components and aspect packages. Components implement a por-
tion of well-defined database functionality, demonstrating solid internal cohesion and
weak coupling with other database functionality aspects. Furthermore, components
are designed and implemented using a real-time component model (RTCOM) [109]
and can be tailored through aspect weaving.

RTCOM outlines the design and implementation of components in a real-time
environment, enabling the tailoring of components to meet the specific needs of
an application while maintaining information hiding and facilitating component
reuse and analysis of the system’s temporal behavior, such as WCET analysis or



56 2 Experimental Real-Time Databases

formal verification using timed automata [112] [111]. RTCOM components in its
architecture are "grey" as they are encapsulated in interfaces; however, aspects can
predictably modify their behavior. Therefore, components offer an initial functional-
ity that weaving aspects can alter or adjust. Each RTCOM component possesses two
types of functional interfaces: provided and required. Provided interfaces represent
a set of operations that a component offers to other components, while required
interfaces denote a set of operations that the component needs (utilizes) from other
components. The composition interface declares join points where component func-
tionality changes can be made, thus defining locations where modifications can be
applied within the component. Join points must be explicitly stated in a separate in-
terface to ensure the system’s evolution. Specifically, when developing new aspects,
the aspect developer does not need complete knowledge of the component code to
create aspects that can quickly and successfully tailor that component.

A composition of COMET components offering basic functionality is referred
to as the basic COMET configuration (or simply basic COMET). For example, the
primary database functionality refers to the minimal subset of database functionality
that can constitute a working database. This minimal subset typically includes an
interface for applications to access the database and functionality for defining and
executing transactions that read and update data on physical storage. Consequently,
the following COMET components are comprising basic COMET:

• component for user interface (UIC),
• component for scheduling management (SMC),
• component for indexing management (IMC),
• component for transaction management (TMC), and
• component for memory management (MMC).

The UIC offers an interface to the database for applications, allowing users (i.e.,
applications utilizing the database) to search and modify data elements. User requests
are parsed by the user interface and transformed into an execution plan. The TMC is
in charge of executing incoming execution plans, which ultimately manipulates the
data. In addition, the IMC manages an index of all tuples within the database. Lastly,
the SMC records transactions present in the system. It should be noted that the basic
COMET configuration includes a fundamental data model and a basic transaction
model. The primary data model comprises metadata utilized for concurrency control
algorithms in databases. The basic transaction model describes each transaction 𝜏𝑖
solely by a period 𝑝𝑖 and a relative deadline 𝑑𝑖 . The basic COMET is particularly
appropriate for small embedded vehicular systems [109].

2.4.2 Aspect Packages

Aspect packages implement new, non-basic functionalities that can be added to the
existing database functionality, thus creating a new variant of the database system.
All non-basic functionalities are considered to be features of the database. Elements



2.4 The COMET approach 57

in the real-time database domain typically include real-time policies that facilitate
concurrent database access, various indexing strategies, enabling active behavior,
and providing QoS guarantees, among others. Adding aspect packages to the basic
COMET creates database configurations with new features. Consequently, an aspect
package represents a method for packaging the specification and implementation of
real-time features, such as concurrency control, QoS, indexing, and scheduling, for
reuse and configuration.

At an abstract level, an aspect package specifies a real-time database feature,
where a database feature is chosen independently of an application through aspects
and components. At a concrete level, an aspect package comprises a set of aspects and
(possibly empty) a set of components implementing an array of real-time policies.
Components within the aspect package contain the core functional infrastructure of
the features (policies), such as QoS management algorithms.

Moreover, three types of aspects are defined within an aspect package as follows.

• Transaction model aspects adjust the transaction model of a real-time database
system to match the model employed by the policies by incorporating various
attributes to transactions. For instance, a utilization transaction model is needed
for a feedback-based QoS policy that controls system utilization.

• Policy aspects tailor the system to offer a range of related real-time policies, such
as feedback-based QoS policies or concurrency control policies.

• Connector aspects enable the integration of an existing system with components
from the aspect package.

System designers can use an aspect package to create multiple applications with
similar features concerning a specific real-time policy. As a result, each group of
applications would have its distinct aspect package.

In COMET the following aspect packages have been developed:

• The index aspect package implements indexing policies that promote efficient data
access. The index aspect package consists of one component, an alternative IMC
that implements the B-tree structure (IMC B-tree), and the aspect implementing
the GUARD indexing policy.

• The concurrency control aspect package offers an implementation of various
concurrency control policies, enabling the creation of a family of databases with
distinct strategies for handling data conflicts. The concurrency control aspect
package includes one component, the locking manager component (LCM), and
aspects implementing high-priority two-phase locking (HP-2PL) and optimistic
divergence control (ODC) protocols.

• The active behavior package allows the development of database system configu-
rations that can respond to aperiodic events. It comprises aspects of implementing
on-demand algorithms and ECA rules.

• The QoS aspect package includes a set of components and aspects that implement
various feedback-based QoS policies. The QoS aspect package contains two
components, the quality of service QoS admission controller component (QAC)
and the feedback controller component (FCC), and the aspects implementing
multiple feedback control-based quality of service policies.



58 2 Experimental Real-Time Databases

Take note that while the content of an aspect package varies based on the func-
tionality offered within the package, each package generally contains one or multiple
aspects that implement a particular group of (related) policies. Furthermore, if a
policy necessitates changes to COMET’s transaction model, the package includes
practical aspects that enhance this model. To demonstrate how the transaction and
data model needs to be adapted for the employed policy, consider the FC-M and QMF
QoS algorithms. These algorithms demand more sophisticated data and transaction
models capable of capturing additional metadata such as average inter-arrival and ex-
ecution times. Both FC-M and QMF require a transaction model where a transaction
𝜏𝑖 is categorized as either an update or a user transaction. Update transactions arrive
periodically and can only write to the base (temporal) data objects. User transactions
arrive aperiodically and may read temporal and read/write non-temporal data.

In this model, referred to as the utilization transaction model, each transaction
possesses the following attributes:

• estimated execution time 𝑥𝐸,𝑖 ,
• actual execution time 𝑥𝐴,𝑖 ,
• period 𝑝𝑖 (update transactions),
• estimated mean inter-arrival time 𝑟𝐸,𝑖 (user transactions),
• actual mean inter-arrival time 𝑟𝐴,𝑖 (user transactions),
• relative deadline 𝑑𝑖 ,
• estimated utilization 𝑢𝐸,𝑖 , and
• actual utilization 𝑢𝐴,𝑖 .

Attribute Periodic Transactions Aperiodic Transactions

𝑑𝑖 𝑑𝑖 = 𝑝𝑖 𝑑𝑖 = 𝑟𝐴,𝑖
𝑢𝐸,𝑖 𝑢𝐸,𝑖 = 𝑥𝐸,𝑖/𝑝𝑖 𝑢𝐸,𝑖 = 𝑥𝐸,𝑖/𝑟𝐸,𝑖

𝑢𝐴,𝑖 𝑢𝐴,𝑖 = 𝑥𝐴,𝑖/𝑝𝑖 𝑢𝐴,𝑖 = 𝑥𝐴,𝑖/𝑟𝐴,𝑖

Table 2.1 The utilization transaction model

Table 2.1 displays the entire utilization transaction model. When a transaction
arrives, it presents the estimated average utilization 𝑢𝐸,𝑖 and the relative deadline
𝑑𝑖 to the system. However, the actual utilization of the transaction 𝑢𝐴,𝑖 remains
unknown in advance due to variations in execution time.

It is important to note that adding aspect packages to the basic COMET configu-
ration is incremental. For example, when creating a QoS COMET configuration, the
concurrency control aspect package should first be applied to the basic configuration.
Subsequently, the appropriate index package (optional) can be added, and finally,
aspects and components from the QoS aspect package can be utilized to configure
the COMET QoS configuration.



2.5 Feedback Control-Based QoS Management on Real-Time Databases 59

2.5 Feedback Control-Based QoS Management on Real-Time
Databases

Feedback Control-Based Quality of Service (QoS) Management is an approach to
managing the performance and resource utilization of real-time database manage-
ment systems (RTDBMS) by dynamically adjusting system parameters based on
observed performance metrics [66]. This approach aims to achieve the desired QoS
level by continuously monitoring system performance and adjusting the control
parameters to maintain the system within its specified operating range.

Figure 2.11 shows the architecture.

2.5.1 Feedback Control Loop

The feedback control loop consists of four main components: a performance monitor,
a performance analyzer, a decision maker, and an actuator.

• Performance Monitor: The performance monitor collects performance metrics
from the RTDBMS, such as response time, throughput, and resource utilization.
These metrics are used to evaluate the system’s current performance against the
desired QoS levels.

• Performance Analyzer: The performance analyzer processes the collected met-
rics and compares them with the desired QoS levels. If there is a deviation from
the target QoS, the analyzer determines the cause and magnitude of the deviation.

• Decision Maker: The decision maker determines the necessary adjustments to the
control parameters to achieve the desired QoS levels. This may involve increas-
ing or decreasing resource allocation, adjusting task priorities, or other system
adjustments.

• Actuator: The actuator applies the adjustments the decision maker determines to
the system. This can involve modifying database schema, tuning system parame-
ters, or changing the scheduling policy.

2.5.2 Controller Function

The following equation can represent a typical feedback control loop:

𝑒(𝑡) = 𝑟 (𝑡) − 𝑦(𝑡) (2.7)

where 𝑒(𝑡) is the error signal, 𝑟 (𝑡) is the reference input (desired QoS level), and
𝑦(𝑡) is the output (actual performance metric). The control parameter adjustments
are determined by a controller function, which can be represented as:



60 2 Experimental Real-Time Databases

Fig. 2.11 RTDBS architecture for QoS management using feedback control

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖

∫
𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)
𝑑𝑡

(2.8)

where 𝑢(𝑡) is the control parameter adjustment, 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑 are the pro-
portional, integral, and derivative gains, respectively. These gains can be tuned to
achieve the desired performance characteristics, such as minimizing overshoot, re-
ducing steady-state error, and improving transient response.

2.5.3 Applications in Real-Time Database Management Systems

Feedback Control-Based QoS Management has been applied in various RTDBMS
applications, including:

• Adaptive deadline assignment for real-time transactions [80]: In this applica-
tion, feedback control is used to dynamically adjust transaction deadlines based
on the current system workload and resource availability. This helps to maintain
the desired transaction response time and throughput.

• Load shedding in data stream management systems [108]: In this context,
feedback control is employed to dynamically adjust the amount of data processed
by the system in response to fluctuations in input data rates and system resource
availability. This helps to maintain the desired processing latency and output data
quality.

• Dynamic resource allocation for distributed real-time systems [115]: Here
, feedback control is utilized to dynamically allocate resources, such as CPU,
memory, and network bandwidth, among distributed real-time tasks based on
their current demands and priorities. This ensures that the desired performance



2.5 Feedback Control-Based QoS Management on Real-Time Databases 61

metrics, such as deadline satisfaction and resource utilization, are maintained
across the distributed system.

2.5.4 Advantages and Challenges

Feedback Control-Based QoS Management offers several advantages in the context
of RTDBMS:

• Adaptability: The feedback control loop allows the system to adapt to changing
workloads and resource availability in real-time, ensuring that the desired QoS
levels are maintained even under varying conditions.

• Robustness: By continuously monitoring and adjusting system parameters, the
feedback control loop can help to mitigate the impact of unexpected disturbances,
such as hardware failures or sudden workload spikes.

• Tunability: The controller function can be tuned to achieve the desired perfor-
mance characteristics, enabling system designers to balance trade-offs between
performance metrics, such as response time, throughput, and resource utilization.

However, there are also several challenges associated with implementing Feed-
back Control-Based QoS Management in RTDBMS:

• Modeling Complexity: Developing accurate models of the system’s performance
and resource utilization can be challenging, particularly for complex systems with
multiple interacting components and varying workloads.

• Control Stability: Ensuring the stability of the feedback control loop is critical
for maintaining the desired QoS levels. Poorly tuned controller parameters can
result in oscillatory behavior, slow convergence, or instability.

• Implementation Overhead: Implementing the feedback control loop requires
additional computational resources for monitoring, analyzing, and adjusting sys-
tem parameters. This overhead must be carefully managed to avoid negatively
impacting the system’s performance.

Despite these challenges, Feedback Control-Based QoS Management has proven
to be a practical approach for maintaining desired performance levels in various
real-time database management systems. By continuously monitoring and adjusting
system parameters, this approach ensures that the RTDBMS can adapt to changing
workloads and maintain the desired QoS levels under a wide range of operating
conditions.



62 2 Experimental Real-Time Databases

2.5.5 Feedback Control Techniques

Several feedback control techniques have been proposed in the literature to address
the challenges associated with implementing Feedback Control-Based QoS Man-
agement in RTDBMS. Some of the prominent techniques include:

• Proportional-Integral-Derivative (PID) Control [66]: The PID controller is a
widely used feedback control technique that combines the proportional, integral,
and derivative terms of the error signal to compute the control parameter adjust-
ments. PID controllers are known for their simplicity, robustness, and adaptability,
making them a popular choice for various applications, including RTDBMS.

• Model Predictive Control (MPC) [84]: MPC is an advanced feedback control
technique that relies on a model of the system to predict its future behavior
and compute optimal control parameter adjustments. By taking into account
the future impact of the control decisions, MPC can provide better performance
compared to conventional feedback control techniques at the expense of increased
computational complexity.

• Adaptive Control [43]: Adaptive control techniques adjust the controller pa-
rameters in real-time based on the observed system behavior. This enables the
controller to adapt to changes in the system dynamics or operating conditions,
ensuring optimal performance under varying workloads and resource availability.

• Fuzzy Control [107]: Fuzzy control techniques use fuzzy logic to model the
complex relationships between system variables and control parameters. By rep-
resenting the control rules using linguistic terms and fuzzy sets, fuzzy controllers
can handle the inherent uncertainties and nonlinearities in the system, providing
a more flexible and robust control solution.

2.6 QeDB: A Quality-Aware Embedded Real-Time Database

QeDB [47] serves as a database tailored for data-driven real-time applications operat-
ing on embedded systems with flash memory. Embedded system databases function
on a best-effort basis, offering no assurance regarding timeliness or data freshness.
Additionally, traditional real-time database (RTDB) technologies cannot be adapted
to these embedded databases, as they assume that a system’s primary memory can
accommodate the entire database, which is not feasible for data-intensive real-time
applications. Instead, QeDB employs an innovative feedback control strategy to en-
sure QoS in embedded systems without necessitating that all data be stored in the
main memory. Specifically, their methodology focuses on the concurrent manage-
ment of both I/O and CPU resources to achieve the required timeliness.



2.6 QeDB: A Quality-Aware Embedded Real-Time Database 63

2.6.1 System Model

QeDB is designed for real-time embedded systems that utilize high-capacity flash
memory as secondary storage. The software stack of an embedded system running a
real-time application with RTEDB support is depicted in Figure 2.12. A buffer in the
main memory serves as a cache between the CPU and the slower secondary storage.
This buffer is shared globally among transactions to decrease data access time. If an
application’s I/O request for a data object is not found in the buffer, I/O operations
to the flash memory are triggered.

Fig. 2.12 Software Stack of a Real-Time Application with RTEDB support

2.6.2 Data and Transactions

Contrary to conventional DBMSs, QeDB does not facilitate intricate data query pro-
cessing. Instead, it functions as a key/value store, enabling efficient and simultaneous
access to data. Moreover, QeDB employs the underlying Berkeley DB’s data storage
and retrieval mechanism with minimal modification.

The interface put(key 𝑘1, value 𝑣) is utilized for storing data 𝑣 with key 𝑘1, while
the interface gets (key 𝑘2) retrieves data associated with key 𝑘2. Operations get and
put primarily involve I/O operations between the buffer and secondary storage for
fetching and flushing data. However, they also necessitate computation for tasks
such as buffer cache manipulation, index lookup, and data and index page locking.
In QeDB, I/O operations pertain to put-and-get operations, encompassing raw I/O
operations to flash memory and the computation required for these I/O operations.

Data objects within QeDB can be categorized into two groups: temporal and
non-temporal data. Temporal data objects undergo periodic updates by update trans-
actions. For instance, an update transaction is initiated when a new sensor reading
is available. Conversely, user transactions may access and modify both temporal
and non-temporal data objects unlike update transactions. All transactions are pre-
defined canned transactions, with operations determined during the application’s
design phase. These operations are hard-coded into the applications and dynam-
ically invoked at runtime. While a transaction’s characteristics, such as execution



64 2 Experimental Real-Time Databases

time and access pattern, are known during the design phase, the overall database
workload and data access pattern are unpredictable and change dynamically. This
is because the invocation frequency of each transaction is unknown, and multiple
transactions execute concurrently. As a result, their response time can be uncertain.
Transactions access data through QeDB; if applications specify them, transactional
properties like ACID (atomicity, consistency, isolation, and durability) are provided
between data accesses.

2.6.3 Real-Time Transactions

Transactions can be divided into real-time and non-real-time transactions. Real-time
transactions have deadlines for completion and hold a higher priority than non-
real-time transactions. For example, in Program 1, the transaction must report the
structural integrity status of a burning building within a specified deadline; failure
to do so could result in firefighters losing the opportunity to evacuate a potentially
collapsing location. Soft deadline semantics is adopted, where transactions retain
value even if they miss their deadline. For instance, receiving a delayed report on the
building’s condition is preferable to not receiving any information due to transaction
abortion.

