
Comparative Analysis of Real-Time Scheduling

Algorithms on One Processor under Rate Monotonic

Omar U. Pereira Zapata, Pedro Mej́ıa Alvarez, Luis E. Leyva del Foyo
CINVESTAV-IPN, Sección de Computación

Av. I.P.N. 2508, Zacatenco, México, D.F. 07300
{opereira, pmejia}@cs.cinvestav.mx, leyvadelfoyo@yahoo.com

May 13, 2005

Abstract

In this paper, a performance analysis is conducted for the best-known real-time schedulability
tests executing under the Rate Monotonic Scheduling policy on one processor. The schedulability
test verifies the fulfillment of the temporal constraints in a task set. We survey the inexact and
exact schedulability conditions used in the scheduling of periodic and preemptable real-time tasks
on uniprocessors using Rate Monotonic. Extensive simulation experiments are conducted to eval-
uate the inexact schedulability conditions and to compare their performance and computational
complexity.

1 Introduction

Real-time systems are those in which its correct operation not only depends on the logical results,
but also on the time at which these results are produced. These are high complexity systems that
are executed in environments such as: military process control, robotics, avionic systems, distributed
systems and multimedia.

Real-time systems use scheduling algorithms to decide an order of execution of the tasks and an
amount of time assigned for each task in the system so that no task (for hard real-time systems) or
a minimum number of tasks (for soft real-time systems) misses their deadlines. In order to verify the
fulfillment of the temporal constraints, real-time systems use different exact or inexact schedulability
tests. The schedulability test decides if a given task set can be scheduled such that no tasks in the
set misses their deadlines. Exact schedulability tests usually have high time complexities and may not
be adequate for online admission control where the system has a large number of tasks or a dynamic
workload. In contrast, inexact schedulability tests provide low complexity sufficient schedulability
tests.

The first schedulability test known was introduced by Liu and Layland with the Rate Monotonic
Scheduling Algorithm [Liu, 1973] (RM). Liu and Layland introduced the concept of achievable utiliza-
tion factor to provide a low complexity test for deciding the schedulability of independent periodic
and preemptable task sets executing on one processor. The utilization factor of a task set is defined
by U =

∑n
i=1 Ci/Ti, where Ci and Ti are the computation requirement and period of the task τi

respectively and n is the number of tasks in the set.
The schedulability test introduced by Liu and Layland for RM states that a task set will not

miss any deadline if it meets the following condition: U ≤ n(21/n − 1). Liu and Layland provided
an schedulability tests that fails to identify many schedulable task sets when the system is heavily

1

overloaded. After the work of Liu and Layland, many researchers have introduced improvements on
the schedulability condition for RM for one and multi processors. These improvements include the
introduction of additional timing parameters in the schedulability tests and transformations on the
task sets. It is a well known fact that when more timing parameters are introduced in the schedulability
condition better performance can be achieved.

In this paper we survey the inexact and exact schedulability conditions used in the scheduling of
periodic and preemptable real-time tasks on uniprocessors using Rate Monotonic. We analyze the
best-known inexact schedulability conditions for one processor that exist in the literature, and con-
duct extensive simulation experiments to evaluate and compare their performance and computational
complexity.

To our knowledge no previous comparative analysis of the RM schedulability conditions has been
conducted for real-time scheduling on one processor. Most of the inexact schedulability conditions
compared their performance only against the schedulability condition of Liu and Layland, but not
against other scheduling algorithms.

The rest of this document is organized as follows: In Sections 2 and 3, an overview of the real-time
scheduling theory and schedulability analysis of real-time systems is introduced. In Section 4, the
schedulability conditions for RM on one processor scheme are introduced. In Section 5, extensions
to the scheduling analysis are introduced, and in Section 6 extensive simulation experiments are
conducted to test and compare the performance of the inexact schedulability conditions. Finally the
conclusions appear in Section 7.

2 Real-Time Systems Scheduling

Real-time systems interact dynamically with a changing environment, on which several independent
events must be controlled. Therefore a real-time system is composed of several concurrent activities
(which normally are implemented as tasks).

