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Abstract 

In this papel; we address power-aware scheduling of peri- 
odic hard real-time tasks using dynamic voltage scaling. Our 
solution includes three parts: (a )  a static (off-line) solution to 
compute the optimal speed, assuming worst-case workload for 
each arrival, (b )  an on-line speed reduction mechanism to re- 
claim energy by adapting to the actual workload, and ( c )  an on- 
line, adaptive and speculative speed adjustment mechanism to 
anticipate early completions of future executions by using the 
average-case workload information. All these solutions still 
guarantee that all deadlines are met. Our simulation results 
show that the reclaiming algorithm saves a striking 50% of 
the energy over the static algorithm. Furthel; our speculative 
techniques allow for an additional approximately 20% savings 
over the reclaiming algorithm. In this study, we also establish 
that solving an instance of the static power-aware scheduling 
problem is equivalent to solving an instance of the reward- 
based scheduling problem [I, 41 with concave reward func- 
tions. 

1 Introduction 
In the last decade, the research community has ad- 

dressed the low power system design problems with a multi- 
dimensional effort [7, 181. Such on-going research has im- 
portant implications for real-time systems design, simply be- 
cause most of the applications running on power-limited sys- 
tems inherently impose temporal constraints on the response 
time (such as real-time communication in satellites). 

The variable voltage scheduling (VVS) framework, which 
involves dynamically adjusting the voltage and frequency 
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(hence the CPU speed), has recently become a major research 
area for power-aware computer systems. For real-time sys- 
tems, the proposed VVS schemes focus on minimizing en- 
ergy consumption in the system, while still meeting the dead- 
lines. Yao et a1.[23] provided a static off-line scheduling al- 
gorithm, assuming aperiodic tasks and worst-case execution 
times. Heuristics for on-line scheduling of aperiodic tasks 
while not hurting the feasibility of periodic requests are pro- 
posed in [9]. Non-preemptive power aware scheduling is in- 
vestigated in [8]. Concentrating on periodic tasks with identi- 
cal periods, the effects of having an upper bound on the volt- 
age change rate are examined in [lo], along with a heuristic 
to solve the problem. Slowing down the processor whenever 
there is a single task eligible for execution was explored in 
[21]. Lorch and Smith addressed the variable voltage schedul- 
ing of tasks with sofi deadlines in [14]. The static solution for 
the general periodic model where tasks have potentially differ- 
ent power consumption characteristics is provided in [2 ] .  

However, most of the scheduling schemes presented in these 
studies, while using exclusively worst-case execution time 
(WCET) to guarantee the timeliness of the system, lack the 
ability to dynamically take advantage of unused computation 
time. In fact, real-time applications usually exhibit a large vari- 
ation in actual execution times; for example [5] reports that the 
ratio of the worst-case execution time to the best-case execu- 
tion time can be as high as 10 in typical applications. 

Consequently, dynamically monitoring and reclaiming the 
'unused' computation time can be (and, as we show later in 
this paper, is in fact) a powerful approach to obtain consider- 
able power savings and to minimize the effects of designing 
the system with WCET information, which is usually a very 
conservative prediction of the actual execution time. Addi- 
tional improvements are possible thanks to the statistical work- 
load information; in this paper, we investigate also aggressive 
schemes where we anticipate the early completions of future 
executions and speculatively reduce the CPU speed. This ap- 
proach immediately raises two intertwined questions, namely, 
(a) the level of aggressiveness under a given probability dis- 
tribution of actual workload; and (b) the issue of guaranteeing 
the timing constraints even in aggressive modes. It is obvi- 
ous that the solutions to these problems should be simultane- 
ously practical and efficient, in order to be applicable on-line. 
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It goes without saying that dynamic reclaiming andor aggres- 
sive techniques should preserve the feasibility of the task sys- 
tem (i.e., no deadline should be missed), even under a worst- 
case scenario that may take place after any speed adjustment 
decision. 

We must note that a recent study [ 111 addressed dynamic 
energy reclaiming issues (without speculation) in power-aware 
scheduling for cyclic and periodic task models, in the context 
of systems with two (discrete) voltage levels. However, sys- 
tems which are able to operate on a (more or less) continuous 
voltage spectrum are rapidly becoming a reality thanks to ad- 
vances in power-supply electronics and CPU design [6, 171. 
For example, the Crusoe processor is able to dynamically ad- 
just clock frequency in 33 MHz steps [22]. To the best of 
our knowledge, the concept of “speculative speed reduction” 
was first introduced by the authors in [16]; however, only tasks 
sharing a common deadline were considered. 

Paper Organization 

In this paper, we identify and address three dimensions of 
power-aware scheduling for real-time systems and develop ef- 
ficient algorithms for the periodic task model. Effectiveness 
in reducing the energy consumption can be improved only by 
a simultaneous consideration of these three dimensions, since 
they complement each other. Thus, we present: 

A static (off-line) solution to compute the optimal speed 
at the task level, assuming worst-case workload for each 
arrival’ (Section 3). In the same section, we also show 
that solving an instance of the the static power-aware real- 
time scheduling problem is equivalent to solving an in- 
stance of the reward-based scheduling problem [ 13. 
An on-line speed adjustment mechanism to dynamically 
reclaim energy not used by tasks that complete without 
consuming their worst-case workload (Section 4). 

An on-line, adaptive and speculative speed adjustment 
mechanism to anticipate and compensate probable early 
completions of future executions (Section 5). 

We emphasize once again that, in the context of real-time 
systems, all these components should be designed not to cause 
any deadlines to be missed even under the worst-case scenario: 
the aim is to meet the timing constraints while simulta- 
neously and dynamically reducing power consumption as 
much as possible. 