Soft deadline semantics are selected because most data-intensive real-time appli-
cations accessing databases are inherently soft real-time applications. However, due
to concurrent data access and complex interactions, such as database locking, achiev-
ing hard real-time can be challenging. Therefore, this paper primarily focuses on QoS
management that dynamically reduces the tardiness of these real-time transactions
during runtime.

2.6.4 Performance Metrics

The system’s objective is to maintain QoS at a specific level. In real-time systems, the
deadline-miss ratio is a prevalent QoS metric. Transaction deadlines are application-
specific requirements concerning transaction timeliness. The deadline miss ratio
represents the proportion of late transactions to total transactions. However, the
deadline-miss ratio has proven problematic in RTEDBs because the transaction in-
vocation rate in embedded databases is much lower than in traditional database
systems, which handle thousands of transactions per second. For instance, a fire-
fighter’s PDA real-time transaction checking the building’s status might be invoked
per second. The deadline miss ratio’s confidence interval can be substantial with
such a limited number of transactions. Instead, QeDB controls QoS based on the
transactions’ average tardiness. For each transaction, tardiness is defined as the ratio
of the transaction’s response time to its corresponding (relative) deadline.



2.6 QeDB: A Quality-Aware Embedded Real-Time Database 65

𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 =
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 − 𝑡𝑖𝑚𝑒

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒
(2.9)

Another QoS metric, which may present conflicting requirements, is data fresh-
ness. In RTDBs, validity intervals are utilized to maintain temporal consistency
between the database’s real-world state and sensor data. A sensor data object 𝑂𝑖 is
considered fresh or temporally consistent if the current 𝑡𝑖𝑚𝑒 − 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(𝑂𝑖) ≤
𝑎𝑣𝑖(𝑂𝑖), where 𝑎𝑣𝑖(𝑂𝑖) is the absolute validity interval of 𝑂𝑖 . To support sensor
data freshness, the update period is set to 𝑃𝑖 = 0.5 × 𝑎𝑣𝑖(𝑂𝑖) for 𝑂𝑖 . QeDB keeps
the desired data freshness regarding perceived freshness (PF).

𝑃𝐹 =
𝑁 𝑓 𝑟𝑒𝑠ℎ

𝑁𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑑

(2.10)

where 𝑁 𝑓 𝑟𝑒𝑠ℎ denotes the number of fresh data accessed by real-time transactions,
and 𝑁𝑎𝑐𝑐𝑒𝑠𝑠 signifies the total number of data accessed by real-time transactions.
Data freshness could be traded off when overloaded to enhance tardiness, provided
the target freshness is not breached.

2.6.5 I/O deadline and CPU deadline

A transaction’s tardiness is influenced by the response time of both I/O operations
and computation within the transaction. Specifically, I/O response time is crucial
in data-intensive real-time applications. Although the transaction’s tardiness in the
Equation reveals the extent of system overload, it does not indicate which resource is
overloaded, either I/O or CPU. Consequently, a transaction’s deadline is divided into
I/O and CPU deadlines to assess the tardiness of I/O and CPU activities separately. In
a transaction, the I/O deadline and CPU deadline represent the maximum total time
allocated to all I/O operations and all computational activities, respectively. Initially,
the transaction’s I/O deadline and CPU deadline are determined based on the profiled
minimum execution time of I/O operations, 𝐸𝑋𝐸𝐶_𝑖/𝑜, and the computational
activities, 𝐸𝑋𝐸𝐶_𝑐𝑝𝑢. 𝐸𝑋𝐸𝐶𝑖/𝑜 comprises overhead proportional to the number
of I/O operations, such as buffer cache lookup and index/data page locking. Still,
it does not include the actual I/O time for accessing data in flash memory since
the buffer hit ratio is assumed to be 100%. 𝐸𝑋𝐸𝐶𝑐𝑝𝑢 is the minimum execution
time of the transaction, excluding 𝐸𝑋𝐸𝐶𝑖/𝑜. Given 𝐸𝑋𝐸𝐶𝑖/𝑜 and 𝐸𝑋𝐸𝐶𝑐𝑝𝑢, the
transaction’s slack time can be calculated:

(𝐸𝑋𝐸𝐶𝑖/𝑜 + 𝐸𝑋𝐸𝐶𝑐𝑝𝑢) × 𝑠 𝑓 = 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 (2.11)

Here, 𝑠 𝑓 represents the slack factor, which should be greater than one for a
transaction to be schedulable in the given system. Thus, the initial I/O deadline and
CPU deadline are set as follows:

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖/𝑜 = 𝐸𝑋𝐸𝐶𝑖/𝑜 × 𝑠 𝑓 (2.12)



66 2 Experimental Real-Time Databases

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒cpu = 𝐸𝑋𝐸𝐶cpu × 𝑠 𝑓 = 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 − 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒i/o (2.13)

The tardiness Equation is expanded to include I/O and CPU tardiness as follows:

𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠𝑖/𝑜 = 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 𝑖𝑚𝑒𝑖/𝑜𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖/𝑜 (2.14)

𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠𝑐𝑝𝑢 = 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 𝑖𝑚𝑒𝑐𝑝𝑢𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 − 𝑐𝑝𝑢 (2.15)

Nonetheless, assigning the same static slack factor to both I/O and CPU deadlines
can be problematic, as the optimal slack times for I/O operations and computation
vary with system status changes. For example, if one resource is overloaded while
the other is not, it would be preferable to allocate more slack time to the overloaded
resource, as the other resource is under-utilized. To address this issue, QeDB dy-
namically adjusts I/O and CPU deadlines in each sampling period using Algorithm
7.

Algorithm 7 Run-time adaptation of deadlines
Require: average tardinessi/o and tardinesscpu
Require: Δi/o and Δcpu
1: if tardinessi/o ≤ tardinesscpu then
2: Δi/o += 1
3: Δcpu = 0
4: 𝛿𝑑 = 𝑘 × Δi/o
5: increase deadlinei/o by 𝛿𝑑%
6: else
7: Δcpu += 1
8: Δi/o = 0
9: 𝛿𝑑 = 𝑘 × Δcpu

10: decrease deadlinei/o by 𝛿𝑑%
11: end if
12: deadlinecpu = deadline − deadlinei/o

In Algorithm 7, I/O and CPU deadlines are modified by 𝛿𝑑% during each sam-
pling period. Under normal circumstances, 𝛿𝑑 is set to 1 in the experimental setup.
However, when a particular resource experiences consecutive overload periods, 𝛿𝑑
increases multiplicatively to expedite the deadline adaptation process. When the QoS
controller is active, consecutive overloading of a specific resource occurs when the
QoS controller is unable to adjust the CPU or I/O load further.

2.6.6 QoS Management Architecture

Figure 2.13 illustrates the QeDB architecture, which is composed of a MIMO feed-
back controller, actuator, performance monitor, admission controller, buffer manager



2.6 QeDB: A Quality-Aware Embedded Real-Time Database 67

(BM), concurrency controller (CC), and scheduler (SC). The figure presents three
distinct queues within the ready queue. Temporal data updates are assigned to Q0
and given the highest priority. Real-time user transactions are managed in Q1, while
non-real-time transactions in 𝑄2 hold the lowest priority and are only dispatched
if 𝑄0 and 𝑄1 are empty. Transactions in each queue are scheduled based on a
first-come-first-served (FCFS) approach. When a user transaction arrives, it must
be completed within a timeframe equal to the current time plus its (relative) dead-
line. For concurrency control, QeDB utilizes the two-phase locking (2PL) method
provided by the underlying Berkeley DB. As a result, transactions may experience
blocking, abortion, or restarting due to data conflicts.

Fig. 2.13 QeDB Architecture

In determining transaction priorities, both transaction timeliness and data fresh-
ness present conflicting demands. If user transactions are assigned a higher priority
than temporal updates, transaction timeliness may be enhanced at the expense of a
potential reduction in data freshness and vice versa. In QeDB, temporal data updates
are given higher priority to maintain data freshness. Nonetheless, the timeliness of
user transactions is still ensured by the feedback control loop, which regulates the
update transaction rate and buffer size. First, the performance monitor calculates
the I/O and CPU tardiness, or the discrepancy between the desired I/O (and CPU)
response time and the observed I/O (and CPU) response time, at each sampling
period. Using these errors, the feedback controller computes the necessary buffer
hit ratio adjustment (Δhit ratio) and CPU load adjustment (Δcpu load). Next, the
actuator estimates the required buffer size adjustment and update rate adjustment
based on Δhit ratio and Δcpu load. Lastly, the buffer and freshness managers modify
the buffer size and update rates for temporal data.



68 2 Experimental Real-Time Databases

Fig. 2.14 Tardiness Control Loop

The objective of the feedback controller depicted in Figure 2.14 is to maintain
the transaction response time equal to its deadline, necessitating a desired tardiness
of 1. The overall feedback control process is as follows:

1. At the 𝑘th sampling instant, the tardiness errors 𝑒i/o (𝑘) and 𝑒cpu (𝑘) are calculated
for I/O tardiness and CPU tardiness, respectively.

2. Using 𝑒i/o (𝑘) and 𝑒cpu (𝑘), the MIMO controller computes the control signals
Δhit ratio and Δcpu load. In contrast to a Single Input/Single Output (SISO) con-
troller, the MIMO controller concurrently calculates control signals, considering
both I/O tardiness and CPU tardiness.

3. The actuator converts Δhit ratio to Δbuffer size. QeDB employs a linear model
that associates buffer size with buffer hit ratio. This linear model is updated at each
sampling period since data access locality dynamically changes during runtime.
The buffer size is modified according to this model to achieve Δbuffer size.
Altering the buffer size also impacts CPU load, as demonstrated in the following
section. Consequently, Δcpu load is adjusted after implementing a new buffer
size.

4. The Δcpu load is obtained by modifying the update rates of cold temporal data.
Update transactions have minimal influence on the buffer hit ratio since they
only access one data object. For efficient temporal data updates, the access up-
date ratio AUR[𝑖] is computed for each temporal data 𝑑𝑖; AUR[𝑖] is defined as
Access Frequency[𝑖]. If Δcpu load < 0, the update rates of a cold data object,
accessed infrequently, are adjusted from 𝑝 [𝑖] to 𝑝 [𝑖]new. The adjustment alters
CPU load by (𝑝 [𝑖]new − 𝑝 [𝑖])/𝑝 [𝑖]). This update period adjustment continues
for a subset of cold data until Δcpu load ≥ 0 or no further freshness adaptation is
feasible.

2.7 RT-MongoDB: A NoSQL Database Solution

Over the past decade, the importance and transformative capabilities of cloud com-
puting have become increasingly evident, especially in the realm of contemporary
web application development. This technology offers considerable benefits to busi-
nesses of all sizes by eliminating the necessity for investment in dedicated data
centers. While numerous studies [11,58] apply high-performance computing meth-



2.7 RT-MongoDB: A NoSQL Database Solution 69

ods to distributed and cloud applications for optimal performance, few works focus
on delivering customizable end-to-end service-level objectives with varying quality
of service (QoS) for different users or clients. The trade-off between throughput and
response time becomes clear when designing services that must balance maximiz-
ing throughput and quickly addressing asynchronous real-time requests. The former
requires approaches that consolidate many requests into large batches for process-
ing with minimal overheads and utilize long intermediate buffers to reduce worker
thread idle times. On the other hand, the latter demands preemptible, short-lived
tasks that can be paused in favor of higher-priority ones and the usage of small
buffers to minimize individual request processing latency. Developing distributed
software systems that find the right equilibrium between these requirements is more
challenging. Circumstances that would benefit the most from a design that supports
differentiated performance per user or request involve those where a broad range of
applications must submit requests to the same component(s). One example is a cloud
data center database system that must handle heavyweight requests for batch or high-
performance applications while attending to lightweight requests from soft real-time
applications that demand quick responses to user interactions or asynchronous con-
ditions, such as online gaming or collaborative document editing. This work tackles
the issue in the context of storage systems by using the prioritized access principle,
a commonly employed trade-off in real-time system design. Higher-priority tasks
are given resources before lower-priority ones, sometimes even preempting them
by withdrawing their resource access mid-task or starving them for extended dura-
tions. Although priority-based access alone is insufficient to guarantee predictable
performance, integrating it with solid real-time design principles and analysis can
ensure the proper functioning and sufficient resources for all hosted real-time tasks
[20]. In this context, NoSQL database services are emerging as a vital technology
for replicated and infinitely scalable data storage solutions, primarily due to their
typically lower consistency and functionality requirements compared to relational
alternatives.

2.7.1 Fundamental Concepts

MongoDB is an open-source, document-oriented data storage system widely praised
in comparative research [73] for its versatility and user-friendliness while offering all
the essential features to address the complex requirements of modern applications.
The term mongodb stems from humongous, meaning extremely large, highlighting its
ability to store and manage substantial amounts of data. Effectively handling large-
scale traffic, a common necessity for content delivery services, is a challenge for
relational database technologies to achieve effortlessly. For instance, MongoDB’s
access speed is ten times faster than MySQL’s when data exceeds 50GB [85].
Moreover, mongodb employs BSON, a binary-encoded serialization of JSON, for
document storage, which is designed to optimize storage space and scanning speed.



70 2 Experimental Real-Time Databases

A BSON document comprises multiple named fields, including an automatically
generated identifier for unique identification. Each field contains a name, a data
type, and a value. BSON supports complex JSON data types, such as arrays and
nested documents, as well as other types, like binary, integer, floating point, and date
time. Documents are stored in schemaless tables, referred to as collections, which
allow heterogeneous documents to coexist within the same collection (although the
similarity is recommended for index efficiency). Users interact with the database
system using a JSON-based query language offered by API libraries or drivers,
compatible with all major programming languages. mongodb ensures data durability
and availability and enables horizontal scaling through replication and sharding.
Replication involves deploying multiple physical copies of the same database to
form a replica set. On the other hand, sharding consists in deploying a cluster of
distinct databases, called a sharded cluster, each containing subsets of data distributed
based on user-defined criteria.

2.7.1.1 MongoDB Internals

This section provides an overview of the internal components and mechanisms
of mongodb software that have been explored and the integration of the proposed
approach with them. Here version 4.2 is considered, which can be found on GitHub7.

MongoDB is structured as a customizable client-server architecture. The primary
component is the mongodb service, responsible for core database operations such
as processing requests, updating the storage unit, and managing logging processes.
The approach is built upon two design choices related to the default execution model
and concurrency control mechanism employed by a mongod instance. These choices
enable the smooth integration of modifications into the core software with minimal
overhead:

Fig. 2.15 Life-cycle FSM of a client connection session.



2.7 RT-MongoDB: A NoSQL Database Solution 71

1. Mongodb manages network connections synchronously: each incoming con-
nection is allocated a dedicated server-side client worker thread in charge of han-
dling database operations and overseeing the session life-cycle. Worker threads
adhere to a finite-state machine (FSM) workflow. The primary request-response
interaction involves multiple passes through the transition path known as Stan-
dard RPC, aligning with these events: await the client request, process the request,
wait for the result from the storage unit, and transmit a response (Figure 2.15).
The thread is relinquished when the connection terminates. In mongodb Version
4.2, it is safe to assume that every incoming connection has its own dedicated
server-side worker thread.

2. Mongodb employs an optimistic version of the Multiversion Concurrency
Control mechanism ( [13]), allowing for concurrent write operations without
locks. Data consistency is maintained by presenting users with a snapshot of the
database at a specific moment. Changes a writer makes are exposed to other users
once the operation concludes without conflicts. Write conflicts that occur due to
concurrent updates to the same document are resolved by confirming one write
operation and transparently retrying any others. Multiple mongod services can
function on distinct physical machines and be connected via a simple socket-
based, request-response styled protocol named MongoDBWire Protocol for more
complex deployments providing data redundancy and/or horizontal scalability. A
collection of independent mongod instances, which maintain an identical data set,
is called a replica set. The primary node oversees all write operations and records
data set alterations in an operation log (oplog); secondary nodes mirror the pri-
mary’s oplog and asynchronously apply changes to their local copies. Replica
set members communicate frequently using heartbeat messages to identify and
adapt to topology changes. For example, if the primary node becomes inaccessi-
ble, the replica set commences an election process to select a new primary. The
primary election and oplog replication processes are founded on a variant of the
RAFT consensus algorithm ( [72]). The oplog, a fixed-size collection stored in
the mongod instance, treats records as regular documents but with a fixed struc-
ture. Oplog entries detail data set alterations in an idempotent manner. They are
uniquely identified by the opTime field, a tuple containing a timestamp, and a
node-specific term that identifies the primary node responsible for the write op-
eration. This field dictates the order of operations. A secondary mongod instance
replicates the oplog using the subsequent components (illustrated in Figure 2.16):
The replication process pipeline. functions as follows: a secondary node retrieves
oplog entries from the primary node and accumulates them in batches within a
buffer. Subsequently, these entries are extracted and organized into another set of
batches that the writer threads can concurrently apply. These writer threads then
modify both the local copy of the secondary’s oplog and the database.

• The OplogFetcher acquires oplog entries from the primary by executing find
and getMore commands at the same endpoint as a user connection. Entries are
obtained in batches and saved in a buffer known as the OplogBuffer.



72 2 Experimental Real-Time Databases

Fig. 2.16 The replication process pipeline.

• The OplogBatcher extracts fetched batches from the OplogBuffer and constructs
the subsequent batch of operations to be implemented on the local data set replica.