The scheduling of non-real-time operating systems, supports the model of concurrent processes
(tasks). This model exhibits a significative non-determinism because the correctness of the system
does not depend on the precise order at which every task is executed (interleaved), and because its
logical correctness is achieved using synchronization mechanisms to meet the ordering restrictions
(i.e., mutual exclusion and conditional synchronization). In consequence, in traditional operating
system the scheduler has the following general objectives: optimal performance, optimal usage of the
resources and fairness in the resource assignment. Although the logical correctness of a concurrent
program does not depend on the scheduling algorithm used, its temporal correctness does depend on
the scheduling algorithm. Therefore, the scheduler of a real-time operating systems, must restrict the
non-determinism associated with concurrent systems and provide the means to predict the worst-case
temporal behavior of the system.

A real-time scheduling algorithm besides providing an ordering policy for the execution of the tasks
(as in non real-time scheduling algorithms) also it provides a schedulability test to guarantee the
temporal constraints of the application. The objective of any real-time scheduling policy must be to
maximize the number of tasks that meet their deadlines. A schedulability test, is a mathematical test
which verifies whether or not the set of task meets the temporal restrictions of the application. For a
given scheduling algorithm, the task set is schedulable if it satisfies the schedulability test.

Real-time systems can be classified in two categories: Hard real-time systems and Soft real-time
systems. In a hard real-time system, a delayed answer is an incorrect and unsuitable answer, whereas
in a soft real-time system such delayed answer can be characterized giving a certain value of utility,
depending on the lateness of this answer.

A given real-time scheduling algorithm may produce feasible or infeasible schedules. In a feasible

2

schedule every job, for a given task set, always completes by its deadline. In contrast, in an infeasible
schedule some job(s) for a given task set may miss some of its deadlines. A set of jobs is schedulable
according to a given scheduling algorithm if when using the algorithm the scheduler always produces
a feasible schedule. The criterion used to measure the performance of scheduling algorithms for hard
real-time applications is their ability to find feasible schedules of the given application whenever such
schedules exists. A hard real-time scheduling algorithm is optimal if for any feasible task set it always
produces feasible schedules [Liu, 2000].

The scheduling algorithms can be classified in static and dynamic. In a static scheduling algorithm,
all scheduling decisions are provided a priori. Given a set of timing constraints and a schedulability test,
a table is constructed, using one of many possible techniques (e.g., using various search techniques),
to identify the start and completion times of each task, such that no task misses their deadlines. This
is a highly predictable approach, but it is static in the sense that when the characteristics of the task
set change the system must be re-started and its scheduling table re-computed.

In a dynamic scheduling algorithm, the scheduling decision are executed at run-time based on task’s
priorities. The dynamic scheduling algorithms can be classified in algorithms with fixed priorities and
algorithms with variable priorities. In the scheduling algorithms with fixed priorities, the priority of
each task of the system remains static during the complete execution of the system, whereas in an
algorithm with variable priorities the priority of a task is allowed to change at any moment.

The schedulability test in static scheduling algorithms can only be performed off-line, but in dynamic
scheduling algorithms it can be performed off-line or on-line. In the off-line scheduling test, there are
complete knowledge of the set of tasks executing in the system, as well as the restrictions imposed
to each one of the tasks (deadlines, precedence restrictions, execution times), before the start of their
execution. Therefore no new tasks are allowed to arrive in the system.

In contrast, in the on-line scheduling test, new arrivals are allowed and the tasks can change their
timing constraints during their execution. In this test, the scheduler decides dynamically, by means
of an admission control mechanism, if such new tasks can be accepted without interfering with the
temporal constraints of the existing tasks in the system.

Liu and Layland [Liu, 1973] developed the first real-time scheduling algorithms for a single proces-
sor (Rate Monotonic and Earliest Deadline First), and developed their corresponding schedulability
analysis for these algorithms. In [Liu, 1973] a sufficient condition for the scheduling of a set of periodic
tasks with fixed priorities under RM is introduced, as well as a sufficient and necessary condition for
the scheduling of a set of preemptable periodic tasks with dynamic priorities under EDF. RM assigns
the highest priorities to tasks with smaller periods, and EDF assigns priorities to tasks considering the
proximity of each instance of the tasks with its deadline (the task with closest deadline receives the
highest priority). Liu and Layland [Liu, 1973] demonstrated that RM and EDF are optimal among
all the fixed and dynamic priorities algorithms respectively.

