
Custom Interrupt Management for                                                                                
Real-Time and Embedded System Kernels1

Luis E. Leyva-del-Foyo  
Facultad de Matemática y Computación, 

Universidad de Oriente, Cuba. 
E-mail: lleyva@csd.uo.edu.cu

Pedro Mejia-Alvarez 
 CINVESTAV-IPN, Sección de Computación 

 Av. I.P.N 2508,  México, D.F. 
e-mail: pmejia@cs.cinvestav.mx

1 This research work has been supported in part by SEP-CONACyT project 42151-Y, Mexico. 

Abstract 
 

In this paper, we make an analysis of the traditional 
model of interrupt management and its incapacity to 
incorporate reliability and the temporal determinism 
demanded on real-time systems. As a result of this 
analysis, we propose a model that integrates  
interrupts and tasks handling. Also, we make a 
schedulability analysis to evaluate and distinguish the 
circumstances under which this integrated model 
improves the traditional model. Finally, we propose 
the development of a Custom Interrupt Controller 
compatible with our integrated model, and its 
implementation  in a FPGA architecture. 
 

1. Introduction 
 

The interrupts mechanism synchronizes the 
occurrence of the external asynchronous events and the 
Interrupt Service Routines (ISRs). The synchronization 
mechanism offered by the operating systems  
synchronizes an internal event with the execution of a 
task. In order to obtain high efficiency and low latency 
in the response to interrupts, general purpose (and also 
real-time) operating systems offer a set of mechanisms 
to handle interrupts totally independent of those used 
for task management. Although this scheme is adequate 
in systems with high processing demands, as those 
found in database and networking operating systems, in 
existing real-time systems the differences in the 
scheduling and synchronization between ISRs and tasks 
introduces serious difficulties to the temporal 
predictability and  reliability of the system. 

The tasks are an abstraction of the model of 
concurrency supported by the kernel and the 
responsibility of their management lies completely on 
the kernel itself, which provides services for the 
creation, elimination, communication and 
synchronization between tasks. On the other hand, the 
interrupts, are an abstraction of the hardware of the 

computer and the responsibility of their management 
lies in the hardware of interrupts. This hardware allows 
the allocation of ISRs to different interrupt requests, 
the CPU context switch, the enabling and disabling of 
specific interrupt requests, and the scheduling of 
interrupts following a hardware priorities scheme. The 
operating system provides a set of services that allow 
the execution of these operations. 

As a result, two fundamental forms of asynchronous 
activities are found: tasks and ISRs. Each one with 
independent scheduling and synchronization policies 
and mechanisms, and with exclusive and restrictive sets 
of primitives semantically and syntactically different. 

The scheduling of the ISRs is responsibility of the 
hardware interrupts mechanism according to its 
priorities of hardware, whereas the tasks are scheduled 
by the kernel according to their software priorities.  
The hardware priorities are located over the software 
priorities (Figure 1). In general purpose systems, the 
tasks do not have strict timing requirements, so the only 
activities with timing requirements are the ISRs.  
Consequently, this arrangement makes sense, because it 
provides low latency to interruptions, avoiding data 
losses while other tasks are executing. Nevertheless, in 
real-time systems this scheme introduces a non-
determinism that makes difficult to establish temporal 
guarantees to events. 

The synchronization between tasks is achieved 
using any of the mechanisms provided by the operating 
system for the synchronization between concurrent 
processes (i.e., semaphores, mutexes, messages, 
mailboxes, etc.). The synchronization between ISRs is 
reduced to the mutual exclusion and it is achieved only 
with the help of its own scheme of priorities. In most-
common designs a priority is assigned to each interrupt 
request, allowing the arrival of higher priority requests 
during the execution of an ISR. In this scheme, known 
as nested interrupts scheme, each ISR is executed as a 
critical section with respect to itself, to lower priority 
ISRs, and with respect to the tasks.  

mailto:pmejia@cs.cinvestav.mx
mailto:lleyva@csd.uo.edu.cu


Interrupts
 Hardware

 Hardware
 Priorities

 Software
 Priorities

( Interrupts Ser-
 vice Routine    )

( Tasks   )

 

Highest

 Lowest

 Kernel
Scheduler.

 
Figure 1: Priorities in the Traditional Model. 

 
Although the ISRs are automatic critical sections 

with respect to the tasks, the opposite is not true. The 
mechanisms used to guarantee the exclusive access to 
critical sections between tasks, do not guarantee 
exclusive access of the tasks against the ISRs. The 
mutual exclusion between ISRs and tasks is only 
obtained by disabling the interrupts.  In order to not 
affect the response time of the system to urgent 
interrupts, the CPU interrupt level must be raised only 
up to the level of priority of the ISR with which they 
could interfere.  