2 System Model and Notation 
The ready time and deadline of each real-time task Ti will 

be denoted by ri and d;, respectively. The indicator of the 
worst-case workload in variable voltage/speed settings, that is, 

’Due to the nature of VVS, the actual execution time is dependent on the 
CPU speed, and therefore the worst-case number of required CPU cycles is a 
more appropriate measure of the worst-case workload (see Section 2). 

the worst-case number of processor cycles required by Ti,  will 
be denoted by Ci. Note that, under a constant speed S (given 
in cycles per second), the execution time of the task Ti is ti = 

%. A schedule of real-time tasks is said to be feasible if each 
task Ti receives at least ACi CPU cycles before its deadline, 
where ACi 5 Ci is the actual number of CPU cycles (actual 
workload) of Ti. 

We assume that the CPU speed can be changed between 
a minimum speed Smin (minimum supply voltage necessary 
to keep the system functional) and a maximum speed S,,,, 
and that 0 5 Smin 5 S,,, = 1; that is, we normalize the 
speed values with respect to S,,,. In our framework, the volt- 
age/speed changes take place only at context switch time and 
while state saving instructions execute. Pouwelse et al. report 
in [ 191 that the voltage/speed change can be performed in less 
than 140 ps in Strong ARM SA-1100 processor. If not negli- 
gible, the ’voltage change overhead’ can be incorporated into 
the worst-case workload of each task. 

We assume that the process descriptor of the task Ti has 
two extra fields related to speed settings, in addition to other 
conventional fields. The first one, Si, denotes thtcurrenr CPU 
speed at which Ti is executing. The other field Si denotes the 
nominal speed of Ti, which is the indicator of the “default” 
speed of Ti. Forzach task that is dispatched, the operating 
system sets Si = Si, prior to any dynamic speed adjustment. 

The power consumption of the processor under the speed S 
is given by g(S) ,  which is assumed to be a strictly increasing 
convex function, represented by a polynomial of at least sec- 
ond degree [lo]. If the task Ti occupies the processor during 
the time interval [t 1 ,  t z ] ,  then the energy consumed during this 
interval is E(t l ,  tz)  = S,l’ g ( S ( t ) ) d t .  

In our detailed analysis of periodic power-aware scheduling, 

time tasks. The period of Ti is denoted by Pi, which is also 
equal to the deadline of the current invocation. We refer to the 
j t h  invocation of task Ti as Ti,j. All tasks are assumed to be 
independent and ready at t = 0. Hence, the ready time of Tif  
is ri,j = ( j  - 1) . Pi, and its deadline is di, j  = j . Pi. 

We define Utot as the total utilization of the task set under 
maximum speed S,,, = 1, that is, Utot = Cy=l $. Note 
that the schedulability theorems for periodic real-time tasks 
[I21 imply that Utot 5 1 is a necessary condition to have at 
least one feasible schedule; hence, throughout the paper, we 
will assume that Utot = 

3 Optimal Static Solution 

3.1 

we wi l l  cons ider  a set I= {TI ,  . . . , T,} of n periodic real- 

5 5 1. 

The Reward-Based Approach to Power- 
Aware Scheduling 

Before analyzing the periodic model in depth, we cor- 
relate the reward-based scheduling [l,  31 framework to the 
power-aware scheduling of real-time tasks. The reward- 
based scheduling framework encompasses real-time schedul- 
ing models such as Imprecise Computation [ 131 and Increased- 
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Reward-with-Increased-Service [4] that exploit the timeliness 
and precision trade-off. We underline that the correlation that 
we prove is preserved regardless of the task model (aperi- 
odidperiodic or preemptive/nonpreemptive), as long as our 
aim is to reach a solution for a given (worst-case) workload. 

In the reward-based scheduling framework, each real-time 
task Ti comprises a mandatory part Mi and an optional part 
Oi. The worst-case execution times of Mi and Oi are de- 
noted by mi and oi, respectively. The mandatory part runs 
first, producing an output of acceptable quality, which is sub- 
sequently enhanced by the optional part within the limits of 
available computational capacity. To quantify the quality im- 
provement, a non-decreasing reward function Fi (ti) is associ- 
ated with each optional execution where t i  5 oi denotes the 
service time Oi receives. Most of the realistic applications are 
best represented by concave reward functions [l, 3,4,  201. In 
any feasible reward-based schedule, euch mandatory part must 
be fully executed by the task deadline d i ,  however, the optional 
parts may remain partially executed by the deadlines. Now we 
can formally define the reward-based scheduling problem. 

Reward-Based Scheduling Problem: Consider the 
uniprocessor scheduling of a reward-based real-time task set 
T = {TI ,  . . . , Tn}. Given a time point As,  determine the op- 
timal schedule in the interval [0, As], where each mandatory 
part Mi complete in a timely fashion before the task deadline 
d,, and each optional part receives service for t i  5 oi units of 
time so as to maximize the total system reward xi Fi(ti). 

The determination of the optimal schedule clearly involves 
the computation of optimal optional service times. Noting that 
the reward accrued by each optional part Oi does not increase 
beyond the upperbound oi, this computation can be expressed 
as an optimization problem where the objective is to find t i  
values’ so as to: 

maximize 2 Fi(ti) (1 )  
i = l  

subject to O < t i < O i  i = l  , . . ‘ , n  (2) 

Thereexists a feasible schedule with {mi} and {t,} values (3) 

On the other hand, the real-time power-aware scheduling 
problem can be stated as follows. 

Real-Time Power-Aware Scheduling (RT-PAS) Problem: 
Consider a CPU with variable voltage/speed S (Smin 5 S 5 
S,,,) facility, where the power consumption is given by a 
strictly increasing convex function g(S), which is a polyno- 
mial of at least second degree. Given a set T = { T I ,  . . . , T,} 
of real-time tasks, in which each task Ti is subject to a worst- 
case workload of Ci expressed in the number of required CPU 
cycles, and a time point A,, determine the schedule and the 
processor speed S( t )  so as to minimize the total energy con- 
sumption E(0,  A,) = s:’ g(S( t ) )d t  in the interval [0, A,]. 

When considering the periodic task model, the execution time of each task 
instance ( t i j )  should be considered as a separate unknown. 

Before relating two scheduling problems, we observe that 
the convexity of speedpower function allows us to deduce the 
following (a formal proof can be found in [3]). 

Proposition 1 One can safely commit to a constant CPU 
speed during the execution of a task Ti requiring Ci CPU cy- 
cles, without increasing the energy consumption. 