2.1 Problem Definition

In this paper, the problem to be studied is to schedule a set of n real-time tasks τ = {τ1, τ2, . . . , τn},
on one processor under Rate Monotonic. A task is usually a thread or a process within an operating
system. The parameters that define task τi are: the execution time Ci, the period Ti, and the deadline
Di. We will consider that only periodic tasks can execute in the system. Each periodic task, is
composed of an infinite sequence of jobs. The period Ti of the periodic task τi is a fixed time interval
between the release times of consecutive jobs in τi. Its execution time Ci, is the maximum execution
time of all the jobs in τi. The period and the execution time of task τi satisfies that Ti > 0 and
0 ≤ Ci ≤ Ti = Di, (i = 1, . . . , n). ui = Ci/Ti is defined as the utilization factor of task τi. The
utilization factor of the set of tasks is the sum of the utilizations of the tasks in the set, UT =

∑n
i=1

Ci
Ti

.

3

We assume that all tasks have a phasing relative to 0, Ii, with 0 ≤ Ii < Ti. This means that jobs
corresponding to task τi are initiated at times Ii + kT i, k ≥ 0. The job initiated at time Ii + kTi

has Ii + (k + l)Ti as its deadline, the initiation time of the next job. We label the tasks so that
T1 ≤ T2,,≤ Tn. We assume tasks are ready to run at their initiation times.

We use H to denote the least common multiple of Ti, for i = 1, 2, ..., n. A time interval of length H
is called a hyperperiod of the task set.

In the model used in this paper, the following restrictions also apply:

A1 The tasks are independent. That is, the arrival of a job of task τi is not affected by arrival of any
job of other task τj 6=i in the system.

A2 It is assumed that all the tasks in the system can be preempted at any time.

A3 The cost of the context switch of the tasks is considered negligible.

A4 The cost of the admission control mechanisms is considered null.

A5 No resources, other than the CPU is shared among tasks.

3 Schedulability Analysis

In the scheduling of any real-time application, the timing constraints of the application must be ob-
tained along with a scheduling algorithm to execute the real-time tasks. Once all the timing constraints
for all the tasks are defined, and a scheduling algorithm is chosen, the schedulability analysis verifies
the fulfillment of the temporal constraints. The schedulability analysis developed can be classified in
exact tests or inexact tests. The exact schedulability tests allows the system designer to decide whether
a set of tasks is schedulable or not. That is, they provide a necessary and sufficient test.

A test is said to be sufficient in the sense that a task set is always schedulable if it satisfies the test.
A test is said to be necessary if all schedulable task sets always satisfy the test.

The inexact schedulability tests provide a sufficient (but not necessary) schedulability condition.
Schedulability tests depend on the knowledge of several parameters of the task set and on for a

given scheduling algorithm. Among all such sufficient tests, for a given set of task parameters, the
largest test is called the tight test. In other words, the tight test is the best possible test that can be
found using that task set knowledge.

Any test is tight only for a given task set parameters, so better tests can be obtained only providing
additional parameters for the task set.

The schedulability tests are based on:

• The utilization of the task set:

A utilization bound Û of real-time task sets is the value such that any task set whose utilization
factor is no larger than Û is schedulable under any scheduling algorithm.

The techniques based on the utilization, verify if the utilization of the set of tasks does not
exceed a schedulability level (i.e., U ≤ Û). The advantage of this test is its simplicity and
low computational complexity. It provides a sufficient condition. The conditions based on the
utilization found in the literature are: the Lui & Layland condition (L&L) developed for Rate
Monotonic by Liu & Layland [Liu, 1973] and the condition Utilization Oriented (UO) introduced
by Y. Oh et al. [Oh, 1995]. Some variants of the utilization tests, use additional information
from the task set. In these tests, information of the period of the tasks is included in the analysis.

4

The most common schedulability conditions that use the period are: condition IP (Increasing
Period) [Dhall, 1978], condition PO (Period Oriented) [Burchard, 1995], the RBOUND condition
[Lauzac, 2003], the conditions based on harmonic chains [Kuo, 1991, Kuo, 2000, Han, 1997], and
the algorithms of Chen, Mok & Kuo [Chen, 2003].

• The response times: [Joseph, 1986]. The objective of these tests is to determine the maximum
response time of each task of the system, ri. This test is solved using a recurrence equation. If for
all the tasks in the system ri < Di, then the system is schedulable. Otherwise the system is not
schedulable. The advantage of this test is that it is an exact test that obtains the schedulability
of individual tasks. The theoretical computational complexity of this test is high.