In general purpose operating systems, this 
synchronization scheme is adequate because the 
execution of ISRs in user mode is not possible, and 
because the applications cannot modify the CPU 
interrupt level. This is only possible when the tasks 
execute code of the kernel in supervisor mode. Since 
the kernel is not preemptable, a context switch cannot 
occur if the actual CPU interrupt level is modified. In 
embedded systems, the diversity of devices used for the 
interaction with the environment makes necessary ISRs 
at the user level, so the fact that the kernel is non-
preemptable severely affects the temporal determinism 
of the system. 

In consequence, in the design of an experimental 
micro-kernel for embedded and real-time systems we 
propose an alternative strategy that integrates 
completely both types of asynchronous activities, 
which opposes significantly to the schemes in 
traditional general purpose and real-time operating 
systems. The contributions of this work are:   
 

o The proposal of a strategy completely integrated for 
the administration of interrupts and tasks for 
embedded and real-time systems.  

o The evaluation of the integrated scheme from the 
point of view of the CPU utilization and the 
response time to external events. This evaluation, 
help system designers to demonstrate under which 
conditions could be considered more adequate for 
this type of applications.   

o The proposal of a implementation of our integrated 
model using a customized hardware for interrupt 
handling.  

The rest of the work is organized as follows:   
Section 2, exposes the disadvantages of using the 
traditional interrupt handling strategy for the 
development of reliable real-time systems.  In Section 
3, our integrated interrupt handling strategy is 
introduced  with its advantages, when used on real-time 
systems. In Section 4, a schedulability analysis is 
conducted for comparing both strategies.  In Section 5 
related works are exposed. In Section 6, we propose 
the implementation of a Custom Programmable 
Interrupt Controller compatible with our integrated 
model, in a FPGA architecture. Finally, in Section 7, 
conclusions are presented. 

2. Difficulties of the traditional model in 
real-time systems 
 

Since the traditional model of interrupt handling is 
strongly supported by hardware, it yields a fast 
response to external events and a small overhead. For 
this reasons it has been the method used in most of the 
operating systems for embedded and real-time systems. 
Nevertheless, its use in these environments causes 
serious difficulties, which we expose next. 

 

2.1.  Associated to the two priorities space.  
 

In the traditional model, the assumption that states 
that the timing execution requirements of an ISR, have 
greater importance than those of a task is not valid in 
real-time systems. The response-time requirements of 
some ISRs can be even in the same rank that those of 
the tasks with high activation frequencies. In this case, 
both spaces of priorities can interact so that they 
interfere among themselves. Specifically, the tasks with 
high priority are under the interference of hardware 
events necessary only for low priority tasks. On the 
other hand, low priority tasks associated to interrupts 
might not be executed due to temporal overloads, even 
though their associated ISRs are being executed. This 
affects the capacity to meet the real-time requirements 
of the system and produces a decrease in its utilization 
bound. 

 

2.2.  Associated to the interrupt latency 
 

Perhaps the most significant argument against the 
traditional model can be found in its fundamental 
objective: to reduce to the minimum possible the 
interrupt latency. In order to reduce this latency, the 
kernel disables the interrupts only for brief periods of 
time. Nevertheless, this approach cannot prevent the 
applications from disabling interrupts, because this is 
the only possible way of synchronization between tasks 
and ISRs. In fact, the response time of the system to the 



interrupts cannot be smaller than the maximum time 
that the interrupts are disabled anywhere in the system. 
Since the application can disable the interrupts for 
more time than the kernel, the worst-case interrupt 
latency will be the sum of the latency introduced by the 
CPU plus the worst-case time on which the interrupts 
are disabled by the application. In conclusion, the 
kernel certainly can establish a lower bound in the 
interrupt latency, but never will be able to guarantee its 
worst case. 

 

2.3.  Mutual exclusion mechanism 
 

When a low priority task, elevates the interruption 
level to a medium level, to enter to a critical section 
that it shares with an ISR of medium level, an 
interruption of high level can occur that activates a high 
priority task, preempting the low priority task. This will 
decrease the CPU interrupt level, destroying the 
interruption lock of the low priority task. In order to 
avoid this situation, the kernel could maintain the state 
of the interruptions without changes when executing a 
context switching. However, this approach affects the 
predictability of the system because the tasks will be 
executed with several states of interruption, depending 
on which task has been preempted. The alternative is to 
force the tasks to always set the interrupt level to the 
highest possible, to avoid context switching. 
Nevertheless, this approach obviously will increase the 
context switching latency. 