• The OplogApplier is responsible for applying the batches generated by the Oplog-
Batcher to the local oplog and storage unit. It manages a pool of writer threads
that, for improved performance, can use operations within a batch concurrently,
possibly overlooking their chronological sequence. Consequently, specific opera-
tions require individual batches, such as the "drop" operation. Once a secondary
node finishes replicating a batch, it notifies the primary node of the opTime of
the last applied entry. This is crucial in cases where users request a particular
degree of data durability, called the write-concern level in mongodb parlance.
The primary node will await a specified number of notifications before acknowl-
edging a write operation, confirming that the alteration has been replicated across
a sufficient number of nodes. A high write concern value diminishes throughput,
while a low value heightens the possibility of data loss during a failure. The write
concern is commonly configured to ensure that most replicas have securely saved
the data before responding to the client. A comparable feature, the read concern,
is accessible for read operations and is employed to control data consistency. Both
settings should be adapted to suit the application’s needs.

2.7.2 RT-MONGODB

The RT-MongoDB [10] software is a modified version of mongodb that incorporates
a prioritization scheme for simultaneous requests. This is accomplished by enabling
users to manipulate the niceness value of the underlying client worker thread handling
their requests, thereby modifying the thread scheduling sequence based on user
requirements. To simplify, the range of niceness values is limited to three levels:
high-priority (-20), normal-priority (0), and low-priority (+19).

The synchronous execution model facilitates straightforward identification of the
target thread without side effects, enabling high-priority users and high-priority
worker threads to be used interchangeably. However, prioritization by merely de-
creasing the niceness value for high-priority sessions may prove more effective in
replicated situations where data durability is mandated. To tackle this issue, RT-
MongoDB employs a soft checkpoint system that temporarily denies CPU access
to lower-priority worker threads, consisting of two primitives: check-in and check-



2.7 RT-MongoDB: A NoSQL Database Solution 73

out, which are implemented in the client session’s life cycle to mark the start and
end points of the Standard RPC transition path. The objective is to create a priori-
tized access channel for completing high-priority requests by putting lower-priority
worker threads to sleep during the necessary time window. To accomplish this, each
worker thread announces its niceness level before processing a user request and may
be halted by the checkpoint system if higher-priority requests are executed. Upon
completing a request, a worker thread utilizes the check-out primitive to inform
blocked threads and awaken them if no higher-priority requests are ongoing (Fig-
ure 2.17). The term "soft" indicates that this mechanism does not disrupt threads
serving users who want to specify a different priority level, service threads created
by the database for deployment management, or worker threads serving secondary
nodes. The checkpoint system offers a prioritized channel to high-priority sessions
by temporarily limiting CPU access to lower-priority ones. The identical finite-state
machine is integrated with the checkpoint system (Figure 2.17). The check-in prim-
itive specifies the niceness value of the underlying worker threads about to serve
their clients. If higher-priority threads are executing, the checkpoint system will
block them. The check-out primitive informs the checkpoint system of the comple-
tion of a Standard RPC path, which in turn will awaken lower-priority threads if no
higher-priority ones are running.

In terms of API, RT-MongoDB has incorporated a new database command,
𝑠𝑒𝑡𝐶𝑙𝑖𝑒𝑛𝑡𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦, and an updated version of the 𝑟𝑢𝑛𝐶𝑜𝑚𝑚𝑎𝑛𝑑 command to fa-
cilitate differentiated performance on a per-user and per-request basis, respectively.
Both commands employ the same mechanisms, execute the same tasks, and support
all operations. However, the priority specified by 𝑟𝑢𝑛𝐶𝑜𝑚𝑚𝑎𝑛𝑑 persists only for a
single Standard RPC transition, enabling temporary prioritization of the client ses-
sion. On the other hand, 𝑠𝑒𝑡𝐶𝑙𝑖𝑒𝑛𝑡𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 designates the priority for all subsequent
requests until the session is terminated or the priority is modified once more.



74 2 Experimental Real-Time Databases

Fig. 2.17 Finite-state machine integrated with the checkpoint system.

2.8 V4DB Real-Time Database Testbed

According to V4DB designers [53], up to 2007, the major part of RTDB research
was focused on the evolution and evaluation of transaction processing algorithms,
priority assignment strategies, and concurrency control techniques. The evaluation
was usually based on simulation studies except for a few exceptions. Simulations
often consist of a number of parameters. The parameters specify the maximal count
of data items, the average count of one transaction data page, processor time needed
to manipulate data items, average disk access time, probability of read vs. write
transaction, etc. There is even a study where all the functional blocks are designed as
object-oriented and described by means of classes with a number of attributes. Much
less attention was paid to architecture aspects of the operating systems, developed
especially for real-time systems and for better support of time-critical operations. So
two basic drawbacks of the presented research, up to 2007, can be defined:

1. For the most part, only one functional part is considered for investigation with-
out any interaction with other system parts. Because of the strong interactions
among the various processing components in RTDBS, an integrated approach is
necessary.

2. Research work in real-time transaction processing is based on simulation studies
only. It is necessary to investigate the real-time transaction processing algorithms
in their natural environment to achieve really relevant results. It means that the
operating platform for RTDBS is a real-time operating system, and the particular
functional blocks communicate with each other by means of this operating system.



2.8 V4DB Real-Time Database Testbed 75

2.8.1 The V4DB System

The system is currently implemented upon the real-time operating system platform
VxWorks as a centralized system with a memory resident database. The overall
design is presented on Figure 2.18. Oval blocks represent parallel processes while
the square blocks are single functional blocks within processes. Some of the system
parts contain grayed blocks. The blocks illustrate the possibility of functionality
change of the parts. Their runtime behaviour can be changed.

Fig. 2.18 V4DB Architecture

The main components of the architecture are the following:

1. Predispatching: After the admission, the transactions are predispatched. Predis-
patching includes admission control to avoid system overloading and creating the
transaction info-structure. The structure fully describes the transaction definition
and all its parameters.

2. bf Dispatching: In the next step, the transaction parameters are extracted and
dispatched for execution as to the priority assignment policy and the way of
transaction processing. The priority assigned to a transaction execution process is
mapped to a real operating system process priority, and the context (transaction)
switching relies on an underlying operating system. This is one of the most
important experimental system aspects.



76 2 Experimental Real-Time Databases

3. Processing: When the transaction is scheduled for execution, first it is parsed
into particular commands and then the commands are processed by the command
executor. Database access must be synchronized through the concurrency con-
trol. The DBQuery block executes the commands on a logical level while the
resource manager and memory manager work with physical data structures that
are described by the data dictionary. To obtain reasonable performance, multiple
transactions must be able to access data concurrently. So before a transaction per-
forms an operation on a data object, it must be processed by concurrency control
component in order to achieve the required synchronization.

2.8.2 V4DB Database

The project objective as an experimental system and application categories where
RTDBS are used to advantage a simple schema is adopted in the following form: The
database is divided into a predefined count of memory areas. Each area represents
some table and consists of a predefined count of records. Records are of the same
length for one memory area table just for simplicity. The database schema is outlined
on Figure 2.19.

In V4DB, the database schema is defined by the notation:

tab name | rec count | rec byte length

for example: 𝑇𝑎𝑏01|100|50, means that there exists a table named Tab01 which
has 100 records, each of 50 bytes in length.

2.8.3 Database granularity

The granularity parameter can be defined for each table mentioned above. The
parameter stands for the count of logical areas into which each table is divided for
the needs of concurrency control during transaction processing. The granularity is
defined separately for each table, so the parameter can be added to the table definition
and the final database schema looks like that:

tab name | rec count | rec byte length | granularity

for example, 𝑇𝑎𝑏01|100|50|2, means that there exists a table named Tab01 which
has 100 records, each of 50 bytes in length; the table is divided into two logical areas
according to granularity 2.



2.8 V4DB Real-Time Database Testbed 77

Fig. 2.19 V4DB Schema.

2.8.4 Description of the Transactions

Internal generators generate transactions. To study database transaction processing, it
must be able to generate transactions whose properties are known and set in advance.
The parameters are described in Figure 2.20.

Logical database access results from physical database design. Access to the
second record of table 2.2 can be written as 𝑇𝑎𝑏01 : 2, etc. Next, four basic database
access methods must be distinguished.

DB operation Shortcut

Select S
Update U
Insert I
Delete D

Table 2.2 Shortcuts of DB operations



78 2 Experimental Real-Time Databases

Fig. 2.20 V4DB Transactions.

For example, to select Tab01:2, it can be simply written as S/Tab01:2. Besides
these basic principles, the real-time parameters in Table 2.3 further specify the
transaction.

DB operation Shortcut
Deadline T
Period P

Criticality C

Table 2.3 Shortcuts of transaction’s RT characteristics

2.8.5 System Test Options

The system is implemented upon the real-time operating system VxWorks. Currently,
it includes all necessary core database and transaction services, admission control,
priority assignment, and concurrency control. The way of operation of some system



2.8 V4DB Real-Time Database Testbed 79

components can be changed according to project goals to enable testing the system
behavior under different conditions. The test options currently include the following:

• Variable database definition and granularity: Database consists of tables de-
fined by text lines in an external text file. Each table can be divided into predefined
count of logical areas. Database schema is loaded during the system start.

• Periodic and random transactions: Transactions are defined by simple text files.
Each line represents the definition of one transaction as described above. The file
is loaded before the initialization of the generators.

• Priority assignment strategy: The priority assignment strategies make use of
the RT characteristics of the transaction. There are four types implemented:

1. Deadline Monotonic (DM): Lower deadline = higher priority.
2. Most Criticality First (MCF): Higher criticality = higher priority.
3. Criticality Deadline First (CDF): Deadline-criticality 50-50 (%).
4. Random (RAND): uniformly generated random level of priority.

The priority assigned to a transaction is mapped to a real operating system process
priority.

2.8.5.1 Transaction Processing Type

How the transactions are executed has certainly a significant impact on system
performance. V4DB supports two types of transaction execution:

1. 1 transaction = 1 process: Each transaction is executed within its process. The
process is created after transaction admission and destroyed after transaction
commit. This processing type is used across all the experiments.

2. 2) Process pool: The predefined count of processes executes the transactions. Each
of the processes executes transactions within the specified range of priorities. This
processing type is currently under development.

2.8.5.2 Concurrency Control Mode

In V4DB, there are two types of pessimistic 2PL (two-phase locking) and two types
of optimistic protocols implemented, together with simple serial execution:

1. Strict 2PL (2PL-STRICT): Locking protocol. Hold all locks until the end of the
transaction without any change of transaction priority.

2. 2PL Wait-Promote (2PL-WP): The scheme is identical to the basic 2PL in
resolving conflicts. But with this mechanism, whenever a request is blocked
behind a lower-priority lock holder, the lock holder’s priority is promoted to that
of the requester.

3. Optimistic locking - forward validation (OCC-FV): the transactions conflicted
with the validating transaction are restarted.



80 2 Experimental Real-Time Databases

4. Optimistic sacrified validation (OCC-SAC): If the validating transaction con-
flicts with other transactions, it is restarted.

5. Strict serial (SERIAL): Transactions are executed in order of their admission.
No transaction preemption can occur.

2.9 Chronos Testbed

Chronos [48] is a testbed for RTDB systems that use the typical schema and workload
of an Online Stock Trading system. Kang et al. developed this testbed in a joint effort
by the State University of New York at Binghamton and the University of Virginia
in 2007.

A Stock Trading System can be characterized as a soft real-time application
[48]. In this type of system, many clients are trying to do some operations in their
stock investments. A database is an ideal match for this type of system due to the
required ACID support. Additionally, these transactions need to be processed within
a specified delay bound.

Fig. 2.21 Architecture of Chronos

2.9.1 Architecture of Chronos

In Chronos, individual transactions are not assigned separate deadlines. Instead, the
idea is to process as many trade transactions as possible within a system-wide delay
bound. The architecture of Chronos is presented in figure 2.21.



2.9 Chronos Testbed 81

Chronos models two types of transactions:

1. System Periodic Transactions. These transactions are used to maintain the fresh-
ness of the data accessed by user transactions. They are enqueued in the queue
𝑄0, which receives a higher priority (compared to user transactions) to achieve
the mentioned freshness.

2. User Transactions. As the name implies, these transactions are executed by the
system users, potentially using the data refreshed by the periodic transactions.
They are enqueued in 𝑄1, which receives a lower priority than those enqueued in
𝑄0.

Transactions in each queue 𝑄0 and 𝑄1 are scheduled in First-Come First-Served
(FCFS) fashion under Two-Phase Locking (2PL). Transactions might be blocked,
aborted, or restarted. A blocked transaction is appended to the block queue shown
in figure 2.21. Two of the proposals in the paper are the QoS Manager plus the
Performance Monitor Module. Together, they periodically compute the difference
between the response time of transactions and the desired delay. Based on that, some
actions are taken as Admission Control or Adaptive Updates. These two actions are
described in detail in the paper.

2.9.2 Client-Server Application

Chronos is a client-server application. Clients submit a connection request to the
server, and at some point, the server accepts the request and creates a connection,
allocating a server-side thread. Subsequently, the client is allowed to send transaction
requests. Then, the request is received by the server-side thread and processed. Once
processed, the result is returned to the suspended client waiting for this reply. In
the model presented in the paper, after the client-side thread receives the server’s
response, it remains a think time before submitting a new request, following the idea
of the TPC-C, the online transaction processing benchmark.

The Chronos testbed has eight tables, but only four tables are accessed in the
experiments reported in [48]: Stocks, Quotes, Quotes History and Portfolios. These
tables are accessed, as mentioned earlier, by the system and user transactions. The
periodic system transactions update the Quotes table, i.e., refreshing the market
prices of the stocks. The defined user transactions are four: VIEW-STOCK, VIEW-
PORTFOLIO, PURCHASE, and SALE. The first two are read-only transactions;
the last two are write transactions. Apart from the testbed, [48] also presented a
QoS Management technique consisting of three parts: overload detection, admission
control, and adaptive updates. In this section, these three components are described.



82 2 Experimental Real-Time Databases

2.9.3 Adaptive Update Policy

Another idea presented in [48] is that of an Adaptive Update Policy (AUP). While
the Admission Control deals with user transactions, the adaptive update policy is
used to reduce the workload of the update transactions, as shown in figure 2.21. For
that, the concept of flexible validity interval [49] is used to relax the absolute validity
intervals. First, an access update radio is computed:

𝐴𝑈𝑅[𝑖] = 𝐴𝐹 [𝑖]
𝑈𝐹 [𝑖] (2.16)

where 𝐴𝐹 [𝑖] is the access frequency of a data item 𝑑𝑖 , and 𝑈𝐹 [𝑖] is the update
frequency of the same data item. 𝐴𝑈𝑅[𝑖] measures how hot the data item is. If
𝐴𝑈𝑅[𝑖] > 1, the data item 𝑑𝑖 is considered hot because that means the data item is
used many times between updates.

Based on the 𝐴𝑈𝑅[𝑖] value, a data item can be updated less frequently if consid-
ered cold. So, initially, the flexible validity interval is 𝑓 𝑣𝑖[𝑖] = 𝑎𝑣𝑖[𝑖]. Later on, if
the data item is found to be cold, 𝑓 𝑣𝑖[𝑖] can be relaxed in the following range:

𝑎𝑣𝑖[𝑖] ≤ 𝑓 𝑣𝑖[𝑖] ≤ 𝛽 · 𝑎𝑣𝑖[𝑖] (2.17)

where 𝛽 is the update period relaxation bound.
The problem is then to find which data items are cold. One option is to sort the

values 𝐴𝑈𝑅[𝑖]. Kang et al. perform a linear search over an array to avoid periodic
sorting. Once cold data is found, the system checks if it is possible to relax the 𝑓 𝑣𝑖[𝑖]
further within the range described in the equation 2.17. In Chronos, this process is
repeated for min(𝑛, 𝛿𝑠 (𝑘) · 𝑛) data items.

2.9.4 Experiments in Chronos

Kang et al. performed two experiments in the cited paper. The first one measured the
number of Timely Transactions per Second (TTPS) as a function of the number of
threads executing transactions in the system. They compared three sets of numbers.
The first corresponds to their baseline, which consists of running the workload under
Berkeley DB. The second set of numbers corresponds to the experiments using
the admission control policy (AC) described in section 1.6 on top of Berkeley DB.
Finally, the third set of numbers refers to the experiments using AUP with Berkeley
DB.

As expected, Kang et al. found that the number of Timely Transactions per second
decreases when the number of concurrent client threads increases. However, they
also found that, in general, the best success rate is achieved with their Adaptive
Update Policy. Unfortunately, there is no elaboration on the exact TTPS percentage.
So, it is impossible to determine the absolute optimality of the approaches. They
only mention that between 20 and 30 percent of the transactions experience long



2.9 Chronos Testbed 83

transaction delays without further explanation. Another drawback, the authors say,
is the large confidence intervals of the AUP experiment.

One more conclusion can be derived from this experiment: admission control (at
least as designed in [48]) may be a bad strategy for systems with a moderate workload
since it leads to a low success rate for a small number of client threads. This contrasts
with [49] and [9]. Finally, although AUP outperforms AC for low workloads, their
admission control policy behaves similarly to AUP for high workloads. Other metrics
collected in [48] is the average response time. They showed that their admission
control policy behaves better than the baseline and AUP. However, this may be due
to dropping too many transactions, as described before. These results show how
the traditional metrics used in conventional database systems are not suitable for
measuring the performance of real-time systems.