• The processor’s demand of time [Lehoczky, 1989]. These techniques are based on verifying that
the total demand of the processor, by the task set in certain time intervals, does not exceed the
maximum capacity of the processor. This technique is exact, but demands high computational
complexity.

4 Schedulability Conditions for Fixed-Priority Scheduling on a Sin-
gle Processor

In the following sections we will introduce the best-known schedulability conditions found in the
literature, for Rate Monotonic on one processor.

4.1 Schedulability Condition L&L (Liu and Layland)

L&L is a schedulability condition for task sets scheduled under RM, that is based on the utilization
of the processor [Liu, 1973]. In this condition, the utilization of the task set is compared with a
utilization bound, which depends only on the number of tasks in the system. A task set will not miss
any deadline if it meets the following condition:

Un ≤ n(21/n − 1) (1)

This condition will be denoted as the Liu and Layland Condition (L&L), and it will be formalized
in the following theorem.

Theorem 1 (Condition L&L) [Liu, 1973]: If a set of tasks τ is schedulable under RM algorithm,
then the minimum utilization achieved is n(21/n − 1). When n →∞, then n(21/n − 1) → ln 2.

In this condition, it is important to note that no other information but the number of tasks is
necessary. This condition is tight[Liu, 1973].

Condition L&L is inexact and its complexity is O(n). Liu and Layland [Liu, 1973] proved that the
worst case phasing occurs when Ii = O for 1 ≤ i ≤ n. This is called a critical instant in which all
tasks are simultaneously instantiated. Using this concept, Liu and Layland also proved that the task
set is schedulable (all deadlines of all jobs of every task are met) using the rate monotonic algorithm
if the first job of each task can meet its deadline when it is initiated at a critical instant.

Figure 1 shows the utilization factor of the processor following the schedulability condition L&L. It
can be observed that when the number of tasks tends to infinite, the minimum achievable utilization
tends to ln(2).

5

τi τ1 τ2 τ3 τ4 τ5

Ti 8 16 3 12 48
Ci 1 3 1 2 6
ui 0.125 0.1875 0.3333 0.1666 0.1250
U 0.125 0.3125 0.6458 0.8124 0.9374

Table 1: Example Task Set

For the case of the Deadline Monotonic Algorithm (DM), in which the deadlines of the tasks are
smaller or equal to the period, (Di ≤ Ti), Leung and Whitehead [Leung, 1982] generalized the results
provided by Liu and Layland [Liu, 1973] and proved that the DM algorithm is optimal for the fixed
priority scheduling scheme.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10 12 14 16 18 20

∑
n i=

1
 C

i /
 T

i

Number of Tasks (n)

Figure 1: Performance of Condition L&L

Example 1.
In this example we will show the performance of the L&L schedulability condition.
Table 1 shows a task set τ with 5 tasks, including the timing constraints for each task, Ci, Ti, and

ui and U =
∑
{j=1,...,i} uj .

After applying condition L&L to the task set described in Table 1 it is observed that τ1, τ2 and τ3 can
be accepted in the system, since u1+u2+u3 = 0.125+0.1875+0.3333 = 0.6458 < 3(21/3−1) = 0.7797.
However, adding task τ4 or task τ5, to the system will violate the L&L condition,

∑4
i=1 ui = 0.8124 >

4(21/4 − 1) = 0.7568, and 0.125 + 0.1875 + 0.333 + 0.1250 = 0.7708 > 0.7568.

4.2 Schedulability Condition IP (Increasing Period)

Condition IP, introduced by Dhall and Liu [Dhall, 1978] was implemented on the multiprocessor
algorithms Rate Monotonic Next Fit and Rate Monotonic First Fit.

Although condition L&L only depends on the number of tasks in the set, there are other conditions
oriented to the periods or to the utilization of the tasks.

Theorem 2 (Condition IP) [Dhall, 1978]: Let τ = {τ1, τ2, . . . , τn} be a set of tasks with T1 ≤ T2 ≤
. . . ≤ Tn and let

6

Un−1 =
n−1∑

i=1

Ci / Ti ≤ (n− 1)(21/(n−1) − 1) (2)

If the following condition is met,

un ≤ 2
(

1 +
Un−1

(n− 1)

)−(n−1)

− 1 (3)

then the set of tasks will have a feasible schedule under the RM algorithm. When n → ∞, the
minimum utilization of task τn approaches to (2 e−u − 1).