 

2.4.  Conditional synchronization  
 

Commonly an ISR will make at least one call to the 
kernel to indicate the occurrence of some event. This 
call can make ready a task of higher priority. If the 
context switching is executed, before the ISR finalizes, 
the rest of the ISR will not be executed until the 
interrupted task is executed; leaving the system in an 
unstable state. Consequently, if these services are 
invoked within an ISR, the kernel will have to postpone 
any context switching until the ISR finalizes. All the 
existing solutions to solve this problem, which  
guarantees the logical correction of the system, 
introduce an excessive priority inversion affect because 
of the context switching or exhibit a temporal behavior 
very difficult to model and hence to predict [16]. 

 

2.5.  Diversity in synchronization mechanisms 
 

The existing differences between the 
synchronization mechanisms, used according to the 
type of asynchronous activity, brings as a consequence 
a great variety of situations for the cooperation among 
them; where only a limited number of situations should 

occur. This produces an increase in the complexity of 
the solution for the interactions among them. This 
situation makes more probable the occurrence of 
design errors, affecting negatively the reliability of the 
system.   
 

2.6. Associated to the exceptions mechanism 
 

In languages such as ADA, where a structured 
exceptions mechanism with propagation by chain of 
calls to subprograms is used [11], an exception inside 
of an ISR would propagate to the exception handler of 
interrupted task. However, it is clear that this exception 
handler has no relation with the ISR that invoked the 
task.  

A possible solution to this problem is to make the 
exceptions propagation mechanism to verify if the 
propagation goes out of the ISR, and if this is the case, 
to stop the propagation and abort the ISR. This 
produces the need to set an exception frame at the start 
of the ISR and to remove it at end of the ISR. In this 
case, the exceptions will be ignored, and the whole 
situation will affect negatively to the reliability of the 
system.  

 
3. Integrated mechanism for tasks and 

interrupts handling 
 

Given the difficulties discussed before, we propose 
a solution that consists of integrating both types of 
asynchronous activities (tasks and interrupts) through a 
unified mechanism of synchronization and scheduling.   

The integration of the synchronization mechanism 
is obtained by hiding the interrupts at the lowest level 
of the kernel, which convert them into synchronization 
events; using the abstractions of communication and 
synchronization between tasks. With this model, the 
ISRs will now become Interrupt Service Tasks (ISTs), 
and will remain idle only until an interruption occurs. 
In this integrated model, the ISTs could be blocked by 
executing wait() on a semaphore or a condition 
variable associated to the interrupt (for schemes based 
on communication using shared memory), or by 
executing receive() to accept messages (for schemes 
that allow message passing). When the interrupt occurs, 
a universal ISR, at the lowest level of the kernel, will 
do everything necessary to make the IST executable. 

This approach provides an abstraction that assigns 
to the kernel the low level details of the treatment of 
the interrupt, and eliminates the differences between 
the ISRs and the tasks. The real service of the interrupt 
lies within the IST, providing total flexibility and 
making unnecessary for the kernel to handle the 
specific details of the treatment of different interrupts. 



The existence of an only type of asynchronous 
activity and a uniform synchronization and 
communication mechanisms between tasks and 
interrupts offers the following advantages: 

 

o ISTs are executed in an environment where they 
can invoke without restrictions to any service of the 
kernel or of any library. 

o Makes the development and maintenance of the 
system easier, because now there is only one 
mechanism for synchronization and communication 
between cooperating activities. 

o Eliminates completely the need of the application to 
disable interrupts, allowing the kernel to guarantee 
the worst-case in the response time to external 
events (subsection 2.2).   

o Eliminates the difficulty associated to the raising of 
exceptions inside of ISRs (subsection 2.5), because 
the ISRs cannot execute inside other tasks. 

o Facilitates the development of re-entrant (re-usable) 
software components without disabling all the 
interrupts. 