Note that the determination of Si in the RT-PAS problem is 
now effectively equivalent to determining the CPU time allo- 
cation to Ti, which will be denoted by zi (xi  = 5). We are 
now ready the establish the connection between RT-PAS and 
Reward-Based Scheduling problems. 

Proposition2 Solving an instance of RT-PAS problem is 
equivalent to solving an instance of Reward-Based Scheduling 
problem with concave rewardfunctions. 

Proof: To prove the statement, we will first formulate the 
computation of optimal speed values as an optimization prob- 
lem. The total energy consumption, thanks to the constant 
speed assumption per task, can now be expressed as Etot = 
C;=l zi . S(Si) = c;=1 xi . g( 2). Further, observe that the 
minimum and maximum speed bounds impose natural lower 
and upper bounds on CPU allocation of Ti. In other words, 
the inequality e 5 xi 5 & should be satisfied. Hence, 
the computation of optimal CPU allocation assignments can be 
formalized as an optimization problem: 

n 

minimize E x .  . g ( % )  (4) 

subject to A < X i < &  S,,, i = 1 ,  . . . ,  n ( 5 )  

i = l  

There exists a feasible schedule with {x i }  values (6) 

Now, consider the variable transformation mi = 
o.  - ci - and Fi(ti) = t .  - 2 .  - m. 

S,,,’ 2 - 2 2 ’  2 - Smin S,,,’ 

-(ti + & ) d e ) .  
This transformation can be interpreted as follows: First, Ti 

must be assigned at least & units of CPU time (“manda- 
tory” execution). Any allocation exceeding this minimum 
amount will be considered as “optional” execution, while the 
total CPU allocation (mi + ti) can not exceed the upper bound 
a Finally, the more we allocate CPU time to Ti by in- s,,, * 

creasing ti, the more we increase the energy savings thanks 
to the speedpower relation. It is not difficult to see that, 
by using the above transformation and by re-writing the op- 
timization problem given by (4), (5) and (6), one reaches once 
again the formulation of the general reward-based schedul- 
ing problem defined by Equations (l), (2) and (3). Further, 
the reward function Fi(t i )  above is clearly concave, since 
(ti + &)g(  t ,  I ) is convex. To see this, we can use the 

result from [15] st;& that if a and b are both convex func- 
tions and if a is increasing, then a(b(x) )  is also convex. Thus, 
by setting h(ti)  = , and observing that the multipli- 

cation by (ti + e) does not affect the convexity, we justify 
0 

cz 
t,+& 

the concavity of Fifii) = -g(h(ti)) .  
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3.2 Specific Solution for Periodic Task Sets 

In this section, we present the static optimal solution to 
the variable voltage scheduling problem for the periodic task 
model, assuming that each task presents its worst-case work- 
load to the processor at every instance. We underline that one 
can use the equivalence obtained in Section 3.1 and the results 
from [l] to justify the proposition (as formally done in [3]); 
however, one can also reach the same conclusion by using the 
first principles as outlined below. 

Proposition 3 The optimal speed to minimize the total energy 
consumption while meeting all the deadlines is constant and 
equal to S = max(S,,,, Ut,,}. Moreover; when used along 
with this speed S, any periodic hard real-time policy which can 
fully utilize the processor (e.g., Earliest Deadline First, Least 
Laxity First) can be used to obtain a feasible schedule. 

Proof: First, observe that the convex nature of the power-speed 
function suggests that we should try to maintain a uniform 
speed while fully utilizing the CPU to the extent it is possible. 
If Utot 2 Smin, then using the speed S = Utot leads clearly to 
a schedule which is fully utilized (i.e., no idle time), through 
stretching out each task in equal proportions (in other words, 
in this case, we are achieving a total effective task utilization 

c, - utot - of - 1). However, if Utot < S,,,, then 
we should use the minimum CPU speed available, to stretch 
out task executions as much as possible. In any case, using the 
speed S = marc{S,,,, U,,,} will result in a total effective task 
utilization which is no greater than 1. Hence, any scheduling 
policy which can achieve up to 100% CPU utilization (Earliest 
Deadline First, Least Laxity First) can be used to complete all 
the task instances before their deadlines with the speed S. 0 

- 

4 Dynamic Reclaiming Algorithm 
The dynamic reclaiming algorithm is based on detecting 

early completions and adjusting (reducing) the speed of other 
tasks on-the-fly in order to provide additional power savings 
while still meeting the deadlines. To this aim, we performcom- 
parisons between the actual execution history and the canon- 
ical schedule s""", which is the static optimal schedule on 
which every instance presents its worst-case workload to the 
processor and runs at the constant speed S . The CPU speed 
is adjusted only at task dispatch times: thus, we should be 
able to say whether the task is being dispatched earlier than 

, and if so, determine the amount of additional CPU time 
the dispatched task can safely use to slow down its execu- 
tion; we will refer to this additional CPU time as the earli- 
ness of the dispatched task. Before providing the details of our 
approach, we underline that a simple approach that equates 
earliness with previously unused CPU time and and blindly 
slows down the processor is not a safe approach. To see 
this, consider a 3-task system with the following parameters: 
CI = 4 , 4  = 10, C2 = 4, P2 = 10, C3 = 6 ,  P3 = 30. The 
worst-case utilization of the task set is equal to 1 .OO, hence the 

Scan 

I 

T2 j 7-2 j 

optimal speed for the static version is S = S,,, = 1.00 (from 
Proposition 3). If every task presents its worst-case workload 
at every instance and we use EDF, then the schedule in Figure 
1 (Scan) would be obtained. Now, suppose that T3 completes 

T2 j 

I I 

Ll 
0 8 IO 18 20 28 30 

Figure 1. The static optimal schedule, scan 
early at t = 10, leaving an unused computation time of 4 units 
before its deadline. If these 4 units of CPU time are used by 
T1,2 (recall that Ti,j is the j t h  instance of task z ) ,  T 2 , 2  will 
miss its deadline, if both T1,2 and T 2 , 2  require their worst-case 
workload. 