After the results presented in [48], Kang et al. moved their approach for achieving
the desired data service delays to control theory. The results are shown in [46]. In that
paper, the QoS Manager illustrated in figure 2.21 is changed to a Feedback Control
module as shown in figure 2.22.

Fig. 2.22 Chronos Architecture

Similar to the previous paper, two proposals are presented: an Admission Control
Policy and an Adaptive Update Policy. Both aspects are briefly described next.

They developed the ideas in the paper based on the critical observation that when
the system is overloaded, the size of the ready queue increases (see figure 2.22);
similarly, when the system is underloaded, the size of the ready queue decreases.
So, Kang et al. developed a model for the relation between the ready queue length
and the response time. As before, the performance monitor calculates the response
time error, and based on this information, the feedback controller computes the
required adjustments. The service delay error is obtained as 𝑒(𝑘) = 𝐷𝑠 − 𝑑 (𝑘)
for the 𝑘th sampling period. In this case, 𝐷𝑠 is the desired delay, and 𝑑 (𝑘) is the



84 2 Experimental Real-Time Databases

average response times of the transactions that finished in the sampling interval
[(𝑘 −1)𝑆𝑃, 𝑘𝑆𝑃]. Then, the control signal 𝛿𝑞 (𝑘) is calculated based on 𝑒(𝑘). Under
overload, 𝛿𝑞 (𝑘) < 0, and some action must be performed to mitigate this situation.

The Adaptive Update Policy establishes one action. The AUP dictates that the
period of the cold data must be increased by (𝑝 [𝑖]𝑛𝑒𝑤 − 𝑝 [𝑖])/𝑝 [𝑖]. By doing this
repeatedly, 𝛿𝑞 should become greater than 0. As in the original paper [48], the 𝐴𝑈𝑅
approach for determining cold/hot data is used. However, in this case, the update
period is allowed to increase using the following:

𝑝 [𝑖]𝑛𝑒𝑤 = min( 𝑝 [𝑖]
𝐴𝑈𝑅[𝑖] , 𝑃max) (2.18)

In the paper, 𝑃max = 5𝑠.
Once the new update period is obtained, the flexible validity interval for data item

𝑖 is changed to 𝑓 𝑣𝑖[𝑖]𝑛𝑒𝑤 = 2𝑝 [𝑖] as in the original paper. The proposed Admission
Control Policy establishes the second type of action. When the system is overloaded,
the size of the ready queue is modified. According to the AC, the new queue size
for the sampling period 𝑘 is 𝑞(𝑘) = 𝑞(𝑘 − 1) + 𝛿𝑞 (𝑘). The queue size is increased
when 𝛿𝑞 (𝑘) > 0 and it is reduced when 𝛿𝑞 (𝑘) < 0. In the research paper, the queue
can grow to 𝑚𝑎𝑥_𝑠𝑖𝑧𝑒. Beyond this point, incoming transactions are dropped upon
arrival.

Now, the question is: How did they obtain 𝛿𝑞 (𝑘)? By applying control theory
methods, they developed the Proportional Integral (PI) control law model shown in
equation 2.19.

𝑞(𝑘) = 𝑞(𝑘 − 1) + 𝐾𝑝 [(𝐾1 + 1)𝑒(𝑘) − 𝑒(𝑘 − 1)] (2.19)

where 𝐾𝑝 = 1.29 and 𝐾1 = 2.01, according to their calculations [46].
Using an implementation of the model in equation 2.19, they performed experi-

ments with similar settings as those in [48]. One modification was the introduction
of burst workload to measure how the system adapts to it.

In [46], they performed experiments for four configurations:

1. Pure Berkeley DB implementation
2. Ad-hoc admission control module
3. Pure Feedback Control (FC-C)
4. Feedback Control with Adaptive Updates (FC-CU)

Based on their experiments, Kang et al. concluded that FC-CU was able to reduce
the average response time while increasing the percentage of timely transactions.
Regarding the latter, one improvement in the report of the experiments is that this
time they also showed the total number of transactions.

A critical contribution of the paper is the management of transaction bursts. Kang
et al. showed that, in general, the response time is relatively steady for FC-CU in the
presence of bursts, with large values only during database initialization and another
in the middle experiment. However, an explanation would need to be provided for
the former.



2.9 Chronos Testbed 85

In conclusion, [46] shows how control theory can be applied in real-time databases
to achieve the desired service delays.





Chapter 3
Commercial Real-Time Database Systems

Commercial real-time database systems refer to database management systems
(DBMS) that are developed and offered by commercial vendors as products or
services. These systems are designed to meet the requirements of real-time data
processing and management in various industries and domains. Unlike experimen-
tal systems, commercial real-time database systems are intended for production
environments and are backed by professional support, maintenance, and ongoing
development.

Commercial real-time database systems provide robust and scalable solutions
for handling time-critical data with predictable response times. They offer a wide
range of features and functionalities specifically tailored for real-time applications,
ensuring efficient data storage, retrieval, and processing. These systems are often
designed to handle high volumes of data and simultaneous user interactions while
meeting strict timing constraints. Overall, commercial real-time database systems
provide powerful and comprehensive solutions for managing and processing real-
time data, empowering organizations to derive actionable insights, make informed
decisions, and deliver real-time experiences to their users.

This chapter focuses on commercial real-time database systems, exploring their
features, capabilities, and applications. The chapter delves into the unique charac-
teristics and functionalities of each system, highlighting their real-time capabilities
and supported platforms.

3.1 SQLite Database Management System

SQLite [23] is a software library (See Figure 3.1) that provides a self-contained,
serverless, zero-configuration, transactional SQL database engine. Uniquely, SQLite
does not require a separate server process or system to operate, and it is devoid of
any external dependencies. This makes SQLite an embedded database, meaning that
it is used for local/client storage within the end program, as opposed to a standalone
database server.

87



88 3 Commercial Real-Time Database Systems

Fig. 3.1 SQLite Architecture

SQLite is a C-language library that implements a small, fast, self-contained, high-
reliability, full-featured SQL database engine. SQLite is a relational database man-
agement system. In contrast to many other database management systems, SQLite
is not a client-server database engine. Instead, it is embedded into the end program.
As a result, SQLite is the most used database engine in the world. It is built into
all mobile phones and most computers and comes bundled with countless other
applications that people use daily. SQLite is ACID-compliant and implements most
SQL standards, generally following PostgreSQL syntax. However, SQLite uses a
dynamically and weakly typed SQL syntax that does not guarantee domain integrity.
This means that one can, for example, insert a string into a column defined as an
integer. SQLite will attempt to convert data between formats where appropriate.

SQLite is a good fit for embedded devices, particularly for resource-constrained
IoT devices. It has a small code footprint, uses memory and disk space efficiently,
is reliable, and requires little maintenance. In addition, because it comes with a
command line interface, it can be used to analyze large datasets. Finally, even in
enterprises, SQLite can stand in for traditional databases for testing, prototyping, or
as a local cache that can make the application more resilient to network outages.

Applications can use SQLite instead of file access commands such as fopen, fread,
and fwrite. These commands are often used to manage various file formats such as
XML, JSON, or CSV, and there’s a need to write parsers for these. SQLite removes



3.1 SQLite Database Management System 89

this extra work. In addition, because SQLite packs data efficiently, it’s faster than
these commands. It’s been noted that.

3.1.1 SQLite in RTOS Environments

SQLite’s compact and self-sustained nature makes it a perfect match for RTOS
environments. In addition, the database engine’s small footprint means it demands
minimal resources, a critical feature for RTOS environments where system resources
are often constrained. SQLite has been designed to be embedded into other applica-
tions, making it a prevalent choice for embedded systems, including those running
on RTOS. In addition, SQLite’s footprint, which is around 600KiB or less with
all features enabled, and its serverless architecture make it ideally suited for use
in RTOS environments that often have limited storage and processing capabilities.
Moreover, SQLite is self-contained, which means it requires minimal support from
external libraries or the operating system, and it can function across different op-
erating system platforms without requiring any modifications. This makes it easy
to incorporate SQLite into a variety of RTOS environments. SQLite also provides
a simple, easy-to-use API and supports a wide range of SQL syntax, making it a
versatile choice for embedded database solutions.

SQLite, being a self-contained, serverless, and zero-configuration database en-
gine, is compatible with a broad range of Real-Time Operating Systems (RTOS).
Here, we will explore a few more examples in detail:

• RTEMS: RTEMS (Real-Time Executive for Multiprocessor Systems) is a free
open-source RTOS designed for real-time applications within embedded systems.
Known for its high configurability, it provides a robust environment for SQLite
to operate on, especially in multiprocessor systems.

• eCos: The Embedded Configurable Operating System (eCos) is a free and open-
source RTOS intended for real-time embedded systems. As a configurable and
adaptable system, eCos allows developers to tailor it for specific applications,
which can be beneficial when integrating SQLite.

• VxWorks VxWorks by Wind River is a widely used RTOS that is designed to be
robust, scalable, and suitable for use in safety-critical applications. In addition,
SQLite can be integrated into VxWorks to provide a reliable and efficient database
solution for embedded applications.

• QNX: QNX is a commercial Unix-like real-time operating system aimed primarily
at the embedded systems market. It provides a highly reliable environment where
SQLite can operate efficiently, providing database services to applications.

• µC/OS: µC/OS is a scalable and ROMable RTOS that is known for its small
footprint and deterministic behavior. SQLite’s ability to manage data efficiently
can greatly benefit such environments, especially when operating on devices with
limited storage and processing capabilities.



90 3 Commercial Real-Time Database Systems

While these are just a few examples, SQLite can be integrated with almost any
RTOS or general-purpose OS that provides basic POSIX-like file system capabilities.
This adaptability is one of the reasons SQLite is a popular choice for embedded
database solutions.

3.2 ITTIA DB: Time Series Platform for Building Embedded
Systems and IoT Devices

ITTIA DB is an embeddable data management and analytics software platform for
streaming, analytics, and data management on edge devices. Application software
built for MCUs, MPUs, and ECUs is tightly integrated with ITTIA DB, which is
silently embedded and does not need an administrator.

Specially designed for hybrid transaction/analytical processing (HTAP) queries,
ITTIA DB combines real-time stream processing with high-performance time series
and table data storage. HTAP is an emerging application architecture that "breaks the
wall" between reliable transaction processing and analytics for real-time decision-
making. ITTIA DB brings HTAP capability to embedded systems and IoT devices.
Developers of embedded systems and IoT device applications choose ITTIA DB to
collect, process, and analyze incoming data point streams in real-time. As a time
series database, ITTIA DB is architected to record and search time-stamped values
efficiently. With real-time stream processing, measurements and events produced
by sensors and IoT nodes are easily downsampled, filtered, and aggregated over a
desired time period. Results are recorded as compressed time series data sets that
can be searched, summarized, or transmitted to other devices and services.

Modern domain-specific embedded systems (e.g., automotive, aerospace, indus-
trial control, defense, medical devices, etc.) run safety-critical applications for which
database failure or data loss may result in a catastrophic event. Such systems avoid
general-purpose embedded databases and leverage ITTIA DB in mission-critical
environments. Moreover, many of these systems operate over networks that make
them susceptible to various attacks. Hence, the reliability, safety, and security of
embedded systems incorporating ITTIA DB are very important.

ITTIA security practices and features assist manufacturers of IoT edge devices
with advanced and integrated software development methods infused by a secure
development life cycle (SDL) based on zero trust principles, enabling makers of
IoT edge devices to mitigate unpredictability. From product conception to end-of-
life, ITTIA adheres to a secure-by-design development methodology, and ITTIA
DB offers a complete solution to secure data on IoT devices. Furthermore, ITTIA
SDL Is Conformant to the Principles of IEC/ISO 62443. ITTIA DB also offers
software solutions for Disaster Recovery (DR) and High Availability (HA) on the
microcontroller, microprocessor, and electronic control unit devices that leverage
redundant storage media, sensors, devices, and networks to increase uptime for data
stored on the IoT edge. For example, devices that are individually only 98% reliable
can offer over 99.9% uptime when connected by ITTIA DB.



3.2 ITTIA DB: Time Series Platform for Building Embedded Systems and IoT Devices 91

Fig. 3.2 Ittia Architecture



92 3 Commercial Real-Time Database Systems

ITTIA DB SQL is a high-performance time-series embedded database for single
or multicore microprocessors (MPUs) and Electronic Control Units (ECUs) that en-
able manufacturers to build systems to monitor securely, process, and store real-time
data. This secure embedded database for edge computing combines powerful capa-
bilities, such as real-time data streaming, time series data management, high-level
security, high availability, and disaster recovery. ITTIA DB SQL empowers devices
to overcome latency and bandwidth performance constraints. From the ground up,
ITTIA DB SQL is architected to provide database capabilities to application devel-
opers for embedded systems and devices without requiring complex installation or
administration tools.

ITTIA DB SQL data management capabilities offer benefits in its modular archi-
tecture (Figure 3.2 that enables developers to create highly optimized and reliable
systems to store, manage, and distribute data.

3.2.1 Overview of ITTIA DB SQL

ITTIA DB SQL offers efficient filtering and processing of real-time data. One of its
advantages is integrated device stream data processing, which filters and processes
data originating from a complex flow of data events. In addition, its special data
processing capabilities empower sensors and devices to make sense of every bit of
raw data, identify alarming events, and store meaningful information. With a massive
volume of data flowing in real-time, ITTIA DB SQL data processing capabilities
enable edge applications to analyze data, perform continuous real-time SQL queries,
and configure data distribution. In addition, ITTIA DB SQL is scalable to any number
of edge devices, so edge applications can capture data flows from multiple sources,
analyze data, and emit valuable findings as events.

ITTIA DB SQL is a high-performance, lightweight, and scalable relational
database that targets embedded systems and IoT devices. Some of its key features
include:

• ACID transactions: ITTIA DB SQL supports atomic, consistent, isolated, and
durable (ACID) transactions to ensure data integrity and consistency.

• Concurrency control: ITTIA DB SQL implements multi-version concurrency
control (MVCC) to allow multiple transactions to be processed simultaneously
without conflicts or delays.

• Cross-platform support: ITTIA DB SQL can be used on various platforms,
including Windows, Linux, Android, and many embedded operating systems.

• Data distribution and replication: ITTIA DB SQL provides mechanisms for
data distribution and replication, enabling high availability, fault tolerance, and
load balancing.

• SQL support: ITTIA DB SQL supports a rich set of SQL features, including
querying, indexing, and stored procedures, allowing developers to work with
familiar SQL syntax.



3.2 ITTIA DB: Time Series Platform for Building Embedded Systems and IoT Devices 93

• Time Series Platform: ITTIA DB SQL is architected and built as time series
software optimized for storing and serving time series through associated pairs
of timestamps and values. When you embed ITTIA DB SQL, sensors, devices,
and IoT nodes that produce timestamped data points can down-sample, filter,
and aggregate large volumes of data in real-time. ITTIA DB SQL is designed to
process and store an embedded system’s data efficiently, simultaneously capturing
information and discarding irrelevant data.

• High Availability & Disaster Recovery: ITTIA DB SQL’s current high avail-
ability protects the embedded system from losing data and offers manufacturers
a way to avoid lost revenue when access to data is disrupted. In addition, high
availability, fault tolerance, planned and unplanned interruption, disaster recov-
ery, balance loading, and database backup offer the peace of mind embedded
system builders desire to stay competitive.

• Safety, Security, Certifiability: Modern domain-specific embedded systems
(e.g., automotive, aerospace, industrial control, defense, medical devices, etc.)
run safety-critical applications for which database failure or data loss may result
in a catastrophic event. Such systems avoid general-purpose embedded databases
and leverage ITTIA DB SQL in mission-critical environments. Moreover, many of
these systems operate over networks, making them susceptible to various attacks.
Hence, the reliability, safety, security, and certifiability of embedded systems
incorporating ITTIA DB SQL are very important.

• Hard Real-Time & Small Footprint: ITTIA DB SQL utilizes hard real-time
processing to handle workloads in a constantly changing state. It is a scalable edge
database that dramatically simplifies building real-time applications for embedded
systems. ITTIA DB SQL provides a very low latency data management platform
that enables real-time event processing, data movement, and analytics ideal for
edge computing.

3.2.2 Supported 3rd Party Platforms

The following third-party tools are tested, supported, and recommended for inte-
gration with ITTIA DB SQL. Our goal is to offer customers access to qualified
technologies, already verified with our database software, that will save time and
cost.

1. Development Suites and Compilers: IAR Embedded Workbench, GNU Com-
piler Collection, Green Hills Software MULTI Integrated Development Environ-
ment, Microsoft Visual Studio

2. Embedded Operating Systems ITTIA databases support various Embedded
Operating Systems, including Green Hills Software INTEGRITY RTOS Family,
Micrium RTOS Kernels, QNX Neutrino, Wind River VxWorks, Azure RTOS
ThreadX, FreeRTOS, Linux, Android, and others.

3. Connectivity and Data Distribution, with support from RTI Connext DDS and
others.



94 3 Commercial Real-Time Database Systems

4. Graphical User Interfaces ITTIA databases support various Graphical User
Interfaces, including Crank Software Storyboard Suite, Qt, and others.