Note that in this condition an ordering of the periods of the tasks is required. Because of this its
complexity is O(n log n).

As can be noted this condition is based on the utilization (and on the number of tasks already in
the system) and it is inexact.

In Figure 2 the utilization of task τn is shown as a function of the (n − 1) tasks already accepted
in the system. The different curves shown in the figure illustrate different values from the number of
tasks (n). The area under the curve represents the feasibility area. For example, if in the uniprocessor
system there is only one task with utilization of 40%, then condition IP will accept any other task
with utilization of at most (2(1 + 0.4)−1 − 1) ≈ 0.4285 ≈ 42%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 C
n
 /
 T

n

 ∑n−1
i=1 Ci / Ti

n=2
n=4

n=10
n=50

Figure 2: Performance of Condition IP.

Example 2.
In this example we will show the performance of the IP schedulability condition.
Before using condition IP for the task set described in Table 1, it is necessary to order the tasks

according to an increasing order of their periods. After applying condition IP, it can be observed that
tasks τ3, τ1 and τ4 can be accepted to the system. Task τ2 cannot be accepted because it violates
condition IP, u ≈ 0.3333 + 0.125 + 0.166 = 0.6243, 2(1 + 0.6243/3)−3 − 1 ≈ 0.1342, u2 = 0.1875 >
0.13428, but since u5 = 0.125 < 0.1342, task τ5 can be accepted.

4.3 Schedulability Condition PO (Period Oriented)

Condition PO, was introduced by Burchard et al. [Burchard, 1995] in the development of the RMST
(Rate Monotonic Small Tasks) and RMGT (Rate Monotonic General Tasks) multiprocessor algorithms.

7

This condition considers that it is possible to increase the utilization of a task set if the periods of all
tasks are close to each other.

Theorem 3 (Condition PO) [Burchard, 1995]: Given a set of tasks τ = {τ1, . . . ,τn}, Si and β are
defined as follows,

Si = log2 Ti − b log2 Ti c i = 1, . . . , n (4)

and

β = max Si −min Si i = 1, . . . , n (5)

(a) if β < (1 − 1/n) and the total utilization satisfies that:

U ≤ (n− 1)(2β / (n − 1) − 1) + 21−β − 1 (6)

then the task set is schedulable on one processor under RM.

(b) if β ≥ (1 − 1/n) and the total utilization satisfies that:

U ≤ n(21/n − 1) (7)

then the task set is schedulable on one processor under RM.

Condition (b) is similar to condition L&L [Liu, 1973], however, in general condition PO has better
performance than L&L when Condition (a) is met.

Condition PO, in its simplest version, is defined in Corollary 1.

Corollary 1 (Condition PO) [Burchard, 1995]: Given a set of tasks τ = {τ1,. . . ,τn} and given
β (defined as in Theorem 3), if the total utilization satisfies that:

U =
n∑

i=1

Ci/Ti ≤ max{ln 2, 1− β ln 2} (8)

then the task set can be feasibly scheduled on one processor under RM.

In this condition it is necessary to know the periods of all tasks in the system. This condition is
tight [Burchard, 1995] for the set of parameters used in the condition.

Figure 3, shows the performance of Condition PO. It shows that, depending on the number of tasks
(n) and on the value of β, the task set can be feasibly scheduled if the utilization of the task set lies
bellow the area of the curve. When the number of tasks is high and the value of β = 1 (meaning that
the periods are not harmonic), then the minimal achievable utilization is approximately 69% (similar
to the result provided by Liu and Layland in their L&L Condition [Liu, 1973]).

Example 3.
In this example we will show the performance of the PO schedulability condition.
The first step on applying condition PO to the task set described in Table 1 is to calculate the

Si values from Equation 4, and to order them in a nondecreasing fashion. Si values computed are:
{S1 = 0, S2 = 0, S3 = 0.5849, S4 = 0.5849, S5 = 0.5849}. From this set it can be observed that
tasks τ1, τ2 and τ3 are schedulable, while task τ4 violates the condition, since

∑4
i=1 ui = 0.8124 >

3(20.5849/3 − 1) + 21−0.5849 − 1.

8

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

∑
n i=

1
 C

i
/
T

i

ß

n=2
n=4

n=10
n=100

Figure 3: Performance of Condition PO.