As we can see, computing and managing earliness is not a 
trivial task. Due to the periodic nature of the tasks we consider, 
it is clearly impractical to a priori produce and keep the entire 
static optimal schedule Scan during the execution. In order 
to simultaneously address the problems of feasibility and ef- 
ficiency, while tasks execute, complete, re-arrive dynamically 
and the actual schedule is produced, we choose to keep and up- 
date a data structure (called a-queue) that helps to compute the 
earliness of tasks when they are dispatched. At any time t dur- 
ing actual execution, the a-queue contains information about 
tasks that would be active (i.e., running or ready) at time t in 
the worst-case static optimal schedule Scan (in other words, 
a-queue is the ready queue of Scan at time t). We assume that 
the following information can be obtained for each task from 
the a-queue at any time t: 

0 i, the identity of the task (i.e., task number), 
0 ri , j ,  the arrival time of the instance (i.e., the period bound- 

0 d i , j ,  the deadline of the instance (i.e., the period boundary 

0 remi,j  ( t ) ,  the remaining execution time of Ti,j at time t 

ary earlier than t),  

later than t ) ,  and 

in S""", under the static optimal speed S .  

Clearly, given t ,  the ri,j and di , j  values can be easily com- 
puted for the periodic task model. Note that the a-queue at 
time t contains information about all instances Ti,j such that 
ri,j 5 t 5 d i , j ,  and remi , j ( t )  > 0. The a-queue contains at 
most n elements, since the number of tasks in the ready queue 
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can never exceed the total number of tasks in any schedule. 
Therefore, we will omit the instance number while referring to 
a-queue elements, whenever clarity is not compromised. 

Our approach assumes that tasks are scheduled according 
to EDF* policy. EDF* is the same as EDF (Earliest Deadline 
First [12]), except that, among tasks whose deadlines are the 
same, the task with the earliest arrival time has the highest pri- 
ority (FIFO policy); in case that both deadline and arrival times 
are equal, the task with the lowest index has the highest prior- 
ity. This EDF* priority ordering is essential in our approach 
because it provides a total order on the priorities. Further, we 
assume that the a-queue is also ordered according to EDF* pri- 
orities. We denote the EDF* priority-level of the task i by d: 
(low values denote high priorities). 

At this point, we are ready to relate the a-queue with the 
computation of earliness factor. Let wB(t) denote the remain- 
ing worst-case execution time of task ?, under the speed S at 
time t. Further, set the nominal speed S, = for each task T,. 

Proposition4 For any task T, which is about to execute, 
any unused computation time (slack) of any task in the a- 
queue having strictly higher priority than T,  will contribute 
to the earliness of T, along with alreadyJinished work of T, 
in the actual schedule. That is, total earliness of Tz is no 
less than ~ , ( t )  = &d:<d; rem,(t) + rem,(t) - w?(t) = 

C z l d : < d ;  rem,(t)  - w>(t)' 

To understand the above result, note that when T ,  is being dis- 
patched, tasks with higher priority that are still in the a-queue 
must be already finished in the actual schedule (since T,  cur- 
rently has the highest EDF* priority), but they would have not 
yet finished in 9"". 

Implementing the a-queue: The a-queue can be easily 
implemented using the following rules: 

R1. 

R2. 

R3. 

Initially the a-queue is empty. 

Upon arrival, each task Tj "pushes" its worst-case execu- 
tion time under nominal speed Sj = S to the a-queue in 
the correct EDF* priority position (this happens only once 
for each arrival, no re-push at 'return from preemptions'). 

As time elapses, the elements in the a-queue are updated 
(consumed) accordingly: the remi,j field at the head of a- 
queue is decreased with a rate equal to that of the passage 
of time. Whenever the remi,j field of the head reaches 
zero, that element is removed from a-queue and the up- 
date continues with the next element. No update is done 
when the a-queue is empty. 

h 

Observation 1 At time t, the a-queue, updated according to 
the rules RI, R2 and R3, contains only the tasks that would be 
ready at time t in the static optimal schedule Scan. Further; the 
remi,j field contains the remaining allotted time of each active 
instance Ti,j at time t in S""". 

Observation 1 stems from the following: (a) a-queue is or- 
dered according to EDF* order, (b) every arriving task pushes 
its remaining worst-case execution time (under nominal speed) 
into the a-queue only once, (c) the queue is updated only at 
the head, reflecting the fact that only the task with the high- 
est EDF* priority would be running in s""", and (d) a task 
that would have finished in Scan is removed from the a-queue. 
This effectively yields a dynamic image of the ready queue in 
Scan at time t .  

Note that the dynamic reduction of rem,,3 in R3 above does 
not need to be performed at every clock cycle; instead, for 
efficiency, we perform the reduction whenever a task is pre- 
empted or completes, by taking into account the time elapsed 
since the last update. The above approach relies on two facts: 
first, the speed adjustment decision will be taken only at ar- 
rivaVpreemption and completion times, and it is necessary to 
have an accurate a-queue only at these points (if speeds are to 
be changed at other points, the update of rem,,g must reflect 
that). Second, between these points, each task is effectively 
executed non-preemptively. 

We are now ready to present our Generic Dynamic Reclaim- 
ing Algorithm, GDRA, shown in Figure 2. Procedure Speed- 
Reduce(T,, B,  s), in Figure 3, will be used by GDRA to re- 
duce the speed S of T,, by allocating an extra B units of time 
to T, under worst-case remaining load, subject to S,,, con- 
straint. GDRA is "generic" in the sense that the amount of 
additional time allocation Y in step 5.2 is not specified, it may 
assume any value between 0 and ~ , ( t )  without compromising 
the correctness. 

The following theorem establishes that the schedules pro- 
duced by GDRA are always ahead of s""". 
Theorem1 At any time t during the execution of GDRA, 
w: ( t )  5 rem,(t), for any ready task T,. 