 

The unification of the synchronization mechanism 
is only a necessary but not a sufficient step. The 
integrated mechanism, illustrated in Figure 2, includes 
a space of dynamic priorities unified and flexible for all 
the activities (which are activated by hardware or 
software events).  This scheme allows the assignment 
of priorities to all the activities of the real-time system 
in correspondence with their timing requirements. With 
this approach, the following advantages are obtained: 
 

o The implementation of an enter/leave protocol to 
register the ISRs in the kernel is avoided, 
preventing from potential errors (subsection 2.3).   

o Priority inversion associated to the independent 
priority space is avoided (subsection 2.1).   

o The error of the broken interrupt lock (resulting 
from the task switching) is eliminated (subsection 
2.3). 

o Interrupts overload situations can be handled using 
some scheduling techniques,  such as the sporadic 
servers[13]. 
 

This completely integrated design eliminates the 
necessity to use the busy wait during the I/O 
operations, without sacrificing the temporal 
determinism of the system. Also, the decrease on the 
complexity of this integrated design favors the 
development of reliable systems. Overall, this scheme 
allows the development of robust, predictable and 
consequently verifiable systems. Consequently, in real-
time system kernels, where the responses to events in 
time and the reliability are determining factors, no 

justification exists to maintain both activities (ISRs and 
tasks) as separated abstractions. Therefore, our 
proposed unified design is well adapted for real-time 
systems. 

 

Kernel
Scheduler.

Unified
Interrupts
Space

( Interrupts Ser-
 vice Tasks    )

( Tasks   )

Highest

 Lowest

 Interrupts
 Hardware

 
Figure 2. Priorities in the integrated model. 
 

4. Schedulability analysis for both models 
 

In this section, we develop a schedulability analysis 
to evaluate the integrated model. The decrease on the 
utilization bound is computed as well as the response 
time obtained from the independent priority space of 
the traditional model. Also, we analyze the decrease in 
the utilization bound from context switching obtained 
in the integrated model. This analysis will allow us to 
evaluate the conditions under which some model is 
more appropriate than the other.  
 

4.1. Decrease in the utilization bound 
 

According to the real-time scheduling theory, a task  
ti is schedulable is the following is met: 

 

iUU ≥lub  (1) 
 

where Ulub is the least upper utilization bound, which is  
i(21/i-1) for a static priority assignment (e.g., Rate 
Monotonic Scheduling), or 1 if a dynamic priority 
assignment scheme is used (e.g., Earliest Deadline 
First). It is assumed that Ui is the CPU utilization due 
to task  ti, plus the utilization from the interference of 
higher priority task. This can be computed as follows: 
 

∑
∈

+=
)(iPj j

j

i

i
i T

C
T
CU (2) 

 

The interference of the ISRs on the scheduling of 
task ti can be described using the Generalized Rate-
Monotonic Scheduling Theory [6]. There are two types 
of  such interferences:  
 

o The interference associated to interrupts, with 
minimum inter-arrival times inferior to those of task  
ti , and linked to soft real-time tasks. We call this 
interference, interference due to soft real-time 
tasks. Let us denote S(i) to the set of ISRs tk

S with 
this characteristics, each one with computation time 



Ck
S and periods Ti

S < Ti. The utilization of an ISR 
tk

S in  S(i) is Ck
S/Tk

S.
o The interference associated to ISRs with hard 

timing requirements, but with  minimum inter-
arrival times greater than those of task ti. This 
interference is known as rate monotonic priority 
inversion. Let us denote L(i) as the set of ISRs ti

L

with this characteristics and Ci
L to its computation 

time. Since the inter-arrival times of this interrupts 
Ti

L, are greater than Ti, they can preempt only once 
to ti. In consequence, the worst-case utilization due 
to an ISR in L(i), is given by Ck

S/Ti.

The equation for the utilization bound considering 
these two interferences is as follows: 

 











++










+= ∑∑∑

∈∈∈ )()()(

1
iLk

L
k

iiSk
S

k

S
k

iPj j

j

i

i
i C

TT
C

T
C

T
CU (3) 

 

The first two terms of the equation are identical to 
those of Equation (2). Therefore, the second and third 
terms are the decrease on the least upper utilization 
bound produced by the use of an independent space of 
interrupt priorities. Let us call this utilization decrease 
as UiS, then Equation (1) can be re-written as follows: 

 

iSnet UUU −= lub  (4) 
where: 

∑∑
∈∈

+=
)()(

1
iLk

L
k

iiSk
S

k

S
k

iS C
TT

CU (5) 

 

Until now, the interference due to interrupt 
disabling has not being considered. Let IL be the 
maximum time used for disabling interrupts anywhere 
in the system. Then Equation (3) can be extended as 
follows: 

 





















+++










+= ∑∑∑

∈∈∈
L

iLk

L
k

iiSk
S

k

S
k

iPj j

j

i

i
i IC

TT
C

T
C

T
CU

)()()(

1

The decrease in the utilization bound considering 
the disabling of interrupts UiS

* is computed by: 
 











++= ∑∑

∈∈
L

iLk

L
k

iiSk
S

k

S
k

iS IC
TT

CU
)()(

* 1 (6) 

 

In order to minimize UiS, and  UiS
* the code of the 

ISRs (Ck
S, Ck

L) must be maintained to a minimum. This 
way, an ISR will perform the processing necessary to 
avoid data losses and to activate a task. Once activated, 
this task will execute, as other tasks, under the control 
of the scheduler of the kernel, assigning a priority to 

the task according to the requirements of the 
application.  