4.4 Schedulability Condition UO (Utilization Oriented)

Y. Oh et al. [Oh, 1995] introduced a schedulability condition based on the utilization of the tasks, in
the development of the RM-FFDU multiprocessor algorithm.

Theorem 4 (Condition UO) [Oh, 1995]: Let τ = {τ1, τ2, . . . , τn−1} be a set of (n−1) tasks feasibly
scheduled under RM. A new task τn can be feasibly scheduled along with the (n-1) tasks already in the
system (on one processor under RM), if the following condition is met.

Cn/Tn ≤ 2[
n−1∏

i=1

(1 + ui)]
−1

− 1 (9)

Figure 4, shows the utilization bound UO for different values of n, where the x-axis denotes the
utilization of the (n − 1) tasks and the y-axis denotes the utilization of task τn. The area under the
curve show the feasibility area.

Note that, in this condition, besides taking into consideration the number of tasks, the utilization
of the tasks is also considered.

This condition if tight for the set of parameters included in the condition. The complexity of this
condition is lineal, O(n).

Bini et al. [Bini, 2001] introduced a schedulability test similar to that provided in Condition UO
(which was named Hyperbolic Bound), using the following equation.

n∏

i=1

(ui + 1) ≤ 2 (10)

It is possible to note that Equation 10, can be derived from Equation 9. In [Bini, 2001] the hyperbolic
bound was extended to include resource sharing and aperiodic servers.

Example 4.
In this example we will show the performance of the UO schedulability condition. using the task

set described in Table 1.
In Condition UO tasks τ1, τ2 and τ3 from Table 1 are schedulable, but task τ4 does not meet the

condition, because u4 = 0.1666 > 2[
∏3

i=1(1 + ui)]
−1 − 1 = 0.1228.

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 C
n
 /
 T

n

 ∑n−1
i=1 Ci / Ti

n=2
n=4

n=10
n=50

Figure 4: Performance of Condition UO.

4.5 Schedulability Condition RBOUND

Lauzac et al. [Lauzac, 2003] developed the schedulability condition RBOUND for the RM scheduling
policy. This condition uses information of the periods of the task set to achieve a high utilization.

In order to apply condition RBOUND to a task set, first it is necessary to transform the original
task set to an equivalent task set where the ratio between maximum and minimum periods is less than
2, r = Tmax/Tmin ≤ 2. Then, the RBOUND condition is applied to the modified task set to verify
its schedulability. As shown in Lemma 1, if the transformed task set is feasibly scheduled then the
original task set is also feasible. Condition RBOUND is described in Theorem 5. The transformation
procedure is made by the algorithm ScaleTaskSet, defined in Figure 5.

Lemma 1 [Lauzac, 2003]: Let τ be a given periodic task set τ , and let τ ′ be the transformed task set
after applying the ScaleTaskSet algorithm to τ . If τ ′ is schedulable on one processor under RM, then
τ is also schedulable.

ScaleTaskSet (In: τ , Out: τ ′)
1. begin
2. Sort the task set in τ by increasing period

3. for (i = 1 to n− 1) do

4. T ′i = Ti 2
b log

Tn
Ti

c

5. C′i = Ci 2
b log

Tn
Ti

c

6. Sort the tasks in τ ′ by increasing period

7. return (τ ′)
6. end

Figure 5: Algorithm ScaleTaskSet

Theorem 5 (Condition RBOUND) [Lauzac, 2003]: Consider a periodic task set τ , and let τ ′ be
the transformed task set after executing the ScaleTaskSet on τ . If,

n∑

i=1

Ci/Ti ≤ (n− 1)(r1/(n−1) − 1) + (2/r) − 1 (11)

10

where r = T ′n/T ′1, the task set τ can be feasibly scheduled on one processor under RM.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 1.2 1.4 1.6 1.8 2

U
R

b
o

u
n
d

(r
,n

)

r

n=2
n=3
n=4

n=10
n=100

Figure 6: Performance of Schedulability Condition RBOUND.

Corollary 2 (Condition RBOUND) [Lauzac, 2003]: When n → ∞ the minimum achievable
processor utilization URBound(r) approaches to (ln r) + (2/r)− 1.

Condition RBOUND is an inexact condition with complexity O(n log n). Figure 6 shows the pro-
cessor utilization URBound as a function of r. Note that for a given value of n, the minimum value of
the curve yield the L&L utilization bound. This implies that RBOUND aways achieve a performance
better or equal than condition L&L.