5. Variety of Processors & Boards: ITTIA databases support various hardware
architectures, including Arm, Intel, and PowerPC. With support for industry-
leading commercial off-the-shelf (COTS) Board Support Packages (BSP), ITTIA
DB SQL builds and supports different package requirements. In addition, ITTIA
DB SQL is cross-platform and supports processor families from leading manu-
facturers, including AMD, ARM, Broadcom, Intel, NXP, Renesas, STMicroelec-
tronics, Texas Instruments, Xilinx, NXP, Cypress, Microchip, Texas Instruments,
and others.

6. Computers on Module ITTIA databases support various Computer on Modules,
including Toradex, TQ Group, PHYTEC, iWave, and others.

3.2.3 Real-Time Features

When integrated with an RTOS, ITTIA DB SQL can take advantage of the RTOS’s
real-time capabilities, such as:

• Deterministic Scheduling: RTOS provides deterministic scheduling algorithms,
like rate-monotonic or earliest deadline first scheduling, ensuring tasks are exe-
cuted in a predictable and timely manner.

• Priority-Based Task Management: RTOS enables priority-based task manage-
ment, prioritizing critical tasks over less critical tasks.

• Inter-Process Communication: RTOS facilitates efficient inter-process commu-
nication, allowing tasks to share data, synchronize, and coordinate their execution.

• Memory Management: RTOS provides memory management mechanisms, en-
suring efficient use of memory resources and preventing memory leaks or frag-
mentation.

3.3 Raima Database Manager (RDM)

Raima Database Manager (RDM) [70] is an ACID-compliant embedded database
management system designed for use in embedded systems applications (See Figure
3.3). RDM has been designed to utilize multi-core computers, networking (local or
wide area), and on-disk or in-memory storage management. RDM provides support
for multiple application programming interfaces (APIs): low-level C API, C++, and
SQL (native, ODBC, JDBC, ADO.NET, and REST). RDM is highly portable and
is available on Windows, Linux, Unix, and several real-time or embedded operating
systems. A source-code license is also available.



3.3 Raima Database Manager (RDM) 95

Fig. 3.3 RAIMA Architecture

3.3.1 Non-SQL and SQL Database Design and Manipulation

RDM has support for both non-SQL (record and cursor level database access) and
SQL database design and manipulation capabilities. The non-SQL features are im-
portant for the most resource-restricted embedded system environments, where high
performance in a small footprint is the priority. SQL is essential in providing a widely
known standard database access method in a small enough footprint for most embed-
ded systems environments. Raima Inc. originally released RDM in 1984, and it was
called db_VISTA. It was one of the first microcomputer network model database
management systems designed exclusively for use with C language applications. A
companion product called db_QUERY was introduced in 1986, which was the first
SQL-like query and report-writing utility for a network model database.

3.3.2 Product Features

Both the source code lines and features in Raima Database Manager and RDM Server
are consolidated into one source code. RDM includes these major features: updated
in-memory support, time series and FFT support, snapshots, R-Tree support, com-
pression, encryption, SQL, SQL PL, and platform independence—develop once,
deploy anywhere. RMD includes portability options such as direct copy and pastes
that permit development and deployment on different target platforms, regardless
of architecture or byte order. The release consists of a streamlined interface that is
cursor-based, extended SQL support, and stored procedures that support SQL PL; it
also supports ODBC (C, 𝐶 + +), ADO.NET (𝐶#), RESTful, and JDBC (Java). Sup-



96 3 Commercial Real-Time Database Systems

ported development environments include Microsoft Visual Studio, Apple XCode,
Eclipse, and Wind River Workbench. A redesigned and optimized database file
format architecture maintains ACID compliance and data safeguards, with different
formats for in-memory, on-disk, or hybrid storage. In addition, file formats hide hard-
ware platform specifics (e.g., byte ordering). Download packages include examples
of RDM speed and performance benchmarks.

Raima has three modes of operation:

1. Single-Process, Multi-Thread
2. Multi-Process, separate Transactional File Server
3. Multi-Process, shared in-process Transactional File Server

Raima support for on-the-fly alterations of the database and tables themselves
(Dynamic DDL) and support the encryption of AES 128, 192, 256 bit.

Data Providers and Drivers for Interoperability in Raima are:

• ADO.Net 4.0 Data Provider
• JDBC 4.2 Type 4 Driver
• ODBC 3.51 Driver
• RESTful API

Also, Raima provides the following different “tree” support:

• AVL-Tree Indexing support
• B-Tree indexing support
• R-Tree indexing support
• Hash table indexing support

3.3.3 Transactional File Server (TFS)

A software component within the RDM system that maintains safe multi-user trans-
actional updates to a set of files and responds to page requests. The TFServer utility
links to the TFS to allow it to run as a separate utility, allowing users to run RDM
in a distributed computing environment. The TFS may also be linked directly to an
application to avoid the RPC overhead of calling a separate server.

3.3.4 Snapshots

Snapshot isolation allows concurrent reads to the database when write transactions
are occurring. RDM takes a frozen image of the system’s current state, and that
information can be read without stopping writing. At any point, the user can issue a
snapshot of specific tables by calling our rdm_dbStartSnapshot() API. Once done,
the RDM system will create a static view of the tables specified, where any changes



3.4 eXtremeDB-RT 97

to those tables will not be reflected in the snapshot. The user is then free to issue
writes to that table outside the snapshot, and any reads within the snapshot view will
not be waiting for those writes to complete or preventing those writes from finishing.
Once the snapshot is no longer needed, a simple end transaction can be called to
easily and quickly get rid of it. This feature provides the end user with the largest
number of writes and reads possible simultaneously.

3.3.5 Circular Tables support

A record type, or table, can be defined as “circular.” With circular tables, RDM will
still allow new record instances to be created when the table becomes full. However,
the new record instances will overwrite existing ones, starting with the oldest. RDM
does not allow explicitly deleting record instances in a circular table. The definition
of a circular table includes a size limit. This provides a valuable way of allocating
a fixed amount of storage space for storing the most recent instances of a particular
record type. For example, this may be useful in storing event data generated rapidly,
where only the most recent data is relevant. In addition, circular tables remove the
risk that incoming data may fail to be stored due to a lack of space while avoiding
the need for the application to delete obsolete data.

3.4 eXtremeDB-RT

Time is of the essence for mission and safety-critical systems software in avionics,
autonomous systems, railroad, critical control systems, and the like. Consequently,
these systems demand deterministic, predictable, fully controllable database man-
agement that complements modern real-time operating systems’ time and space
partitioning and advanced real-time schedulers. Often non-interruptible and with
stringent requirements on timely execution, these systems’ data management im-
poses temporal constraints on critical data and transactions.

eXtremeDB/rt [28] is the first of its kind commercial, supported database man-
agement system designed to preserve the temporal validity of data through time-
cognizant transaction processing that guarantees the predictable execution of trans-
actions. In simpler terms, eXtremeDB/rt is a deterministic, hard real-time database
system. eXtremeDB/rt extends conventional eXtremeDB transaction processing by
adding semantics for, and enforcing, database transaction priorities and deadline
scheduling. Like conventional eXtremeDB, eXtremeDB/rt is an embedded database
management system that provides services for storing, retrieving, and manipulating
data. The differences lay in the temporal requirements of the managed data, transac-
tion scheduling policies, timing constraints on transactions, and performance goals.
Conventional eXtremeDB, like other ACID-compliant DBMSs, maintains the inter-
nal consistency of databases, preventing contradictory data in the same database. In



98 3 Commercial Real-Time Database Systems

addition to preserving internal consistency, eXtremeDB/rt safeguards the temporal
consistency of data. The eXtremeDB/rt kernel exposes transaction deadline seman-
tics through a real-time transaction manager that ensures that transactions can meet
(successfully commit) or miss (successfully abort) their deadlines but can never be
late (run past their deadline) to commit or abort.

The eXtremeDB/rt kernel modifies the conventional eXtremeDB kernel by en-
suring that all database kernel components are time-cognizant. The eXtremeDB/rt
transaction scheduler offers a High Priority Earliest Deadline First (EDF) algorithm:
transactions are scheduled for execution based on their priority and deadline, and a
Priority Inheritance (PI) algorithm. The deadlines are enforced through a sophisti-
cated rollback mechanism that allows transactions to modify or retrieve data only if
they can complete within the set deadlines. The database kernel identifies transac-
tions destined to be late, interrupts them, and forces the rollback in time to satisfy
the deadlines.

3.4.1 Temporal Consistency

One of the most important differences between the database systems used by real-time
and non-real-time systems is that while a conventional (non-real-time) DBMS aims
to achieve good throughput or average response time and maintains logical internal
consistency, a real-time DBMS must maintain temporal external consistency as well
as providing predictable response time and guaranteeing the completion of time-
critical transactions and making sure that data used by them reflects the current
physical environment. Therefore, the design of a real-time database system should
avoid using techniques that introduce unpredictable latencies. Meeting all deadlines
requested by all system events is vital to real-time systems. To achieve its goal of
guaranteed transaction commit or rollback times, the eXtremeDB/rt database runtime
relies upon the following assertion: The time required to reverse any modifications
to the database made by a transaction up to any point in the transaction does not
exceed the time required to apply those modifications.

3.4.2 RT Transaction Scheduling

Scheduling transactions in a real-time database system is not a simple task. The
database must guarantee the database’s logical consistency and schedule transactions
to meet their deadlines while minimizing the number of transactions that miss their
deadlines. Several scheduling policies use different criteria to prioritize transactions.

We provide two alternative implementations:

• High Priority Earliest Deadline First (EDF) algorithm: transactions are sorted
in the queue based first on their priority and then within the same priority - by
the deadline. The corresponding transaction manager is based on MURSIW.



3.4 eXtremeDB-RT 99

• Priority Inheritance (PI) algorithm: the transaction manager (PI-TM) relies on
the real-time operating system’s (RTOS) scheduling and provides necessary hints
via specific usage of OS synchronization primitives. A fixed-size set of synchro-
nization primitives is allocated when a database is created. These synchronization
primitives are used as mutexes: Upon the start of a transaction, the thread grabs one
or more mutex (one for a Read-Only transaction, chosen randomly; all mutexes
for a Read-Write transaction, in the order that prevents deadlocks) and releases
them when the transaction ends. Thus, the OS scheduler is fully aware of which
thread holds a mutex that is needed for a high-priority transaction and may apply
priority inheritance when required and if available (for example: in Linux and
𝐹𝑟𝑒𝑒𝑅𝑇𝑂𝑆𝑇𝑀 ), i.e., temporarily raise the priority of a thread that is in the way
to let it finish the transaction faster so it can release the highly needed mutex.

The number of synchronization primitives is set by a database parameter that
defines the maximum number of Read-Only transactions running in parallel. This
parameter is called 𝑚𝑐𝑜_𝑑𝑏_𝑝𝑎𝑟𝑎𝑚𝑠_𝑡.𝑚𝑎𝑥_𝑝𝑖_𝑟𝑒𝑎𝑑𝑒𝑟𝑠. The default value is 1,
meaning that PI-TM will behave as EXCL (mcotexcl).

PI-TM (mcotmpi) is available on Linux, LynxOS-178®, FreeRTOS, embOS,
𝐼𝑁𝑇𝐸𝐺𝑅𝐼𝑇𝑌𝑇𝑀 , and 𝑉𝑥𝑊𝑜𝑟𝑘𝑠𝑇𝑀 .

Once scheduled, a transaction’s execution is controlled by the transaction manager
that ensures proper serialization (read-write transactions are executed sequentially,
read-only transactions are executed in parallel while no read-write transactions are
running)

The preemption rules are as follows:

• A higher priority Read-Write transaction preempts all running lower priority
Read-Only transactions (causing them to rollback, first) unless there is also a
running Read-Only transaction with even higher priority than this read-write
transaction has. In this case, the Read-Write transaction will be placed at the ap-
propriate location in the queue according to its priority and deadline. [Note: With
PI-TM, if the higher priority Read-Only transaction completes before, the lower
priority Read-Only transactions that are executing in parallel, the higher priority
Read-Write transaction will preempt the remaining Read-Only transactions. With
MURSIW, once a transaction is placed in the queue, it will just wait its turn.]

• A higher priority Read-Only or Read-Write transaction preempts a lower priority
Read-Write transaction (causing it to rollback, first) if the elapsed running time
(and, consequently, the time of termination via rollback) of the running transaction
is less than the new transaction’s deadline. In other words, if the time required
to preempt the running transaction, including rolling it back, would preclude the
higher priority transaction from being able to commit before its deadline, then
the currently running transaction will not be preempted because the result would
be two rolled-back transactions.

The eXtremeDB/rt transaction manager has many verification checkpoints at
which a transaction’s elapsed time is tested against the deadline. The frequency of the
verifications eliminates the possibility of going beyond the set deadline. If the control



100 3 Commercial Real-Time Database Systems

point is reached (the transaction used up the allotted time slice), the transaction is
assigned a unique transaction interrupted status. (𝑀𝐶𝑂_𝐸_𝐼𝑁𝑇𝐸𝑅𝑅𝑈𝑃𝑇𝐸𝐷), and
the control is returned to the application. The application is then expected to rollback
the transaction. The transaction manager ensures that all database runtime internals
is in a recoverable condition and that a subsequent transaction rollback will restore
the database to a consistent state before the transaction starts. Furthermore, the
transaction manager guarantees that the rollback is completed within the deadline,
provided that the application initiates the rollback when signaled to do so by the
database runtime. Thus, the transaction would miss the deadline but not be late, and
the internal consistency of the database is preserved.

EDF vs PI-TM

PI-TM is advantageous in the situation with a high-priority thread (let’s call it
𝐻_𝐷𝐵) that performs transactions with the database, a low-priority thread that also
performs transactions (𝐿_𝐷𝐵) and a mid-priority thread that does not work with the
database (M).

Let’s consider the following scenario. 𝐿_𝐷𝐵 starts a transaction. Subsequently, M
comes in and (having a higher priority) preempts the 𝐿_𝐷𝐵, taking it off the CPU and
putting it on hold. Next, 𝐻_𝐷𝐵 arrives but cannot start a transaction because 𝐿_𝐷𝐵
is in the way. Essentially, with EDF, the highest priority thread 𝐻_𝐷𝐵 will have to
wait until the lowest priority thread 𝐿_𝐷𝐵 completes its transaction. However, with
𝑃𝐼_𝑇𝑀 the operating system will be able to raise 𝐿_𝐷𝐵′𝑠 priority up to 𝐻_𝐷𝐵′𝑠
priority at the moment when 𝐻_𝐷𝐵 arrives, allowing 𝐿_𝐷𝐵 to preempt M, allowing
𝐿_𝐷𝐵 to complete its transaction and free the way for 𝐻_𝐷𝐵.

The following heuristics should be taken into consideration for PI-TM used for
CPU-intensive transactions:

• The number of initially allocated synchronization primitives should be the same
as the number of CPU cores. (It does not make much sense to allow more Read-
Only transactions than can be run simultaneously using different cores, as this
would make each transaction longer.)

• The greater the number of allocated PI-TM synchronization primitives, the harder
it is to start a Read-Write transaction (the Read-Write transaction potentially
must wait until every competing Read-Only transaction releases its primitive).
Therefore, in practice, the PI-TM applies to hardware configurations with 1-4
CPU cores.

3.4.3 Methods to Enforce Deadlines

The key to supporting real-time transactions is the ability of the database runtime to
interrupt the execution of the current transaction safely. Two methods are available:
through an asynchronous event handler or via an application callback that is passed
to the database runtime and is invoked periodically during a transaction, signaling
the application that the deadline control point was reached.



3.4 eXtremeDB-RT 101

1. The Callback Method: This method is usually employed when asynchronous
primitives such as a system timer or a hardware watchdog are unavailable. For
example, the application often polls a system clock or responds to hardware
interrupts, etc. To use a callback, the application registers a callback function
with the database runtime. The eXtremeDB runtime provides a standard method
for registering various callbacks.

2. The Timer Method: The first step in using the timer-based transaction control
method is determining the transaction control point. As discussed, setting the
control point to half of the deadline interval is often safe (as discussed earlier,
this measure could be too rough and hurt the miss/meet deadline ratio). Then
the application starts the timer, setting the timer period to the control point
determined in the first step. Installing a timer is operating system-specific and is
not complicated.

3.4.4 Supported platforms

Real-time applications must run in the context of a real-time operating system or be
able to access hardware resources — interrupts, timers, memory management, etc.
eXtremeDB/rt is currently available for the following real-time operating systems
on selected hardware platforms (the list of platforms is constantly expanding).

• Deos™, (native and ARINC 653-compliant) from DDC-I
• FreeRTOS™, a widely used real-time operating system kernel for embedded

devices
• INTEGRITY® from Green Hills Software
• LynxOS-178® from Lynx Software Technologies, a hard real-time partitioning

operating system developed and certified to FAA DO-178B/C DAL A safety
standards

• VxWorks® 6.9, 7.0, and 653 from WindRiver
• embOS
• PetaLinux
• Nucleus™
• Azure RTOS ThreadX
• MICROSAR





Chapter 4
Applications of Real-Time Database Systems

In previous chapters, we briefly described a few examples of the applicability of
real-time database systems. However, it is worth explaining other scenarios where
they are used so that we can get a better grasp of how important this area is. Recently,
there has been a trend toward applying the results of this core RTDB research to other
related applications. The key ingredients of these applications are the requirements
for real-time response to requests for real-time data.