Now that the delays from the ISRs have been  
reduced, the tasks execution times will be more 
predictable. However, note that since the kernel cannot 
guarantee the minimum inter-arrival times of the 
interrupts, still the execution of the ISRs still could 
introduce a non-bounded delay. 
 

4.2. Increment in the response time  
 

On the traditional scheme, the response time of an 
event is equal to the worst-case response time of the 
task that communicates with the ISR. The existence of 
two spaces of priorities reflects on an increase on the 
response time of the tasks. The response time Ri of task  
ti, with execution time Ci and minimum inter-arrival 
time Ti, can be computed by the following recurrence 
equation [1]: 

 

j
iPj j

n
i

ii
n
i C

T
RBCR ∑

∈

−












++=

)(

1

(7) 

 

where Ri
n denotes the nst. iterative value (where Ri

0 =
Ci), Bi is the blocking time of task ti and P(i) is the set 
of tasks with higher priority than that of ti. The third 
term on Equation (7) denotes the total interference 
suffered by ti from tasks in the P(i) set. This iterative 
process terminates successfully when Ri = Ri

n-1 = Ri
n;

or unsuccessfully when Ri
n > Di. Where  Di denotes the 

deadline of task ti.
In order to consider the effect of the two spaces of 

independent priorities in the response time of task ti, we 
must add to Equation (7) the interference of the ISR 
sets S(i) and L(i), to the response time of task ti. Adding 
this interference to Equation (7) we have the following: 

 














+













+

























++=

∑∑

∑

∈∈

−

∈

−

)()(

1

)(

1

iLk

L
k

S
k

iSk j

n
i

j
iPj j

n
i

ii
n
i

CC
T

R

C
T

RBCR

(8) 

 

The first section of Equation (8) includes three 
terms identical to those of Equation (7). The remaining 
terms (second section) denote the interference of using 
an independent space of priorities on the response time 
Ri. However, since Equation (8) is a recurrence 
equation we cannot quantify the terms of both sections 
separately, as in the utilization case (subsection 4.1).  It 
is important to note that a small increase in the second 
section of the equation can produce a big increase in 
the response time of the task. 
 



4.3. Overhead in the integrated model 
 

The disadvantage of the integrated model proposed 
is the overhead introduced by the context switching of 
the ISTs (that before were treated as ISRs). This 
overhead causes a decrease in the utilization bound. 

Let H(i) be the set of all activities tj
H with execution 

time Cj
H and minimum inter-arrival time Tj

H, (lower 
than period Ti of task ti ), which is handled by an ISR in 
the traditional model. Let δ I be the total CPU time for 
the code of the enter and leave of the ISR, needed to 
save and restore the state of the CPU, keep track of the 
nesting of the ISRs (and establish an exceptions frame, 
if an structured exceptions mechanism is used, as 
discussed in subsection 2.3). Let cj

H be the execution 
time from the interrupt handler itself. Then, the total 
execution time of an ISR in the H(i) set can be 
computed by Cj

H = cj
H + δ I. Therefore, Equation  (2), 

including δ I can be re-written as follows: 
 

∑∑
∈−∈

+
++=

)())()(( iHj
H

J

IH
j

iHiPj j

j

i

iI
i T

c
T
C

T
CU

δ
(9) 

 
On the other hand, in the integrated model all 

activities in the H(i) set are treated as ISTs. Let δ P be 
the context switch time. Then, the execution time Cj

H of 
an IST in the H(i) set can be denoted by Cj

H = cj
H +

2δ P. In consequence, Equation (2), including δ P can be 
re-written as follows: 

 

∑∑
∈−∈

+
++=

)())()((

2

iHj j

pH
j

iHiPj j

j

i

iP
i T

c
T
C

T
CU

δ
(10) 

 

Therefore, the decrease in utilization Ui
PI due to the 

overhead produced by the activities in the H(i) set as 
ISTs, is given by: 

∑∑
∈∈

+
−

+
=−=

)()(

2

iHj j

IH
j

iHj j

pH
jI

i
p

i
PI

i T
c

T
c

UUU
δδ

∑
∈

=
)(iHj

H
J

PI
i T

U δ (11) 

 

where δ = 2δ P - δI is the difference in computation 
time between two context switch activities and the 
computation time used by the enter/leave protocol to 
the ISR. 