Algorithm RBOUND was extended for multiprocessors with algorithm RBOUND-MP[Lauzac, 2003],
and for fault tolerance [Lauzac, 2003].

Example 5.
In this example we will show the performance of the RBOUND schedulability condition using the

task set described in Table 1.
RBOUND [Lauzac, 2003] is more complex than previous conditions. First it is necessary to trans-

form the task set from Table 1 using the ScaleTaskSet procedure. This gives the following trans-
formed task set: { τ1 = (T1 = 32, C1 = 4), τ2 = (T2 = 32, C2 = 6), τ3 = (T3 = 48, C3 = 16), τ4 =
(T4 = 48, C4 = 8), τ5 = (T5 = 48, C5 = 6)}, where Ti/Tj ≤ 2, for any i 6= j. Using the trans-
formed task set, RBOUND finds τ1, τ2 and τ3 schedulable, but task τ4 violates the condition, since∑4

i=1 ui = 0.8124 > 3(r1/3 − 1) + 2/r − 1. Variable r, the ratio between the higher and smaller
periods is r = 48/32 = 1.5.

4.6 Exact Schedulability Condition (Le)

Lehoczky et al. [Lehoczky, 1989] introduced a necessary and sufficient (exact) schedulability condition
for task sets executing under RM.

Theorem 6 (Condition Le) [Lehoczky, 1989]: Let τ = {τ1, τ2, . . . , τn} be a task set with n tasks
and T1 ≤ T2 ≤ . . . ≤ Tn. τi can be feasibly scheduled under RM if and only if,

Li = min {t ∈ Si} (Wi (t) / t) ≤ 1 (12)

where

11

Si = { k Tj | j = 1, . . . , i; k = 1, . . . , b Ti/Tj c },
Wi (t) =

∑i
j=1 Cj d t/Tj e

The entire task set can be feasibly scheduled under RM if and only if

L = max { 1 ≤ i ≤ n } Li ≤ 1 (13)

The elements of Si are know as the scheduling points for task τi [Lehoczky, 1989].
Theorem 6 gives a necessary and sufficient condition for the first job of each task to meet its deadline

under the worst-case phasing (critical instant).
It can be observed that its computational complexity is pseudo-polynomial. Lehoczky [Lehoczky, 1990]

extended this condition for the case when the deadlines of the tasks are less or equal than their periods,
(i.e., Di ≤ Ti).

Example 6.
In this example we will show the performance of the Le schedulability condition using the task set

described in Table 1.
The first step is to order the task set according to their periods. τ1(T1 = 3, C1 = 1, u1 = 0.3333),

τ2(T2 = 8, C2 = 1, u2 = 0.125), τ3(T3 = 12, C3 = 2, u3 = 0.1666), τ4(T4 = 16, C4 = 3, u4 = 0.1875),
τ5(T5 = 48, C5 = 6, u5 = 0.125).

It can be observed that tasks τ1, τ2, and τ3 are schedulable according to L&L condition. That is,
u1 + u2 + u3 ≤ 3(21/3 − 1), 0.6249 ≤ 0.7797.

To verify the schedulability of task τ4 the time interval [0, 16] has to be analyzed, assuming that
time t = 0 is a critical instant.

The scheduling points of task τ4 are the following: S4 = 1 ∗ T1, 2 ∗ T1, 3 ∗ T1, 4 ∗ T1, 5 ∗ T1, 1 ∗ T2, 2 ∗ T2, 1 ∗ T3, 1 ∗ T4 =
3, 6, 8, 9, 12, 15, 16. Task τ4 is schedulable if L4 = mint ∈ SiW4(t) ≤ t holds.

t W4(t)
3 1*1 + 1*1 + 2*1 + 3*1 = 7
6 1*2 + 1*1 + 2*1 + 3*1 = 8
8 1*3 + 1*1 + 2*1 + 3*1 = 9
9 1*4 + 1*2 + 2*1 + 3*1 = 11
12 1*4 + 1*2 + 2*1 + 3*1 = 11

Table 2: W4(t)

From Table 2 it can be concluded that task τ4 is schedulable.
Following a similar procedure for task τ5 we conclude that τ5 is schedulable.