Real-time database management systems (RTDBMS) are designed to handle ap-
plications that require fast and deterministic response times, data consistency, and
time-constrained data processing. This chapter introduces some typical critical appli-
cations for real-time database management systems. These are just a few examples
of the many applications where real-time database management systems can be
beneficial. The primary advantage of using an RTDBMS is its ability to handle time-
sensitive data processing and decision-making, ensuring data consistency and deter-
ministic response times. This chapter explores the wide range of applications where
real-time databases play a crucial role in managing and processing time-sensitive
data. It highlights the significance of real-time databases in various industries and
domains, showcasing their practical applications and benefits. The chapter delves
into specific use cases and examples, demonstrating how real-time databases enable
efficient data management, analysis, and decision-making in time-critical scenarios.

By the end of this chapter, readers will have gained a comprehensive understanding
of the practical applications of real-time databases across various industries. They
will recognize the significance of real-time data management in different domains
and appreciate how real-time databases enable efficient data processing, analysis,
and decision-making in time-critical scenarios. This knowledge will help readers
identify potential use cases and opportunities for implementing real-time database
systems in their respective fields.

103



104 4 Applications of Real-Time Database Systems

4.1 Military Command and Control Systems (MCCS)

MCCS is essential for managing and coordinating military assets, personnel, and
information in a complex and rapidly changing operational environment. Real-time
responses and efficient database management systems are crucial to the effective
functioning of MCCS, enabling military commanders to make informed decisions
quickly and maintain situational awareness. Here is a more detailed overview of
real-time responses and database management systems in MCCS [8]:

1. Real-time Data Fusion: must integrate data from multiple sources, including
intelligence, surveillance, reconnaissance (ISR) assets, communication networks,
sensors, and other systems. This data fusion gives commanders a comprehensive
and up-to-date situational picture, allowing them to understand the operational
environment and make informed decisions. Real-time data processing techniques,
such as sensor fusion algorithms and artificial intelligence, help aggregate and
synthesize this data.

2. Real-time Command and Control: facilitate real-time command and control by
enabling commanders to issue orders and directives to subordinate units, moni-
tor their progress, and receive updates on their status. Real-time communication
channels and collaboration tools, such as chat, voice, and video, allow comman-
ders to maintain constant contact with their units and coordinate their actions
effectively.

3. Real-time Decision Support Tools: Advanced decision support tools integrated
into MCCS help commanders analyze the operational environment, assess risks,
and identify optimal courses of action. These tools may incorporate artificial intel-
ligence, machine learning, and predictive analytics to process real-time data and
provide insights, alerts, and recommendations. Such tools can support decision-
making at various levels, from tactical to strategic.

4. Real-time Situational Awareness: provides real-time situational awareness by
displaying the current positions, statuses, and activities of friendly and enemy
forces, as well as relevant environmental and contextual information. Geographic
information systems (GIS) and other visualization tools enable commanders to
view this information in an intuitive and easily understandable format.

5. Real-time Resource Tracking and Management: MCCS databases track the sta-
tus, location, and availability of military resources, including personnel, vehicles,
weapons, and supplies. Real-time resource management tools help commanders
allocate and deploy these resources efficiently in response to changing operational
requirements.

6. Real-time Intelligence Processing and Dissemination: manage and process in-
telligence data from various sources, such as imagery, signals intelligence (SIG-
INT), and human intelligence (HUMINT). Database management systems must
be designed to efficiently store, organize, and retrieve this data, allowing com-
manders and intelligence analysts to access and analyze it in real-time. The timely
dissemination of intelligence is crucial for maintaining situational awareness and
making informed decisions.



4.2 Energy and Utilities 105

7. Cybersecurity and Information Assurance: MCCS must ensure the security,
integrity, and availability of the data they process and store. This involves im-
plementing robust cybersecurity measures, such as encryption, authentication,
and intrusion detection systems, to protect sensitive information and ensure the
continuity of command and control functions in the face of cyber threats.

8. Scalability, Performance, and Resilience: MCCS databases must be scalable
and capable of handling the increasing volume of data generated by growing
military operations and the continuous evolution of ISR and communication
technologies. In addition, database management systems must be optimized for
high-performance, low-latency access, and resilience to support real-time military
command and control decision-making.

9. Unmanned Aerial Vehicles (UAVs) and Drones are crucial for controlling and
coordinating UAVs and drones. These systems handle real-time navigation, com-
munication, and payload management data, ensuring that UAVs and drones can
complete their missions efficiently and safely.

10. Missile Defense Systems: are used to manage and coordinate missile defense
systems, ensuring that incoming threats are detected and neutralized in a timely
manner. These systems process real-time data related to threat detection, tracking,
and countermeasures, allowing for swift and effective decision-making.

11. Advanced Avionics Systems: play a critical role in modern avionics systems,
ensuring that aircraft can perform complex maneuvers, maintain precise posi-
tioning, and communicate effectively with ground control. These systems enable
pilots to execute their missions safely and efficiently by processing real-time data.

12. Space Exploration and Missions: manage and coordinate various aspects of
space exploration missions, including spacecraft navigation, communication, and
payload management. These systems ensure that mission-critical tasks are exe-
cuted promptly and accurately, contributing to the mission’s overall success.

In summary, real-time responses and efficient database management systems are
vital components of modern Military Command and Control Systems. These capa-
bilities enable commanders to maintain situational awareness, make time-sensitive
decisions, and ensure effective communication and coordination between military
units and assets in a complex and rapidly changing operational environment.

4.2 Energy and Utilities

Real-time scheduling database management systems (RTDBMS) have numerous ap-
plications in the energy and utilities industry. These systems help utility providers to
optimize their operations, reduce costs, and improve the reliability of their networks.
In this section, we will discuss in more detail some of the primary applications of
RTDBMS in the energy and utilities industry [68].

1. Energy Distribution: RTDBMS can be used to optimize energy distribution in
real-time. By collecting data on energy demand, supply, and other critical factors,



106 4 Applications of Real-Time Database Systems

these systems can help utility providers to adjust energy supply and demand to
match real-time needs. As a result, real-time energy distribution can help to reduce
energy waste, improve network efficiency, and enhance the reliability of energy
supply. For example, RTS-DBMS can be used to predict peak demand and adjust
energy supply accordingly to reduce the risk of blackouts or brownouts.

2. Asset Management: RTDBMS can also be used for real-time asset management
in the energy and utilities industry. These systems can collect data on asset perfor-
mance, maintenance requirements, and other factors, allowing utility providers to
optimize asset utilization and reduce maintenance costs. Real-time asset manage-
ment can also help to identify potential asset failures before they occur, reducing
the risk of outages and other service interruptions. For example, RTS-DBMS can
monitor the performance of power transformers and alert operators to potential
issues before they cause an outage.

3. Outage Management: RTDBMS can manage power outages in real-time. By
collecting data on outage locations, affected customers, and other critical infor-
mation, these systems can help utility providers to respond quickly to outages and
minimize the duration of service interruptions. Real-time outage management can
also help to optimize the allocation of repair crews and other resources, reducing
costs and improving service reliability. For example, RTDBMS can prioritize
outage restoration based on the number of affected customers and the estimated
time to restore service.

4. Demand Response: RTDBMS can be used for real-time demand response in
the energy and utilities industry. By collecting data on energy demand, utility
providers can adjust energy supply and demand to match real-time needs, reducing
energy waste and improving network efficiency. Real-time demand response can
also help to reduce peak demand, which can help to reduce energy costs for
consumers. For example, RTS-DBMS can automatically adjust the temperature
set-points in commercial buildings during periods of high demand to reduce
energy consumption.

5. Resource Optimization: RTDBMS can be used to optimize resource utilization
in the energy and utilities industry. Real-time data on energy supply, demand, and
other critical factors can be used to allocate resources more efficiently, reducing
costs and improving network reliability. For example, RTDBMS can optimize
the dispatch of power generation sources to meet real-time demand, reducing the
need for expensive peaking power plants.

6. Customer Service: RTDBMS can improve customer service in the energy and
utilities industry. For example, utility providers can improve transparency and
build customer trust by providing real-time updates on outages, service interrup-
tions, and other critical information. Real-time data can also be used to identify
and address potential issues before they become a problem, improving the overall
customer experience. For example, RTDBMS can be used to automatically send
outage notifications to customers via text message or email.

7. Regulatory Compliance: RTDBMS can help utility providers to comply with
regulatory requirements in the energy and utilities industry. Real-time data on
network performance, energy consumption, and other critical factors can be used



4.3 Online Gaming 107

to monitor compliance with regulations and quality standards, such as the North
American Electric Reliability Corporation (NERC) reliability standards. For ex-
ample, RTS-DBMS can be used to monitor the frequency and voltage of the
electric grid to ensure that it meets regulatory requirements.

8. Renewable Energy Integration: RTDBMS can be used to optimize the inte-
gration of renewable energy sources into the electric grid. Real-time data on
renewable energy generation, energy demand, and other critical factors can bal-
ance supply and demand in real-time, ensuring that renewable energy sources are
used efficiently and effectively. As a result, real-time renewable energy integration
can help to reduce the use of fossil fuels and improve the sustainability of the
electric grid.

9. Cybersecurity: RTDBMS can be used to enhance cybersecurity in the energy and
utilities industry. Real-time data on network traffic and other critical indicators
can be used to detect and respond to cybersecurity threats in real-time, reduc-
ing the risk of service interruptions and other security breaches. RTS-DBMS
can also monitor access to critical infrastructure and identify potential security
vulnerabilities before attackers can exploit them.

10. Predictive Maintenance: RTDBMS can be used for predictive maintenance in
the energy and utilities industry. Real-time data on asset performance and main-
tenance requirements can predict when maintenance is required and optimize
maintenance schedules, reducing costs and improving network reliability. Pre-
dictive maintenance can also help to identify potential asset failures before they
occur, reducing the risk of outages and other service interruptions.

4.3 Online Gaming

Multiplayer online games and virtual environments require real-time databases to
manage and process player actions, game states, and other time-sensitive data [86].

Online gaming is an industry that has been growing exponentially over the past
few years, with millions of users playing games simultaneously across the world.
To provide a seamless gaming experience, real-time scheduling and database man-
agement systems are essential. These systems help manage the complex interactions
between players, game servers, and databases, ensuring that the game runs smoothly
and without any hiccups.

Several issues in Online Gaming for real-time databases have been studied:

1. Scheduling: Real-time scheduling systems are used in online gaming to manage
the allocation of server resources and prioritize incoming requests based on the
server’s current load. This ensures that players can connect to game servers
quickly and efficiently, reducing lag or gameplay delays. In addition, real-time
scheduling systems manage the availability of resources, including bandwidth,
CPU, and memory, ensuring that all players have the same experience and that
gameplay remains stable and consistent.



108 4 Applications of Real-Time Database Systems

These systems must also provide high throughput, low latency, and reliability, even
with large numbers of players. Mobile gaming databases store game states, player
information, inventory, and game items, among other data. They are designed to
handle a large volume of data, providing quick and reliable data access to players.

2. Storage of data: Database management systems are also critical in online gaming,
as they store all of the game’s data, including player information, game state,
and items. These databases must be able to handle large volumes of data while
ensuring that the data is consistent and reliable. This is especially important in
online gaming, where multiple players simultaneously interact with the same data.

3. Massive multiplayers: One of the most common applications of real-time schedul-
ing and database management systems in online gaming is in massively multi-
player online role-playing games (MMORPGs). In these games, players interact
with each other in a shared virtual world. Real-time scheduling systems manage
the allocation of server resources, ensuring that all players can connect to the
game and play together. Database management systems store character informa-
tion, inventory, and quest progress, which different players access simultaneously.

4. Esports: Esports is another area where real-time scheduling and database man-
agement systems play a crucial role in online gaming. In esports, players compete
against each other in organized tournaments. Real-time scheduling systems man-
age the tournament schedule and ensure that all matches start on time. Database
management systems store player and team information, tournament results, and
other relevant data, providing the necessary information to players and spectators.

4.4 Environmental Monitoring

Real-time databases are used in environmental monitoring systems for collecting,
processing, and analyzing time-sensitive data related to weather, air quality, water
quality, and other environmental factors [5]. Environmental monitoring is a critical
process that involves collecting data on various environmental parameters to ensure
that environmental conditions remain within acceptable levels. Real-time scheduling
and database management systems are essential in environmental monitoring to
ensure data is collected, stored, and analyzed accurately and efficiently.

Several issues related to environmental monitoring have been studied:

1. Data collection and resource allocation: Real-time scheduling systems are used
in environmental monitoring to schedule data collection and allocate resources
such as sensors and monitoring devices. These systems prioritize incoming re-
quests based on the data’s importance and urgency. Real-time scheduling systems
manage the availability of resources, including bandwidth, CPU, and memory,
ensuring that all devices collect data effectively. These systems also help load bal-
ancing, where the traffic load is spread evenly across different devices to prevent
the overloading of a particular device. These databases must handle large volumes
of data while ensuring that the data is consistent and reliable. In addition, the data
is usually stored in real-time, allowing for rapid analysis and decision-making.



4.5 Sensor Network Applications 109

2. Air quality monitoring: One of the most common applications of real-time
scheduling and database management systems in environmental monitoring is air
quality monitoring. Air quality monitoring systems collect data on parameters
such as particulate matter, carbon monoxide, and ozone. Real-time scheduling
systems collect data and allocate resources such as sensors and monitoring de-
vices. Database management systems store the collected data and provide analysis
and decision-making tools. These systems can identify sources of pollution, track
air quality trends over time, and provide information to policymakers and the
public.

3. Water monitoring: This is another area where real-time scheduling and database
management systems are crucial in environmental monitoring. Water quality
monitoring systems collect data on parameters such as pH, temperature, humid-
ity, wind speed, dissolved oxygen, and conductivity, among others. Real-time
scheduling systems collect data and allocate resources such as sensors and mon-
itoring devices. Database management systems store the collected data and pro-
vide analysis and decision-making tools. These systems can identify sources of
contamination, track water quality trends over time, and provide information to
policymakers and the public. Real-time scheduling systems collect data and al-
locate resources such as sensors and monitoring devices. Database management
systems store the collected data and provide analysis and decision-making tools.
These systems can provide accurate and timely weather forecasts, track weather
patterns over time, and provide information to emergency responders and the
public.

4. Energy management: Another area where real-time scheduling and database
management systems are used in environmental monitoring is energy manage-
ment. These systems monitor energy usage in buildings and industrial facilities,
collecting data on parameters such as electricity, gas, and water usage. Real-time
scheduling systems allocate resources such as sensors and monitoring devices,
while database management systems store the collected data and provide analysis
and decision-making tools. These systems can identify areas of energy waste,
track energy usage trends over time, and provide information to facility managers
and policymakers.

4.5 Sensor Network Applications

Sensor networks are a natural application for real-time data services because their
primary purpose is to provide sensed data to some requesting entity, often with
real-time constraints on the data and the requests [82].

Sensor networks are large-scale wireless networks that consist of numerous sensor
and actuator nodes used to monitor and interact with physical environments [27].
From one perspective, sensor networks are similar to distributed database systems.
They store environmental data on distributed nodes and respond to aperiodic and
long-lived periodic queries [16]. Furthermore, data interest can be pre-registered



110 4 Applications of Real-Time Database Systems

to the sensor network to collect and transmit the corresponding data only when
needed. These specified interests are similar to views in traditional databases because
they filter the data according to the application’s data semantics and shield the
overwhelming volume of raw data from applications [16].

Many issues of interest are related to sensor network applications that use real-
time databases:

1. Real-Time properties: Sensor networks have inherent real-time properties. The
environment that sensor networks interact with is usually dynamic and volatile.
The sensor data typically have an absolute validity interval, after which the
data values may not be consistent with the real environment. Transmitting and
processing “stale” data wastes communication resources and can result in wrong
decisions based on the reported out-of-date data. Besides data freshness, the data
must often be sent to the destination by a deadline. Not much research has been
performed on real-time data services in sensor networks.

2. Differences with conventional RTDBMS: Despite their similarity to conven-
tional distributed real-time databases, sensor networks differ in the following
ways. First, individual sensors are small in size and have limited computing re-
sources, while they must also operate for long periods of time in an unattended
fashion. This makes power conservation an essential concern in prolonging the
system’s lifetime. In current sensor networks, the primary source of power con-
sumption is communication. To reduce unnecessary data transmission from each
node, data collection and transmission in sensor networks are always initiated by
subscriptions or queries. Second, any individual sensor is not reliable. Sensors
can be damaged or die after consuming the energy in the battery. The wireless
communication medium is also unreliable. Packets can collide or be lost. Because
of these issues, we must build trust in a group of sensor nodes instead of any single
node. Previous research emphasizes the reliable transmission of critical data or
control packets at the lower levels. Still, more emphasis is needed on the reliabil-
ity of data semantics at the higher level [83]. Third, the large amount of sensed
data produced in sensor networks necessitates in-network processing. If all raw
data is sent to base stations for further processing, the volume and burstiness of
the traffic may cause many collisions and contribute to significant power loss.
To minimize unnecessary data transmission, intermediate nodes or nearby nodes
work together to filter and aggregate data before the data arrives at the destina-
tion. Fourth, sensor networks can interact with the environment by sensing and
acting. When certain conditions are met, actuators can initiate an action on the
environment. Since such actions are difficult to undo, reducing false alarms is
crucial in specific applications.

3. Middleware: Many ongoing data service middleware research projects for the
sensor network applications include Cougar, Rutgers Dataman, SINA, SCADDS,
Smart-msgs, and some virtual-machine-like designs (Cougar Project; Dataman
Project; SCADDS; Smart-msgs; [17, 30, 67, 93]. COUGAR and SINA are two
typical data-centric middleware designs with goals similar to our design goal
of providing data services. In COUGAR, sensor data is viewed as tables and
query execution plans are developed and possibly optimized in the middleware.