A 

The formal proof of this theorem can be found in [3]. Focus- 
ing exclusively on task completion times, the theorem implies 
that in the actual schedule no task instance completes later than 
its completion time in S""" (which is feasible), proving the 
correctness of GDRA: 

Corollary1 GDRA yields a feasible schedule under EDF* 
priority for a workload no greater than the worst-case work- 
load. 

Note that any specific algorithm should specify the exact 
amount of earliness parameter Y ,  to use for speed reduction. 
One natural choice in Rule 5.2 of Figure 2 is to use Y = E ,  (t ) , 
that is, to reduce the speed so as to profit from the full earliness. 
We call this variation simply Dynamic Reclaiming Algorithm 
@RA). 

4.1 Incorporating One Task Extension 

As presented in [21], one can further slow down execution 
when there is only one task in the ready queue and its worst 

(OTE) Technique 
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Rules for GDRA 
h 

1. Compute (as in Section 3) and assign Si,j = V i, j .  
2. Initialize the a-queue to the empty-list. 
3. At every new arrival, insert into the a-queue information 

regarding the new task Ti with remi( t )  = w? value in the 
correct EDF* order. 

4. At every event (arrivalkompletion), consider the head of 
the a-queue and decrease its remi value by the amount of 
elapsed-time since the last event. If remi is smaller than the 
time elapsed since the last event, remove the head, update 
the time elapsed since the last event, and repeat the update 
with the next element. This is done until all “elapsed time” 
is used. 

A 

5. Whenever T, is about to be dispatched at time t :  
h 

5.0. Set S, = S,. 

5.1. Consult the a-queue and compute ~ ( t )  (indicator of 
the earliness amount of T,) 

5.2. Reduce the speed of task T, by giving Tx an extra Y 
time units: 
S, = Speed-Reduce(T,,Y,S,), where 0 5 Y 5 
4 t )  

6 .  At every event of preemption or completion of a task, say T,, 
decrease the value of the remaining execution time: w? = 
w? - At, where At is the time elapsed since the task Ti 
was last dispatched. 

Figure 2. Generic Dynamic Reclaiming Algorithm 

Procedure Speed-Reduce(T,, B, 5’): I 
1. Set S, = *. s 
2. If S x  < Smin, Sz = Smtn 

I 3. return S, 

Figure 3. Speed Reduction Procedure 

case completion time (under the current speed) does not ex- 
tend beyond the next event (next arrivaVclosest deadline of any 
task). Since this technique can be used in conjunction with 
any scheduling policy, we add a new rule 5.3 to further im- 
prove (G)DRA. Let N T A  be the next arrival time of any task 
instance in the system after t ,  and recall that S, is the speed 
from step 5.2 in (G)DRA and t is the time T, is dispatched. 

5.3.  IfT,istheonlyreadytaskandZ = N T A - t - w ? ( t )  > 
0, S, = Speed-Reduce(T,, Z ,  S,). 

In other words, reduce the speed of T, so as to use the idle CPU 
up to time N T A .  We call this improved technique DR-OTE. 

Clearly, the following holds. 

Proposition 5 If all instances meet their deadlines under 
DRA, they will also meet their deadlines under the algorithm 
DR-OTE. 

4.2 Experimental Results 
In order to experimentally evaluate the performance of 

DRA, we implemented a periodic scheduling simulator for 
EDF* policy. We implemented the following schemes: (a) 
Static uses constant speed S, and switches to power-down 
mode (i.e., S = Smin) whenever there is no ready task; 
(b) OTE: Static optimal speed scheme in conjunction with 
One Task Extension (but without dynamic reclaiming), and (c) 
DRA, which is implemented in two variations: with or without 
the OTE technique @R-OTE and DRA, respectively). 

In our experiments, we investigated the average perfor- 
mance of the schemes over a large spectrum of worst-case uti- 
lization (Utot) and variability in actual workload. In partic- 
ular, we focused on the average energy consumption of 100 
task sets, each containing 30 tasks. The periods of the tasks 
were chosen randomly in the interval [ 1000,32000]. The min- 
imum speed Smin is set to 0.1. The nominal speed S is set to 
Utot. as the optimality of this choice was shown in Section 3. 
The variability in the actual workload is achieved by modifying 
the ratio (that is, the worst-case to best-case execution 
time ratio). We ran experiments where the actual execution 
time follows a normal probability distribution function ’. The 
mean and the standard deviation are set to WCET+BCET and 
WCET-BCET 6 respectively, for a given M, as suggested 
in [21]. These choices ensure that, on the average, 99.7% of 
the execution times fall in the interval [BCET, WCET].  For 
each task set we simulated the execution up to LCM 10 times, 
where LCM is the Least Common Multiple of P I ,  . . . , P,, and 
measured the average energy consumption per experiment us- 
ing a cubic powerlspeed function [lo]. 

One remarkable result is the following: Although the 0% 
scheme provides substantial improvements over techniques 
that continuously use S,,, during the execution without re- 
claiming as shown in [21], throughoutthe entire spectrum, DR- 
OTE only provides a marginal (less than 1%) improvement 
over pure DRA. This result indicates that almost the entire 
power savings are obtained by initially committing to S which 
fully utilizes the CPU (static scheme) and to the dynamic re- 
claiming algorithm itself. To improve the readability of the 
graphs, we show below only the results of DR-OTE, since the 
results for the latter are almost identical to pure DRA. 
Effect of Utilization: Figure 4 shows the energy consumption 
of the techniques varying with the utilization of the task set (i.e. 

2 

3The results with a uniform probability distribution function are rather 
similar[3]. We also repeated the simulations with task sets having different 
number of tasks. The full results can be found in [3], in the lack of space, 
we only mention that the main trends remain similar to that of 30-task sys- 
tem This is expected, since the main determinant of the workload is the total 
utilization and the variability in the actual workload. 
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Figure 4. Normalized energy consumption (30 tasks). 
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Uto,), when is equal to 5.  The results are normalized 
with respect to Static which does not reclaim unused compu- 
tation time. One can observe the following major patterns: 

0 The normalized energy consumption of all three schemes 
are rather insensitive to the variations in Utot.  This is due 
to the fact that, for a given scheme, the use of optimal 
nominal speed S results in having very similar effective 
utilization, for any value of U,,,. In other words, when 
the utilization decreases, the speed decreases making the 
CPU fully utilized. 