 The overhead of the integrated model will be 
smaller than the priority inversion effect of the 
traditional model if the following condition is met,  
 

iS
PI

i UU < (12) 
 

Therefore, following Equation 12, if we compare 
the decrease in the utilization bound of the traditional 

interrupt model UiS (Equation 5) and UiS
* (Equation 6), 

against the decrease introduced by the integrated 
interrupt model Ui

PI (Equation  9) due to the additional 
overhead in the context switch, it is possible to observe 
that in most of the cases the savings obtained using the 
traditional model are far smaller than those of the 
integrated model, because of the priority inversion 
effect produced. 

In any case, it could be possible to design an hybrid 
model with a configuration in which some activities are 
treated as ISRs and others as ISTs to satisfy the 
condition stated in Equation (12). For example, since 
the timer interrupt will have always the highest priority 
in the system and will never be handled by the 
application, it could be considered as an ISR. This 
cause a reduction in the H(i) set therefore reducing 
Ui

PI.

5. Hardware implementation 
 

The lack of flexibility of the available interrupt 
hardware, produces a difficulty to the integrated model 
of interrupts and tasks management proposed here.  
This is due to the requirements of our model to set 
dynamically and independently the priorities of each of 
the hardware interrupt request lines, and to locate  
these priorities within the same space of priorities of 
the scheduler. 

In general, commercially available interrupt 
controllers (e.g., Intel 8259) provide support only for 
the traditional scheme (Figure 1). Although in some 
hardware architectures it is possible to develop 
software to emulate the functionality of the proposed 
model, its implementation would introduce an overhead 
to the system, which would cause some changes to 
Equation (11) affecting its feasibility.   

Given the recent advances in programmable logic 
devices, such as FPGAs, we propose the 
implementation of an interrupt controller in hardware 
with all the necessary flexibility to adequate completely 
its space of priorities of hardware with the priorities 
provided by the scheduler (Figure 3). This way, the 
scheduling of ordinary tasks (activated by software) 
and ISTs (activated by hardware) now would become a 
common responsibility of the scheduler of the kernel 
and of the Custom Programmable Interrupts 
Controller (CPIC). Both components cooperate to the 
achievement of a completely integrated priority scheme 
(Figure 2).  

Under this configuration, the CPU (executing under 
the control of the scheduler) may write in a set of 
command registers of the CPIC, in order to provide 
dynamically the priorities of each one of the interrupt 
request lines and of the actual interrupt level. The 



priority of the task in execution will always be the same 
as that of the actual interrupt level. The proposed CPIC 
then will have the goal of directing an interrupt request 
to the CPU, only if its associated priority is higher than 
the actual interrupt level imposed by the scheduler. 

 

Address Bus

 
Data Bus

Control Bus

 Interrupts Request
 to  the CPU

 

Interrupts
 Request
 from
 devices

CPU
 Custom
 Interrupts

Controller

 (FPGA)

Figure 3. Interrupt controller implemented in FPGA 
 
From Figure 3 note that, the control bus between 

the CPU and the FPGA support the interrupt 
request/acknowledge  protocol of the CPU, and the 
data and address bus allows the programming of the 
CPIC. 

We propose a software/hardware codesign strategy 
where the CPIC design is conducted using a high level 
hardware description language such as VHDL or 
Verilog. This strategy lead us to the possibility of: 
 

o To parameterize some design aspect (i.e., the 
number of priority bits) in such a way that this 
parameters reflect any scheduling scheme used by 
the real-time system kernel. 

o To configure some logic aspects (i.e., the interrupt 
request/acknowledge  protocol) so that it matches 
with the CPU used in the embedded system. 

 

In this co-design, only at compiling and synthesis 
time the adequate values would be set for such 
parameters and configuration options. This way, we 
could get the gate-level logic and the appropriate 
FPGA connections and  routes for a programmable 
interrupt controller completely customized for the CPU 
and scheduling policy specifically used. 
 