4.5 Sensor Network Applications 111

DSWare project [59] is more tailored to sensor networks, including support-
ing group-based decisions, reliable data-centric storage, and implementing other
approaches to improve the performance of real-time execution, reliability of ag-
gregated results, and reduction of communication. SINA is a cluster-based mid-
dleware design that focuses on cooperating with sensors to conduct a task. Its
extensive SQL-like primitives can be used to issue queries in sensor networks.
However, it must provide schemes to hide the faulty nature of sensor operations
and wireless communication. In SINA, the application layer must provide ro-
bustness and reliability for data services. The real-time scheduling component
and built-in real-time features of other service components make DSWare more
suitable than SINA for real-time applications in wireless sensor networks.

4. Data fusion: Multisensor data fusion research focuses on solutions that fuse data
from multiple sensors to estimate the environment better [44, 77]. In mobile-
agent-based data fusion approaches, software aggregating sensor information is
packed and dispatched as mobile agents to “hot” areas (e.g., the area where an
event occurred) and works independently there. The software migrates among
sensors in a cluster, collects observations, then infers the real situation. This
group-based approach uses consensus among several nearby sensors of the same
type to increase the reliability of a single observation. The mobile agent-based
approach, however, leverages the migration traffic of mobile agents and their
appropriate processing at each sensor node in its routes. For instance, if a node
in the route inserts incorrect data or refuses to forward the mobile agents, the
aggregation and subsequent analysis are untrustful.
A fuzzy modeling approach is sometimes used for data fusion in sensor networks.
It models the uncertainty in sensor failures and faulty observations [88]. This
approach helps model the sensor error rates due to equipment wear and aggre-
gating local decisions from multiple sensors that measure the same data type. In
addition, some optimal decision schemes focus on the fusion of asynchronously
arriving decisions [21, 87].
The work in [18] presents an approach for modeling and simulation for a real-
time algorithm in multi-source data fusion systems. These data fusion schemes are
suitable for increasing the accuracy of decisions but require extensive computing
resources. Dempster-Shafer’s evidential theory is also applied to incorporate
uncertainty into decisions in some sensor fusion research. This scheme uses belief
and plausibility functions to describe the reliability feature of each source and uses
a normalized Dempster’s combination rule to integrate decisions from different
sources. The confidence function in DSWare is similar to the Dempster-Shafer
method, except that it places the evidence in both temporal and spatial spectrums
to consider the real-time validity intervals of data and possible contexts.



112 4 Applications of Real-Time Database Systems

4.6 Web-based Real-Time Data Services

Another application that has recently become a subject of research is real-time
web-based data services [82].

Real-time DBMSs play a crucial role in web-based real-time data services by
providing efficient and reliable data storage and management. These database systems
are designed to handle high volumes of data with strict timing constraints, ensuring
that real-time updates are delivered to users in a timely manner. By integrating real-
time DBMS into web-based services, developers can create applications that deliver
real-time data updates, enable collaborative features, and support interactive user
experiences.

The World Wide Web has recently offered a new venue for real-time data services.
Many applications, such as program stock trading, require information services
that can provide real-time data to widely distributed users. The main challenge in
these applications is to provide timely access to new data in the face of the highly
dynamic environment of the web. Due to the unpredictable nature of web-based
applications, most of this area’s research has focused on providing QoS management
for real-time data services. In [89], a web-based content distribution service for
industrial applications is presented. The service allows for remote monitoring of
industrial devices that may be geographically distributed. It is based on an active web
caching architecture that provides on-demand replication of dynamically changing
web content, like industrial process state. The active web cache comprises a standard
web proxy cache that handles all static data and an active server that handles one
or more dynamic content types. The approach of [89] is to trade off temporal data
consistency with timeliness while keeping within specified inconsistency bounds.

Main benefits of Real-Time DBMS in Web-Based Services are the following:

1. Real-Time Data Updates: Real-time DBMSs enable instant updates to be de-
livered to users, ensuring that they have access to the latest information. This is
especially important in applications such as real-time chat, collaborative editing,
and real-time analytics, where data accuracy and timeliness are critical.

2. Data Synchronization: Real-time DBMSs facilitate seamless data synchroniza-
tion across multiple devices and users. Changes made by one user are immediately
propagated to others, ensuring consistency and avoiding conflicts in shared data.
This capability is essential in collaborative applications and multi-user environ-
ments.

3. Scalability: Web-based real-time data services often experience high user loads
and concurrent data updates. Real-time DBMSs are designed to handle scala-
bility requirements, allowing applications to scale horizontally or vertically to
accommodate growing user bases and increasing data volumes.

4. Performance: Real-time DBMSs are optimized for low-latency data access and
fast query processing. This ensures that web-based applications can retrieve and
present real-time data to users without noticeable delays, providing a smooth and
responsive user experience.



4.6 Web-based Real-Time Data Services 113

Besides the applications described above, other applications of Real-Time DBMS
in Web-Based Services are the following:

1. Real-Time Collaboration: Real-time DBMSs are extensively used in collab-
orative web applications such as project management tools, document editing
platforms, and virtual whiteboards. They enable multiple users to work simulta-
neously, seeing each other’s changes in real-time.

2. Live Dashboards and Analytics: Real-time DBMSs power web-based analytics
dashboards that provide real-time insights and visualizations. This is particularly
useful in domains such as stock market monitoring, website analytics, and real-
time performance monitoring.

3. Real-Time Messaging and Notifications: Real-time DBMSs underpin web-
based messaging applications, enabling instant messaging, chatbots, and push
notifications. These services deliver real-time messages and updates to users,
ensuring timely communication.

4. Real-Time Gaming: Real-time DBMSs are essential in web-based multiplayer
gaming applications, facilitating real-time game state synchronization, leader-
board management, and real-time interactions between players.

5. IoT Data Management: Web-based services that integrate with Internet of
Things (IoT) devices rely on real-time DBMSs to handle the massive influx of
sensor data in real-time. These services can collect, process, and visualize real-
time data from IoT devices, enabling applications such as smart home automation,
asset tracking, and environmental monitoring.

By leveraging the capabilities of real-time DBMSs, web-based real-time data
services can deliver dynamic, interactive, and synchronized experiences to users.
They enable real-time collaboration, data visualization, messaging, gaming, and
IoT data management. The combination of web technologies and real-time DBMSs
opens up a world of possibilities for creating engaging and responsive web-based
applications that cater to real-time data processing and synchronization demands.



114 4 Applications of Real-Time Database Systems



References 115

References

1. Abad, P., Fekete, A.D., Lee, B.S.: Adaptive two-phase commit for real-time distributed
database systems. Concurrency and Computation: Practice and Experience 21(9), 1123–
1142 (2009)

2. Abbott, R., Garcia-Molina, H.: Scheduling real-time transactions: A performance evaluation.
ACM Transactions on Database Systems 17(3), 513–560 (1992)

3. Abbott, R.K., Garcia-Molina, H.: Scheduling real-time transactions: A performance evalu-
ation. ACM Trans. Database Syst. 17(3), 513–560 (1992). DOI 10.1145/132271.132276.
URL http://doi.acm.org/10.1145/132271.132276

4. Abbott, R.K., Garcia-Molina, H.: Scheduling i/o requests with deadlines: a performance
evaluation. In: Proceedings of the 1993 ACM SIGMETRICS conference on Measurement
and modeling of computer systems, pp. 113–124 (1993)

5. Acevedo, M.F.: Real-Time Environmental Monitoring: Sensors and Systems. CRC Press
(2018)

6. Adelberg, B., Kao, B., Garcia-Molina, H.: Overview of the stanford real-time information
processor (strip). SIGMOD Rec. 25(1), 34–37 (1996). DOI 10.1145/381854.381882. URL
http://doi.acm.org/10.1145/381854.381882

7. Adeli, H., Wu, Y.: Recovery in real-time database systems. In: Pacific Rim International
Symposium on Fault-Tolerant Systems, pp. 2–7. IEEE (1992)

8. Ahmad, H., Dharmadasa, I., Ullah, F., Babar, M.A.: A review on c3i systems’ security:
Vulnerabilities attacks and countermeasures. ACM Computing Surveys 55(9), 192 (2023).
DOI 10.1145/3558001. Article No.: 1-38

9. Amirĳoo, M., Chaufette, N., Hansson, J., Son, S.H., Gunnarsson, S.: Generalized performance
management of multi-class real-time imprecise data services. In: Proceedings of the 26th
IEEE International Real-Time Systems Symposium, RTSS ’05, pp. 38–49. IEEE Computer
Society, Washington DC USA (2005). DOI 10.1109/RTSS.2005.23. URL http://dx.doi.
org/10.1109/RTSS.2005.23

10. Andreoli, R., Cucinotta, T., Pedreschi, D.: Rt-mongodb: A nosql database with differentiated
performance. In: Proceedings of the 11th International Conference on Cloud Computing and
Services Science (CLOSER 2021), pp. 77–86 (2021). DOI 10.5220/0010452400770086

11. Ara, G., Abeni, L., Cucinotta, T., Vitucci, C.: On the use of kernel bypass mechanisms for
high-performance inter-container communications. In: High Performance Computing, pp.
1–12. Springer International Publishing (2019)

12. Baruah, S., Bertogna, M., Buttazzo, G.: Multiprocessor Scheduling for Real-Time Systems.
Springer International Publishing (2015)

13. Bernstein, P.A., Goodman, N.: Multiversion concurrency control theory and algorithms. ACM
Trans. Database Systems. 8(4), 465–483 (1983)

14. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database
Systems. Addison-Wesley Longman Publishing Co. Inc., Boston MA. USA (1987)

15. Bestavros, A.: Deterministic modeling of real-time transaction systems. Journal of Real-Time
Systems 7(3), 279–303 (1994)

16. Bonnet, P., Gehrke, J., Seshadri, P.: Querying the physical world. IEEE Personal Communi-
cations Maganize 10 15 (2000)

17. Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. In: Proceedings of the
2nd International Conference on Mobile Data Management. Hong Kong. (2001)

18. Bosse, E., Roy, J., Paradis, S.: Modeling and simulation in support of design of a data fusion
system. Information Fusion 1, 77–87 (2000)

19. Bradley, S.A.: Strip: A soft real-time main memory database for open systems. Ph.D. thesis
(1997)

20. Buttazzo, G., Lipari, G., Abeni, L., Caccamo, M.: Soft real-time systems: Predictability vs.
efficiency. Springer US (2005)

21. Chang, W., Kam, M.: Asynchronous distributed detection. IEEE Transactions on Aerospace
Electronic Systems. pp. 818–826 (1994)

http://doi.acm.org/10.1145/132271.132276
http://doi.acm.org/10.1145/381854.381882
http://dx.doi.org/10.1109/RTSS.2005.23
http://dx.doi.org/10.1109/RTSS.2005.23


116 4 Applications of Real-Time Database Systems

22. Chen, Y.C., Makki, K., Mendelzon, A.O.: Dynamic buffer management for real-time database
systems. In: Proceedings of the 16th International Conference on Very Large Data Bases, pp.
438–449. VLDB Endowment (1990)

23. Consortium, S.: Sqlite - a high-reliability embedded zero-configuration public-domain sql
database engine (2023). URL https://www.sqlite.org/. [Online; accessed 27-April-
2023]

24. Devor, C., Carlson, C.: Structural locking mechanisms and their effect on database manage-
ment system performance. Inf. Syst. 7(4), 345–358 (1982). DOI 10.1016/0306-4379(82)
90033-3. URL https://doi.org/10.1016/0306-4379(82)90033-3

25. DiPippo, L.C., Sventek, R., Hong, J., Wolfe, V.F.: Reintegration in distributed real-time
systems. In: Proceedings of the IEEE Real-Time Systems Symposium, pp. 144–154 (1998)

26. Elmasri, R., Wuu, G., Kim, Y.: Efficient techniques for fuzzy and partial checkpointing in
main memory database systems. In: Proceedings of the IEEE 6th International Conference
on Data Engineering, pp. 588–595 (1990)

27. Estrin, D.G., Heidemann, R.J., Kumar, S.: Next century challenges: scalable coordination
in sensor networks. In: Proceedings of the 5th Annual International Conference on Mobile
Computing and Networks (1999)

28. ExtremeDB-RT: Extremedb-rt. https://www.mcobject.com/docs/Content/Appendix/RT.htm
29. Fekete, A.D., Lynch, N.A., Shavit, N.: Real-time 3pc: A new commit protocol with a strict real-

time ordering. Proceedings of the 9th Annual ACM Symposium on Principles of Distributed
Computing pp. 39–49 (1990)

30. Feng, J., Koushanfar, F., Potkonjak, M.: System-architectures for sensor networks: issues
alternatives and directions. In: The 20th International Conference on Computer Design.
Freiburg Germany. (2001)

31. Gopalan, K., Natarajan, A., Dwarkadas, S., Scott, M.L., Strum, M.: Effective buffer cache
management for real-time database systems. In: 2003 Symposium on Applications and the
Internet Workshops (SAINT 2003. Workshops), pp. 260–267. IEEE (2003)

32. Grey, J., A., R.: Transaction Processing: Concepts and Techniques. Morgan Kaufman (1992)
33. Guo, S., Zhang, Z., Guo, M., Wang, J., Qian, G.: Performance optimization for real-time

databases on ssds. Journal of Systems Architecture 97, 205–217 (2019)
34. Haritsa, J.R., Carey, M.J., Livny, M.: On being optimistic about real-time constraints. In:

Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS ’90, pp. 331–343. ACM, New York NY USA (1990). DOI
10.1145/298514.298585. URL http://doi.acm.org/10.1145/298514.298585

35. Haritsa, J.R., Ramamritham, K., Gupta, R.: Real-time databases: problems solutions and
future directions. In: 1991 International Conference on Information Engineering, pp. 42–49.
IEEE (1991)

36. Haritsa, J.R., Ramamritham, K., Stankovic, J.A.: Real-time locking protocols. In: Proceedings
of the 11th Real-Time Systems Symposium, pp. 144–153. IEEE (1990)

37. Haritsa Jayant, R.: Real-time concurrency control protocols. The VLDB Journal 9(1), 60–79
(2000)

38. Huang, J., Stankovic, J.A., Ramamritham, K., Towsley, D.: On using priority inheritance in
real-time databases. Tech. rep., Amherst MA USA (1990)

39. Huang, J.W.S.: Concurrency control in real-time databases. In: Proceedings of the 7th
International Conference on Data Engineering, pp. 530–539. IEEE (1991)

40. Huang, T.W., Tsai, Y.C., Cheng, A.C.: Adaptive real-time buffer management for mixed hard
and soft real-time systems. Real-Time Systems 19(2), 127–153 (2000)

41. Huang, W., Jajodia, S., Mutchler, D.: A real-time two-phase commit protocol. In: Proceedings
of the 1991 ACM SIGMOD international conference on Management of data, pp. 41–50. ACM
(1991)

42. Hwang, K., Kim, C.: Fault tolerance and recovery in real-time database systems. Information
and Software Technology 43(12), 713–723 (2001)

43. Ioannou, P.A., Sun, J.: Adaptive control tutorial. Siam (2012)

https://www.sqlite.org/
https://doi.org/10.1016/0306-4379(82)90033-3
http://doi.acm.org/10.1145/298514.298585


References 117

44. Jayasimha, D., Ivengar, S., Kashyap, R.: Information integration and synchronization in
distributed sensor networks. IEEE Transactions on Systems Man and Cybernetics. 21(5),
1032–1043 (1991)

45. Kamath, M., Ramamritham, K.: Priority-driven buffer management for real-time main-
memory database systems. Real-Time Systems 5(1), 37–76 (1993)

46. Kang, K., Oh, J., Son, S.: Chronos: Feedback control of a real database system performance.
In: 28th IEEE International Real-Time Systems Symposium (RTSS 2007), pp. 267–276
(2007). DOI 10.1109/RTSS.2007.16

47. Kang, K., Son, S., Stankovic, J.: Qedb: A quality-aware embedded real-time database. In:
Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Sym-
posium, pp. 70–79. IEEE (2003)

48. Kang, K.D., Sin, P.H., Oh, J.: A real-time database testbed and performance evaluation.
In: Proceedings of the 13th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA ’07, pp. 319–326. IEEE Computer Society,
Washington DC USA (2007). DOI 10.1109/RTCSA.2007.12. URL http://dx.doi.org/
10.1109/RTCSA.2007.12

49. Kang, K.D., Son, S.H., Stankovic, J.A.: Managing deadline miss ratio and sensor data fresh-
ness in real databases. IEEE Transactions on Knowledge and Data Engineering 16(10),
1200–1216 (2004)

50. Kang, M., Son, S.H.: Adaptive real-time database management systems for internet of things.
Future Generation Computer Systems 82, 696–705 (2018)

51. Kao, B., Garcia-Molina, H.: An overview of real-time database systems. In: Advances in
Real-Time Systems, pp. 463–486. Springer-Verlag (1994)

52. Korth, H.F., Soparkar, N., Silberschatz, A.: Triggered real-time databases with consistency
constraints. In: Proceedings of the 16th International Conference on Very Large Data Bases,
VLDB ’90, pp. 71–82. Morgan Kaufmann Publishers Inc., San Francisco CA USA (1990).
URL http://dl.acm.org/citation.cfm?id=645916.671972