0 DRA has a definitive advantage over Static and OTE for 
all utilization values: the energy consumption of a system 
using DRA is only around 40% of a system which uses 
Static or O m .  

0 OTE performs better than Static, but the improvement is 
usually less than 10%. This implies that the large power 
savings reported over continuously using S,,, for some 
task sets in [21] are due largely to the shutting down of the 
processor when the processor is idle as the result of the 
actual workload. If and when one starts with the optimal 
static speed, the potential (additional) savings due to the 
OTE technique itself becomes rather limited. 

Effect of ratio: The simulation results confirmed our 
prediction that the energy consumption would be highly depen- 
dent on the variability of actual workload. The (normalized) 
average energy consumption of the task sets, as a function of 

ratio (with Utot = 0.6) is shown in Figure 5.  In terms 
of shape and percentage difference, the curves for other uti- 
lization values are fairly similar. From these experiments we 
arrived at the following conclusions: 

0 When = 1, there is no CPU time to reclaim dy- 
namically, and thus the energy consumption is the same 

1 2 3 4 5 6 7 8 9  
WCETISCET mu0 

Figure 5. Effect of variability in actual workload (30 tasks); 
load = 60% 

for all three techniques, as expected. However, once 
the actual workload starts decreasing (that is, increasing 
E::;), OTE and DRA are able to reclaim unused com- 
putation time and they are able to save additional energy. 

0 The DRA is capable of providing considerably higher 
power savings than OTE; and the difference increases 
rapidly with ratio. For instance, the savings of 
DRA even for = 1.1 is better than the perfor- 
mance of OTE throughout the entire spectrum. 

0 Once we increase the - beyond 4, power savings of 
DRA continue to increase, but the improvement is not as 
impressive as the case where that ratio is 5 4. This is 
because the expected workload of the system converges 
rapidly to 50% of the worst-case workload with increas- 
ing ratio (remember that the mean of our proba- 
bility distribution is WCET BCET ; 1. 

5 Aggressive Speed Reduction 
The DRA and DR-OTE algorithms provide sound dynamic 

speed reclaiming mechanisms, however they guarantee feasi- 
bility by always being ’ahead’ of the static worst-case optimal 
schedule Scan (i.e., tasks never actually start or finish after the 
scheduled time in Scan). Scan is feasible at any time, yet it is 
optimal only under the assumption that all future instances will 
present their worst-case workload. Whenever, under constant 
speed, the actual execution times of a task’s instances exhibit 
large variation, starting a task with this assumption can be too 
conservative. Instead, whenever the current system state sug- 
gests, we may assume speculatively that the current and fu- 
ture instances will most probably present a computational 
demand which is lower than the worst-case. Hence, we can 
adopt an ”aggressive” approach based on reducing the speed 
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of the running task under certain conditions to a level which is 
even lower than the one suggested by DR-Om. But this spec- 
ulative move might shift the task’s worst-case completion time 
to a point later than the one in Scan under an actual high work- 
load. And if this pessimistic scenario turns out to be true, we 
should be ready to increase the CPU speed beyond S later 
to guarantee feasibility of future tasks. This would hamper 
significant power savings since the convexity of powerlspeed 
curve suggests a uniform speed to achieve a given average 
speed value over any interval of time. On the other hand, in 
case that the actual workload turns out to be lower than the 
worst-case, the actual schedule will still be ahead of Scan, even 
with the low speed, thereby achieving even higher power sav- 
ings. 

A powerful system design principle is to make the com- 
mon case more efficient. This translates (in settings where the 
worst-case workload occurs only rarely) into having a power- 
efficient schedule for average or close to average cases, which 
can be achieved by reducing further the CPU speed. After hav- 
ing presented the rationale of aggressive speed management 
techniques, we should address and provide solutions for two 
important issues. 

The first one is feasibility: when we reduce the speed of 
T, aggressively, we should be ready to guarantee the timing 
constraints of T, and that of any other task, since the schedule 
may no longer be ’ahead’ of Scan. The second issue is the de- 
termination of the aggressiveness level: even though it may 
be possible to show the existence of a feasible schedule (under 
a very aggressive speed reduction for T,), if such a move is 
not justified by the expected workload of the system, it may 
be reasonable to adopt a more conservative speed reduction, to 
decrease the probability of speed increases which cause high 
energy consumption. A natural solution is to use a pre-defined 
speed reduction bound ( S b )  below which we never attempt to 
decrease the CPU speed during an aggressive speed adjust- 
ment. Observing that the ”average workload” is an appropriate 
estimator for the actual computational demand, we choose to 
parameterize the aggressiveness level with respect to the opti- 
mal speed under an average workload (Soptavg). More specif- 
ically, Soptavg is the optimal speed for the workload where 
each instance requires exactly its average computational de- 
mand (determined by a probability distribution function). Gen- 
erally, we may set Sb to k . Soptaw , where k is a constant such 
that Smin 5 Sb 5 S,,, (i.e., & I IC I -). Ob- 
serve that changing IC in this range provides a complete spec- 
trum of ”aggressive techniques”. At one end of the spectrum, 
IC = smtn (which is usually much smaller than 1.0) corre- 

so, t DV g 

sponds to the ”extreme aggressiveness” where we attempt to 
obtain the lowest speed level for the running task; this is only 
subject to feasibility which might be achieved later only by ex- 
ecuting the following tasks with very high speeds (i.e., by this 
choice, we are supposing that the current workload will be well 
below the worst-case workload). At the other end of the spec- 
trum, setting k = :;::. reflects the DR-OTE algorithm itself. 

Another main point in the spectrum is the scheme which lim- 
its the aggressiveness speed bound by exactly Soptavg, that is, 
IC = 1; this reflects the view that slowing down the CPU below 
Soptavg will hurt the aggregate power savings in the long run. 