6. Related Work 
 

Several research works propose alternatives to 
avoid the difficulties of the traditional interrupt model 
for real-time applications. In [14] the indiscriminate 
use of ISRs is considered as one of the most common 
errors in real-time programming. Several real-time 
operating systems have adopted radical solutions where 
all external interrupts are disabled, except for those that 
come from the timer and propose to treat all peripherals 
by polling [7]. Although this solution completely 
avoids the non-determinism associated to interrupts, 
has as a fundamental disadvantage a low efficiency in 

the usage of the CPU, due to the busy wait in I/O 
operations. The advantage of our integrated scheme 
with respect to these proposals, is that our scheme 
achieves temporal determinism without significantly 
affecting the usage of the CPU.  

Several strategies have been proposed to obtain 
some degree of integration between the different types 
of asynchronous activities. In [3] an “structured” 
interrupts treatment scheme its proposed at the task 
level, but introducing an interface independent of the 
synchronization mechanism, and do not consider 
interrupts with dynamic priorities. In [5] a method is 
proposed where interrupts are treated as threads. Its 
proposal does not have as a fundamental goal to 
achieve temporal determinism, but the increase on the 
scalability of the system in multiprocessor architectures 
oriented to network servers operating systems. As a 
consequence, the interrupt threads use a specific rank 
of priority levels.  In [17] a scheme is proposed where 
the software priorities are overlapped within the space 
of interrupt priorities, executing the scheduler as part of 
an ISR invoked by hardware. Nevertheless, the 
priorities of the ISRs are static and the synchronization 
mechanism is not unified. The work in [10] introduces 
software and hardware solutions to prevent the 
overload caused by the interrupts. The integrated 
model proposed in this paper is able to handle this 
overload using any of the best-known scheduling 
techniques for these cases, such as the use of the 
sporadic servers [13]. 

In [5] and [3] different scheduling analysis are 
proposed which consider the interrupts as the activities 
with greatest priorities in the system. Other recent 
research works are: [12] that proposes an schedulability 
analysis which integrates static scheduling techniques 
and response time computation; [10] that modifies the 
exact response-time analysis with information about the 
tasks release times and deadlines to obtain tighter 
response times; [2] that introduces static analysis 
techniques, at the assembler level, for interrupt-driven 
software. In [15] the exact schedulability equation [8] 
is extended to include the overhead of the interrupts in 
systems with static priorities, and extended the model 
introduced in [13] to include the overhead of interrupt 
handling. The resulting equation evaluates the trade-off 
of doing the interrupt handling inside of an ISR or 
postponing most of the treatment to an sporadic server  
[13]. 

None of the previous research works provides an 
analysis that includes the interference on the utilization 
and the response-time caused by the use of two spaces 
of independent priorities. Unlike [15] we extended the 
utilization bound equation [6] and the response-time 



[1], and evaluated the possibility of eliminating 
completely the treatment of ISRs by integrating both 
types of asynchronous activities. 
 
7. Conclusions 
 

The details in the implementation of the interrupts 
handling have a dramatic impact in the design and use 
of the synchronization mechanisms in real-time and 
non-real-time operating systems. As a result of the 
separation of ISRs and tasks, severe restrictions appear 
on the services of the system that can be invoked within 
the ISRs. This causes the problem of an increase on the 
complexity of the design and implementation, which 
decreases the reliability of resulting software. In 
addition, the use of two spaces of independent 
priorities severely affects the determinism and the 
degree of feasibility in the scheduling of tasks with 
real-time requirements.  

Many real-time operating systems have tried to 
maintain this traditional model introducing solutions 
that improve the determinism, including  treatment to 
external events in two or even more levels, each one 
affecting differently to the response times, to the 
synchronization requirements, an to the temporal 
determinism of the system. Nevertheless, all these 
solutions jeopardize the efficiency and increase even 
more the complexity of the mechanism of 
synchronization between the different types of interrupt 
activities and tasks. All these solutions never achieve a 
truly determinist behavior.   

In this work we have provided solid fundaments, for 
the use of an integrated interrupts and tasks handling 
model for real-time systems. An analysis is introduced 
to compute the interferences on the utilization and 
response times. This analysis evaluates the concrete 
situations under which our model is superior to the 
traditional model. In order to achieve the best possible 
results for a set of real-time tasks, with our analysis it 
could be possible to establish a configuration in which 
some interruption requests could be treated as ISTs and 
others as ISRs. 

The integrated model proposed in this paper has 
been implemented and incorporated as part of an 
experimental micro-kernel for embedded and real-time 
applications and it is actually being implemented using 
FPGAs. 
 