53. Krol, V., Pokorny, J.: The v4db testbed - evaluating of real-time database transaction process-
ing strategies testbed- evaluating of real-time database transaction processing strategies. In:
Proceedings of the 11th WSEAS International Conference on Computers (2007)

54. Kuo, T.W., Kao, Y., Kuo, C.: Two-version based concurrency control and recovery in real-
time client/server databases. IEEE Transactions on Computers 52(4), 506–524 (2003). DOI
10.1109/TC.2003.1190591

55. Kuo, T.W., Mok, A.K.: Real-time database & mdash; similarity and resource scheduling.
SIGMOD Rec. 25(1), 18–22 (1996). DOI 10.1145/381854.381873. URL http://doi.
acm.org/10.1145/381854.381873

56. Lam, K., Kuo, T.W. (eds.): Real-Time database systems: architecture and techniques. Kluwer
Academic Plublishers (2001)

57. Lee, Y., Lee, B.S.: A priority-based commit protocol for real-time distributed database sys-
tems. In: Proceedings 2000 International Database Engineering and Applications Symposium,
pp. 20–29. IEEE (2000)

58. Lettieri, G., Maffione, V., Rizzo, L.: A survey of fast packet i/o technologies for network
function virtualization. In: Lecture Notes in Computer Science, pp. 579–590. Springer
International Publishing (2017)

59. Li, S., Lin, Y., Son, S.H., Stankovic, J., Wei, Y.: Event detection services using data service
middleware in distributed sensor networks. Telecommunication Systems. 26, 351–368 (2004)

60. Lin, E.S., Ramamritham, K.: Adaptive deadlines for real-time disk scheduling. Real-Time
Systems 18(1), 7–41 (2000)

61. Lin, K.J., Lin, M.J.: Enhancing availability in distributed real-time databases. SIGMOD Rec.
17(1), 34–43 (1988). DOI 10.1145/44203.44206. URL http://doi.acm.org/10.1145/
44203.44206

62. Lin, Y., Son, S.: Concurrency control in real-time databases by dynamic adjustment of
serialization order. In: Proceedings 11th Real-Time Systems Symposium, pp. 104–112 (1990).
DOI 10.1109/REAL.1990.128735

http://dx.doi.org/10.1109/RTCSA.2007.12
http://dx.doi.org/10.1109/RTCSA.2007.12
http://dl.acm.org/citation.cfm?id=645916.671972
http://doi.acm.org/10.1145/381854.381873
http://doi.acm.org/10.1145/381854.381873
http://doi.acm.org/10.1145/44203.44206
http://doi.acm.org/10.1145/44203.44206


118 4 Applications of Real-Time Database Systems

63. Lindström, J.: Wiley Encyclopedia of Computer Science and Engineering, chap. Real Time
Database Systems. Wiley (2008)

64. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM 20(1), 46–61 (1973)

65. Locke, D.: Real-Time Database Systems: Architecture and Techniques, chap. Applications
and System Characteristics. Kluwer Academic Plublishers (2001)

66. Lu, C., Abdelzaher, T.F., Stankovic, J.A., Son, S.H.: Feedback control real-time scheduling:
Framework, modeling, and algorithms. Real-Time Systems 23(1-2), 85–126 (2001)

67. Mattern, F., Romer, K., Kasten, O.: Middleware challenges for wireless sensor networks.
ACM SIGMOBILE Mobile Computing and Communication Review (2002)

68. Meehan, W., Brook, R.G., Wyland, J.: Geographic Information Systems in Energy
and Utilities, pp. 755–779. Springer International Publishing (2022). DOI 10.1007/
978-3-030-53125-6_28. URL https://doi.org/10.1007/978-3-030-53125-6_28

69. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: Aries: A transaction recovery
method supporting fine-granularity locking and partial rollbacks using write-ahead logging.
ACM Transactions on Database Systems 17(1), 94–162 (1992)

70. Nguyen, D.: Raima database manager version 15.2 architecture and features (2022). URL
https://raima.com/wp-content/uploads/Technical-Whitepaper.pdf. Accessed:
May 2023

71. Nystrom, D., Tesanovic, A., Nolin, N., Hansson, J.: Comet: A component-based realtime
database for automotive systems. In: Proceedings of the IEEE Workshop on Software Engi-
neering for Automotive Systems (2004)

72. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm (extended
version). Tech. rep. (2016). Accessed 20:2018

73. Palanisamy, S., SuvithaVani, P.: A survey on rdbms and nosql databases mysql vs mongodb.
In: 2020 International Conference on Computer Communication and Informatics (ICCCI),
pp. 1–7 (2020)

74. Pang, H., Carey, M.: Predictive dynamic real-time admission control. IEEE Transactions on
Knowledge and Data Engineering vol. 11 no. 1 pp. 184–198 (1999)

75. Paton, N.W., Díaz, O.: Active database systems. ACM Computing Surveys 31(1), 63–103
(1999)

76. Pu, C., Leff, A., Raynal, M.: Epsilon-serializability. ACM Transactions on Database Systems
(TODS) 16(3), 492–525 (1991)

77. Qi, H., Wang, X., Iyengar, S.S., Chakrabarty, K.: Multisensor data fusion in distributed sensor
networks using mobile agents. In: Proceedings of 5th International Conference on Information
Fusion. Annapolis MD. (2001)

78. Ramamritham, K.: Real-time databases. International Journal of Distributed and Parallel
Databases, Springer 1, 199–226 (1993)

79. Ramamritham, K., Haritsa, J.: Real-time database systems: Issues and applications. IEEE
Expert: Intelligent Systems and Their Applications 8(1), 26–38 (1993)

80. Ramamritham, K., Liu, Q.: Adaptive push-pull: Disseminating dynamic web data. In: Pro-
ceedings of the 10th International Conference on World Wide Web, pp. 265–274. ACM
(2001)

81. Ramamritham, K., Singhal, M.: Real-time scheduling of disk i/o in a multi-tasking environ-
ment. In: Proceedings of the 1989 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pp. 53–62. ACM (1989)

82. Ramanritahm, K., Son, S.H., Cingiser, D.L.: Real-time databases and data services. Real-Time
Systems Journal 28, 179–215 (2004)

83. Ratnasamy, S., Estrin, D., Govindan, R., Karp, B., Shenker, S., Yin, L., Yu, F.: Data-centric
storage in sensornets. In: Proceedings of the 1st Workshop on Sensor Networks and Appli-
cations (2002)

84. Rawlings, J.B., Mayne, D.Q., Scokaert, P.O.: Model Predictive Control: Theory, Computation,
and Design. Nob Hill Pub (2017)

85. Rubio, F., Vazquez, P., Reyes, C.R.P.: Nosql vs. sql in big data management: An empirical
study. KnE Engineering 5(1), 40–49 (2020)

https://doi.org/10.1007/978-3-030-53125-6_28
https://raima.com/wp-content/uploads/Technical-Whitepaper.pdf


References 119

86. Safadinho, D., Ramos, J., Ribeiro, R., Caetano, R., Pereira, A.: Uav multiplayer platform
for real-time online gaming. In: A. Rocha, A.M. Correia, H. Adeli, L.P. Reis, S. Costanzo
(eds.) Recent Advances in Information Systems and Technologies, pp. 577–585. Springer
International Publishing (2017)

87. Samarasooriya, V.N.S., Varshney, P.K.: A sequential approach to asynchronous decision
fusion. Optical Engineering. 35(3), 625–633 (1996)

88. Samarasooriya, V.N.S., Varshney, P.K.: A fuzzy modeling approach to decision fusion under
uncertainty. Fuzzy Sets and Systems. 114(1), 59–69 (2000)

89. Sebastine, S., Kang, K.D., Abdelzaher, T., Son, S.H.: A scalable web-based real-time infor-
mation distribution service for industrial applications. In: Proceedings of the 27th Annual
Conference of IEEE Industrial Electronics Society. Denver CO. (2001)

90. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers 39(9), 1175–1185 (1990)

91. Sha, L., Rajkumar, R., Son, S., Chun-Hyon, C.: A real-time locking protocol. Tech. Rep.
CMU/SEI-89-TR-018, Software Engineering Institute Carnegie Mellon University, Pitts-
burgh PA (1989). URL http://resources.sei.cmu.edu/library/asset-view.cfm?
AssetID=10955

92. Shahzad, M., Ahmad, I.: Real-time systems object-relational active database (rtsorac): A
real-time object-oriented database model. International Journal of Real-Time Systems 1(1),
1–15 (2021)

93. Shen, C.C., Srisathapornphat, C., Jaikaeo, C.: Sensor information networking architecture
and applications. IEEE Personal Communication Magazine. 8(4), 52–59 (2001)

94. Shu, W., Huang, Y., Zheng, W., Ravindran, B., Jensen, E.D.: A real-time two-phase commit
protocol for distributed real-time database systems. In: Proceedings of the IEEE Real-Time
Systems Symposium, pp. 422–432 (1999)

95. Sivasankaran, M., Stankovic, J., Towsley, D., Ramamritham, K., Purimet, l.B.: Epsilon seri-
alizability. In: Proceedings of the IEEE Real-Time Systems Symposium, pp. 56–65 (1995)

96. Sivasankaran, R., Son, S.H.: Real-time recovery: A taxonomy and a performance study.
Journal of Real-Time Systems 18(1), 5–37 (2000)

97. Son, S., Kim, S.: Real-time database systems: Issues and applications. IEEE Transactions on
Knowledge and Data Engineering 12(2), 181–200 (2000)

98. Son, S.H.: A timing constraint approach to object-oriented databases. ACM SIGMOD Record
30(4), 64–69 (2001)

99. Son, S.H., Iannacone, C.C., Poris, M.S.: Rtdb: a real-time database manager for time-critical
applications. In: Proceedings. EUROMICRO ‘91 Workshop on Real-Time Systems, pp.
207–214 (1991). DOI 10.1109/EMWRT.1991.144107

100. Son, S.H., Kim, K.H.: A real-time two-phase commit protocol. International Journal of
Parallel and Distributed Systems and Networks 5(1), 38–45 (1995)

101. Son, S.H., Krishna, C.M.: An adaptive recovery technique for real-time database systems. In:
Proceedings of the IEEE Real-Time Technology and Applications Symposium, pp. 98–106
(1998)

102. Son, S.H., Zhang, F.: A real-time optimistic concurrency control protocol with dynamic
adjustment of serialization order. IEEE Transactions on Knowledge and Data Engineering
18(6), 838–850 (2006)

103. Stankovic, J., Son, H.S., Hansson, J.: Misconceptions about real-time databases. IEEE
Computer 32, 29–36 (1999)

104. Stankovic, J.A., Ramamritham, K.: Tutorial: Real-time systems. IEEE Computer Society
Press (1988)

105. Stankovic, J.A., Ramamritham, K.: The design of dynamic real-time scheduling algorithms.
pp. pp. 59–70 (1989)

106. Stankovic, J.A., Son, S.H., Liebeherr, J.: BeeHive: Global Multimedia Database Support for
Dependable Real-Time Applications, pp. 51–69. Springer Berlin Heidelberg (1998)

107. Sugeno, M.: Industrial applications of fuzzy control. Elsevier Science Inc. (1985)

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10955
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10955


120 4 Applications of Real-Time Database Systems

108. Tatbul, N., Çetintemel, U., Zdonik, S.B., Cherniack, M., Stonebraker, M.: Load shedding in
a data stream manager. In: VLDB’03: Proceedings of the 29th International Conference on
Very Large Data Bases, pp. 309–320. VLDB Endowment (2003)

109. Tesanovic, A.: Reconfigurable real-time software using aspects and components. Ph.D. thesis
(2006)

110. Tesanovic, A., Hansson, J.: Application-Taylored Databases for Real-Time Systems, pp. 28.1–
28.19. Chapman and Hall/CRC (2008)

111. Tesanovic, A., Nadjm-Tehrani, S., Hansson, J.: Component-Based Software Development for
Embedded Systems - An Overview on Current Research Trends, pp. 59–81. Springer-Verlag
Lecture notes in Computer Science Volume 3778 (2005)

112. Tesanovic, A., Nystrom, J.H., Norstrom, C.: Integrating symbolic worst-case execution time
analysis into aspect-oriented software development. In: OOPSLA 2002 Workshop on Tools
for Aspect Oriented Software Development (2002)

113. Ulusoy, O.: Real-time concurrency control in database systems. In: Proceedings of the IEEE
Workshop on Real-Time Applications, pp. 38–42 (1993)

114. Vrbsky, S., Liu, J.: Soft real-time concurrency control. Journal of Real-Time Systems 10(1),
5–39 (1996)

115. Wang, X., Stankovic, J.A., Lu, C.: Dynamic resource allocation for distributed real-time
systems. In: Proceedings of the 12th Euromicro Conference on Real-Time Systems, pp.
17–24. IEEE (2002)

116. Wu, Q., Li, Q., Wang, C., Zhao, S., Yu, G.: A deep reinforcement learning-based i/o scheduler
for real-time database systems. In: 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pp. 1180–1190. IEEE (2019)

117. Yao, B., Butt, A.R., Wang, K.J.: A new approach to i/o scheduling for real-time database
systems. ACM Transactions on Database Systems (TODS) 20(3), 273–320 (1995)

118. Zhang, C., Liu, Z., Qi, Y., Wang, Z., He, J., Wen, J.: Machine learning-based i/o scheduler
for real-time database systems. Journal of Systems Architecture 88, 55–65 (2018)

119. Zheng, L., Zhou, M., Son, S.H.: A machine learning-based real-time commit protocol for
distributed real-time database systems. In: 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pp. 1668–1678. IEEE (2017)

120. Zhu, X., Chiueh, T.c.: Pattern-based buffer cache management. In: Proceedings. Eighth
International Symposium on High-Performance Computer Architecture, pp. 147–156. IEEE
(2002)


	An Overview of Real-Time Database Systems
	Challenges in Real-Time Database Systems
	Soft vs. Hard Real-Time Database Systems
	Contrast with Conventional Database Systems
	Real-Time Database Model
	Data and Consistency
	Real-Time Database System Transactions

	Real-Time Database System: Transaction and Query Processing
	Scheduling Real-Time Transactions

	Admission Control
	Concurrency Control
	Priority Inversion in Real-Time Transactions
	Locking Concurrency Control Protocols
	Optimistic Concurrency Control Protocols
	Comparison of Concurrency Control Protocols
	Deadlocks in Concurrency Control Protocols

	Real-Time Distributed Databases and Commit Protocols
	Recovery in Real-Time Database Management Systems
	Input/Output Scheduling in Real-Time Database Systems
	Feasible Deadline SCAN (FD-SCAN)
	Highest Priority Group First (HPGF)
	Adaptive Earliest Deadline First (A-EDF)
	Adaptive Feasible Deadline SCAN (A-FDSCAN)
	Dynamic I/O Scheduling for Real-Time Systems
	Machine Learning-based Scheduling

	Buffer Management in Real-Time Database Management Systems
	Deadline-Driven Page Replacement (DDPR) Algorithm
	Priority-Driven Buffer Management (PDBM) Algorithm
	Adaptive Real-Time Buffer Management (ARTBM) Algorithm

	Related Developments
	Main-Memory Databases
	Real-Time Data Analytics
	Time-Series Databases
	NoSQL Databases


	Experimental Real-Time Databases
	STRIP
	STRIP Real-Time Scheduling
	Data Sharing Architecture
	Streams Support
	View Definition

	BeeHive Real-Time Database
	Beehive Architecture
	Beehive Real-Time Scheduling
	General Beehive Design
	Native BeeHive Design

	RTSORAC: A Real-Time Object-Oriented Database Model
	RTSORAC Model
	Real-time Scheduling Characteristics in RTSORAC
	Architecture of RTSORAC

	The COMET approach
	Components and Aspects
	Aspect Packages

	Feedback Control-Based QoS Management on Real-Time Databases
	Feedback Control Loop
	Controller Function
	Applications in Real-Time Database Management Systems
	Advantages and Challenges
	Feedback Control Techniques

	QeDB: A Quality-Aware Embedded Real-Time Database
	System Model
	Data and Transactions
	Real-Time Transactions
	Performance Metrics
	I/O deadline and CPU deadline
	QoS Management Architecture

	RT-MongoDB: A NoSQL Database Solution
	Fundamental Concepts
	RT-MONGODB

	V4DB Real-Time Database Testbed
	The V4DB System
	V4DB Database
	Database granularity
	Description of the Transactions
	System Test Options

	Chronos Testbed
	Architecture of Chronos
	Client-Server Application
	Adaptive Update Policy
	Experiments in Chronos


	Commercial Real-Time Database Systems
	SQLite Database Management System
	SQLite in RTOS Environments

	ITTIA DB: Time Series Platform for Building Embedded Systems and IoT Devices
	Overview of ITTIA DB SQL
	Supported 3rd Party Platforms
	Real-Time Features

	Raima Database Manager (RDM)
	Non-SQL and SQL Database Design and Manipulation
	Product Features
	Transactional File Server (TFS)
	Snapshots
	Circular Tables support

	eXtremeDB-RT
	Temporal Consistency
	RT Transaction Scheduling
	Methods to Enforce Deadlines
	Supported platforms


	Applications of Real-Time Database Systems
	Military Command and Control Systems (MCCS)
	Energy and Utilities
	Online Gaming
	Environmental Monitoring
	Sensor Network Applications
	Web-based Real-Time Data Services
	References