5.1 Feasibility for Aggressive Schemes 

As mentioned above, when we attempt to aggressively re- 
duce the CPU speed, we risk exceeding worst-case completion 
times of Scan in the current schedule, both for the running, 
ready and yet-to-arrive tasks. In general, to check the conse- 
quences of such an aggressive decision is a non-trivial problem 
(linked with response-time analysis complications of EDF), es- 
pecially if it is to be addressed in a dynamic fashion, at run- 
time. In this study, we adopt a simple approach that restricts 
the aggressive power management to occur only when we can 
limit their effects upto the next event (anivaVdeadline of any 
task). As the results in Section 5.4 below indicate, the aggres- 
sive schemes have the potential of providing additional power 
savings, even with this conservative feasibility test with limited 
horizon. 

Whenever we can predict that the completion time of the 
currently ready task T,  will not extend beyond the next event 
(arrivaVdeadline), we can speculatively reduce the speed of T ,  
while guaranteeing that it will still complete before the next 
event (which is, by definition, earlier than or equal to the dead- 
line of T,). However, care must still be taken in order to guar- 
antee the timely completions of other ready tasks which are 
waiting on the ready queue at a lower priority level than T,, 
since the executiodcompletion of these tasks will be delayed 
until T, completes. 

A possible way to guarantee the feasibility in this case is to 
increase the speed of another suitable and ready task T y  which 
will run after T,. This is effectively equivalent to increasing the 
time allocation of T,, while decreasing the time allocation of 
Tv by the same amount. Clearly, from this point on, the system 
cannot blindly decrease the speed of T y  to its original (i.e., 
we should also change 

One can even generalize this with the following: if 
T I ,  Tz, ..., T, are ready tasks that are guaranteed to run con- 
secutively and all to complete before the next task arrival time 
(NTA) even under worst-case workload, we can arbitrarily 
swap CPU time allocations among them (in particular to reduce 
the speed of TI  while increasing the speeds of one or more of 
T2, ..., T,). In fact, if it exists, even the highest priority ready 
task that is not guaranteed to complete before NTA (namely 
T,+l) may provide a portion of its time allocation under certain 
conditions. However, we must still guarantee that T I ,  T2, . . . , T, 
will complete before NTA and TT+l will complete no later 
than before the time allocation swapping, under the worst-case 
scenario. Further, in all these computations, we should take 
into account the slack-time of already completed tasks in the 
a-queue (with EDF* priority lower than T I )  that may con- 
tribute to the worst-case CPU allocation of T z ,  . . . , T,, Tr+l in 

for that instance). 
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the future through dynamic reclaiming. Finally, all these speed 
adjustments should adhere to S,,,, S,,, and Sb bounds. 

To incorporate the aggressive speed reduction technique, we 
add a new rule 5.4, to the previous algorithm, thereby obtaining 
the new algorithm Aggressive-DR: 

5.4. If 2 = N T A  - t - w,". ( t )  > 0 and there are other ready 
tasks in addition to T,, call Aggressive-Speed- 
Adjustment. 

Procedure Speed-Increase (Figure 7) increases the speed S 
of T, so as to remove at most H units of time allocation un- 
der worst-case remaining workload of T,  with respect to the 
speed S, subject to S,,,. In procedure Aggressive-Speed- 
Adjustment, whenever TI  transfers slack-time from T3, we 
perform the speed increase for T3, increasing g, the nomi- 
nal speed of T3. Whenever T3 is about to be dispatched, its 
current speed will be set to by rule 5.0; rules 5.1 and 5.2 
should consider this new (increased) speed when trying to re- 
duce speed due to a (possible) earliness detection. Finally, T3 
should assume the new nominal speed when it returns from 
preemption, since this is the lowest speed known to guaran- 
tee a feasible schedule in the case where every task presents 
its worst-case load to the processor after aggressive speed a% 
justments. However, we underline that the nominal speed S, 
of future instances of T3 are unchanged and equal to S .  A 
formal proof regarding the correctness of the Aggressive- 
Speed-Adjus tment routine is provided in [3]. 

5.2 Evaluation of the Aggressive Scheme 

We conducted experiments to assess the performance of the 
aggressive scheme (abbreviated by AGR), in the same settings 
as Section 4.2. The speed bound Sb for the speculative speed 
adjustment is equal to Soptavg, that is, the aggressiveness fac- 
tor k is set to 1. In Figure 8, the relative energy consumption 
of AGR with respect to DRA is shown, for 30-task sets and 
normal distribution, as a function of the utilization. The results 
show a consistent advantage of AGR over DRA throughout the 
spectrum (around 15%). The improvement decreases as the 
utilization approaches loo%, where all tasks assume a nom- 
inal (default) speed S = 1.0 and aggressive speed reduction 
at the expense of increasing the speed of others is not always 
possible. 

The effect of variability in actual workload is shown in Fig- 
ure 9. Again, AGR provided better performance than DRA 
with various ratios. Increasing this ratio improves the 
relative performance of AGR, since the speculative moves are 
justified more frequently. 

5.3 More on Speed Bound Restrictions 

Another possible approach for using the aggressive scheme 
is to adhere to the 'parameterized speed bound' even when 
reducing the speed in Step 5.2 through dynamic reclaim- 
ing. This approach assumes that reducing the speed below 

Procedure Aggressive-Speed- Adjustment 
Notation: The algorithm is invoked at time t. The ready task with 
the highest EDF* priority is denoted by TI.  The other tasks that 
are ready, or that are completed but have their unused computa- 
tion time in the a-queue with EDF* priority lower than that of 
TI ,  are denoted by Tz,  ..., Tm, 2 5 m 5 n, in decreasing or- 
der of priorities. Throughout the algorithm, at the cost of a slight 
abuse of notation, we will also use the expression w,". ( t )  to refer 
to Rem,@) value of any completed task T,  in the a-queue at time 
t .  The current speed assignments are denoted by SI, . . . , S, , and 
the next task arrival after t will occur at time NTA. 