8. References 
 

[1] N. C. Audsley, A. Burns, M. F. Richardson y A. J. 
Wellings, “Applying New Scheduling Theory to Static 
Priority Pre-emptive Scheduling”. Software Engineering 
Journal, , 8(5), 1993. 

[2] D. Brylow, N. Damgaard, and J. Palsberg. “Static 

Checking of Interrupt-driven Software.” In Proceedings 
of ICSE’01, 23rd International Conference on Software 
Engineering,  pp. 47-56, May 2001. 

[3] A. Burns, A. J. Wellings “Implementing Analyzable 
Hard real-time Sporadic Tasks in Ada 9X”, ACM Ada 
Letters, Jan/Feb Volume XIV, Number 1, 1994 

[4] T. Hills, “Structured Interrupts” Operating Systems 
Review 27(1): 51-68, 1993 

[5] K. Jeffay, D. L. Stone, “Accounting for Interrupt 
Handling Cost in Dynamic Priority Task Systems”, 
Proc. of the IEEE Real-Time Systems Symposium,  
December 1993. pp. 212-221.  

[6] S. Kleiman, J. Eykholt, “Interrupts as threads”, ACM 
SIGOPS Operating Systems Review Volume 29,  Issue 
2, Pages: 21 – 26, April 1995 

[7] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, M. 
González Harbour, “A practitioner's handbook for real-
time analysis”, Kluwer Academic Publishers, 1993  

[8] H. Kopez, A. Damm, C. Koza, M. Mulazzani, W. 
Schwabla, C. Senft y R. Zainlinger. “Distributed Fault-
Tolerant Real-Time Systems: The MARS Approach”. 
IEEE Micro, 9(1), Feb. 1989. 

[9] J. Lehoczky, L. Sha, Y. Ding, “The rate Monotonic 
Scheduling Algorithm: Exact Characterization and 
Average Case Behavior,” Proceedings of 10th IEEE 
Real-Time Systems Symposium, pp. 166-171, 
December 1989. 

[10] J. Mäki-Turja , G. Fohler , K. Sandström “Towards 
Efficient Analysis of Interrupts in Real-Time Systems”. 
11th EUROMICRO Conference on Real-Time Systems, 
York, England. May 1999. 

[11] J. Regehr, U. Duongsaa, “Eliminating Interrupt 
Overload in Embedded Systems”. Unpublished Draft, 
May 2004. 

[12] J. Ruiz, J. de la Puente, J. Zamorano, R. Fernández-
Marina, “Exception Support for the Ravenscar Profile”, 
ACM SIGAda Ada Letters, Volume XXI,  Issue 3, 
Pages: 76-79, September 2001. 

[13] K. Sandstrom, C. Erikssn, and G. Fohler, “Handling 
Interrupts with Static Scheduling in an Automotive 
Vehicle Control System”. Proceedings of the 
Conference on Real-Time Computing Systems and 
Applications,  Hiroshima, Japan, October 1998. 

[14] B. Sprunt. “Aperiodic Task Scheduling for Real-Time 
Systems.” Ph.D. Thesis, Carnegie-Mellon University, 
August 1990. 

[15] D. B. Stewart. “Twenty-Five-Most Commons Mistakes 
with Real-Time Software Development”, Proceedings of 
1999 Embedded Systems Conference, September 1999. 

[16] D. B. Stewart, G. Arora, “A tool for Analyzing and Fine 
Tuning the Real-Time Properties of an Embedded 
System”, IEEE Transactions on Software Engineering, 
Vol. 29, Nr. 4, April 2003. 

[17] K. W. Tindell, “RTOS interrupt handling: common 
errors and how to avoid then”, Embedded Systems 
Programming Europe”, June 1999. 

[18] A. Zahir “An Integrated Concepts of Handling 
Preemptions and Interrupts for Automotive Real-Time 
Operating Systems”, Real-Time Magazine 99-3. 


	1. Introduction
	2. Difficulties of the traditional model in real-time systems
	2.1.  Associated to the two priorities space.
	2.2.  Associated to the interrupt latency
	2.3.  Mutual exclusion mechanism
	2.4.  Conditional synchronization
	2.5.  Diversity in synchronization mechanisms
	2.6. Associated to the exceptions mechanism

	3. Integrated mechanism for tasks and interrupts handling
	4. Schedulability analysis for both models
	4.1. Decrease in the utilization bound
	4.2. Increment in the response time
	4.3. Overhead in the integrated model

	5. Hardware implementation
	6. Related Work
	7. Conclusions
	8. References