Algorithm: 

If SI 5 max{S,i,, k .  Soptavg} return; (that is, we should 
not decrease the speed any further) 
Determine the maximum amount of additional CPU time, 
Q, that can be assigned to 2'1, subject to S,,, and the ag- 
gressiveness level constraints: 

Adjust Q in order not to extend beyond NTA: 

Q a =  0 (already transferred slack amount). 
0 If w p  ( t )  2 Q then {T  = 1; Z = 0) 

if NTA - t - tu;' ( t )  < Q then Q = NTA - t - ws' ( t ) .  

else find the largest r (2 5 r 5 m )  
such that Z = E:='=, wsi ( t )  5 Q. 

Increase the speed of Tz, ..., Tmin(m,r+l) while reducing 
the speed of TI : 

- j = 2  

- while ( j  5 min(m, T + 1) and Qa < Q )  

* if ( j  < r + 1) then Extra-time = Q - Qa 

* if Tj is ready then: 
else Extra-time = Q - Z 

A 

. Sj = Speed-Increase(T', Extra-time, Sj) 
A 

. B = (5 - 1) .  w3s3 
sj 

A 

. Sj = Sj (that is, commit to the new S, as 
the default speed of that instance) 

* if Tj is completed but is in the a-queue then 
B = min(Extra-time, Remj)  

* j = j + l  
* Q a = Q a + B  
* S1 = Speed-Reduce(T1, B ,  SI) 

Figure 6. Aggressive Speed Adjustment Procedure 

k . Soptavg will hurt the total performance in the long run, and 
prevents doing so even when the earliness factor would jus- 
tify doing so. To distinguish two variations of the aggressive 
scheme, we will denote the original scheme and the new varia- 
tion by Aggressive-DR-1 and Aggressive-DR-2, respectively 
(or, AGRl and AGR2, for short). 

The correctness of the new scheme follows from the cor- 

103 



Procedure Speed-Increase(T,, H ,  S )  

2. If S, > S,,, then S, = S,,, ; 
3. return S, 

W S + H  
1. s, = * 

Figure 7. Speed Increase Procedure 

I 
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Figure 8. Normalized energy consumption (- = 5) 

rectness of AGR1, since AGR2 never slows down the proces- 
sor more than AGRl. 

5.4 Evaluation of 'AGR1 and AGR2 

In this section, we present results of simulations performed 
to compare algorithms AGR-1 and AGR-2. The simulation set- 
tings are identical to those of Section 4.2. When the utilization 
or the ratio is changed, the performance of AGRl and 
AGR2 are hardly distinguishable [3]. 

I 

1 2  3 4 5 E 7 E 9 10 
WCET/BCET mtio 

Figure 9. Effect of variability in actual workload (load = 60%) 

However, unlike the utilization and ratio, changing 
the aggressiveness level deeply affects the results, as shown 
in Figure 10. The curves shown are for 60% utilization and 
5:;; = 5 ;  other parameter settings have very similar behav- 
ior. The performances of DRA and Static are insensitive to the 
parameter k .  The maximum power savings is are obtained with 
algorithm AGR2 typically when k = 0.9. This represents a 
further 5% improvement over k = 1, yielding a net advantage 
of 20% over DRA. AGRl reaches its minimum energy con- 
sumption usually with k = 1. Further, the curve suggests that 
unbounded or extreme aggressiveness (small values of k )  hin- 
ders the power savings: for instance, both schemes consume 
60% more energy than DRA for k 5 0.2. 

Yet, as we increase the value of k and move towards more 
'balanced' aggressiveness levels, the aggressive schemes be- 
come preferable to DRA: AGRl and AGR2 outperforms DRA, 
for k 2 0.75 and k 2 0.7, respectively. After the power 
savings reach their maximum at k = 0.9 (for AGR2) and 
k = 1.0 (for AGRl), the performance starts to degrade. Re- 
markably, for k > 1.1, AGR2 consumes considerably higher 
energy than AGRI: this is due to the fact that when the algo- 
rithm is run with large values of k ,  the algorithm is reluctant 
to reclaim or transfer CPU-time, even when the speed is higher 
than Soptaug. AGRl does not suffer from this effect, since it 
automatically uses the earliness information to perform an ini- 
tial speed reduction and considers the speed bound Sb only 
when aggressively reducing speed. Hence, even for large val- 
ues of k ,  AGRl remains better than DRA, and is guaranteed 
to converge to it for k = , which is 1.66 
for this example. On the other hand, AGR2 converges to OTE 
(not shown in Figure 10) for the same value; this is because 
the actual speed starts with S ,  and the aggressive or dynamic 
reclaiming is never possible since S b  = S.  In this case, CPU 
speed is reduced only through OTE. 

In summary, keeping k in the range [0.9,1] and committing 
to an aggressiveness level which aims to achieve very close to 
Soptaug produces best results, yielding additional (i.e., beyond 
DRA or DR-OTE) energy savings which may be as high as 
20%. 

= 
S O P t W  

6 Conclusions 

In this paper we presented techniques for power-aware real- 
time computing through variable voltage scheduling. Our so- 
lution comprised three parts (a) a static solution to compute the 
optimal speed based on the worst-case workload, (b) an on-line 
speed adjustment mechanism that reclaims unused time based 
on the actual workload, and (c) a speculative speed adjustment 
mechanism based on the expected workload. To our knowl- 
edge, this is the first time that aggressive and provenly safe 
techniques are used to anticipate and provision for the early 
completions in periodic real-time scheduling. 

Our simulation results show that the reclaiming algorithm 
saves a striking 50% of the energy over the static algorithm, 
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which takes into account the load in the system. This quite sig- 
nificant result shows that the lifetime of mobile or other battery 
operated devices can be extended on average to twice the levels 
of static solutions. Considering also the data presented in our 
previous work [16], we conclude that batteries can be extended 
to last up to one order of magnitude longer over no power man- 
agement schemes. 

Further, our preliminary aggressive techniques allow for an 
additional 20% savings over the reclaiming algorithm. We 
conclude that, being too aggressive or not aggressive enough 
causes the algorithms to perform rather poorly. We are cur- 
rently studying less conservative approaches (that is, not stop- 
ping the aggressiveness by the “next event”) that we believe 
will lead to further energy savings. 
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