4.7 Response Time Analysis

Joseph and Pandya introduced an exact schedulability condition in [Joseph, 1986] for fixed priority
scheduling. In this test, the response time of each task in set, ri is obtained, and if ri ≤ Di, then task
τi meets its deadline.

This test starts by obtaining the response time of the highest priority task, using the following
equation:

r1 = C1

12

In order to obtain the response time of the remaining tasks, it is necessary to compute the time
interference produced by high priority tasks on the low priority tasks. When this time interference is
added to the response time of ri we obtain,

ri = Ci +
∑

j∈hp(i)

⌈
ri

Tj

⌉
Cj

where hp(i) is the task set with higher priority than task τi. Since ri appears at both sides of the
equation, a possible solution is obtained by the following iterative process [Joseph, 1986].

Let wn
i be the response time of task τi on iteration n.

wn+1
i = Ci +

∑

j∈hp(i)

⌈
wn

i

Tj

⌉
Cj (14)

Iterations described on Equation (14) can start considering W 0
i =

∑i
k=1 Ck. It is easy to note that

wn+1
i ≥ wn

i . If wn
i > Di then task τi will miss its deadline. However, if wn

i = wn+1
i , the iterative

process will finish and ri = wn
i .

The response time analysis has evolved to include offsets, blocking time, fault tolerance and release
jitter [Audsley, 1993].

Example 7.
In this example we will show the performance of the Le schedulability condition using the task set

described in Table 1. The first step is to order the task set according to their periods. Equation 14 is
used to verify the schedulability of the task set.

Using the iterative equation for task τ5 we obtain the following.

w0
5 = 13

w1
5 = 6 + d13/3e ∗ 1 + d13/8e ∗ 1 + d13/12e ∗ 2 + d13/16e ∗ 3 = 20

w2
5 = 6 + d20/3e ∗ 1 + d20/8e ∗ 1 + d20/12e ∗ 2 + d20/16e ∗ 3 = 26

w3
5 = 6 + d26/3e ∗ 1 + d26/8e ∗ 1 + d26/12e ∗ 2 + d26/16e ∗ 3 = 31

w4
5 = 6 + d31/3e ∗ 1 + d31/8e ∗ 1 + d31/12e ∗ 2 + d31/16e ∗ 3 = 33

w5
5 = 6 + d33/3e ∗ 1 + d33/8e ∗ 1 + d33/12e ∗ 2 + d33/16e ∗ 3 = 37

w6
5 = 6 + d37/3e ∗ 1 + d37/8e ∗ 1 + d37/12e ∗ 2 + d37/16e ∗ 3 = 41

w7
5 = 6 + d41/3e ∗ 1 + d41/8e ∗ 1 + d41/12e ∗ 2 + d41/16e ∗ 3 = 43

w8
5 = 6 + d43/3e ∗ 1 + d43/8e ∗ 1 + d43/12e ∗ 2 + d43/16e ∗ 3 = 44

w9
5 = 6 + d44/3e ∗ 1 + d44/8e ∗ 1 + d44/12e ∗ 2 + d44/16e ∗ 3 = 44

Since the lowest priority task is schedulable (w9
5 = w8

5 ≤ D5) we conclude that tasks τ1, τ2, τ3, and
task τ4 are also schedulable.

4.8 Conditions based on Harmonic Chains

In recent years, some researchers developed polynomial-time schedulability tests that improve the WC
schedulability condition [Liu, 1973]. These new tests transform the task sets into a equivalent task
sets were their periods tend to be harmonic.

A harmonic chain is a list of numbers (periods) in which each number divides every number after
it [Chen, 2003].

13

4.8.1 HC Condition

Kuo and Mok [Kuo, 1991] developed the condition HC (Harmonic Chain), in which a periodic task
set τ will find a feasible schedule if its utilization factor is no larger than K(21/K − 1), where K is the
size of a harmonic base of τ .

Definition 1 (Harmonic Base of τ) [Kuo, 1991]: Let P be the set of periods (positive numbers)
of a set τ of periodic tasks. A subset H of P is said to be a harmonic base of the task set τ if there is
a partition, say Γ, of P into |H| subsets, such that:

1. Each member of H is the smallest element in exactly one member of the partition Γ, and

2. If x and y are two elements in the same member of the partition Γ, then either x divides y or y
divides x.

Each subset in the partition Γ is called a harmonic chain [Kuo, 1991].

Theorem 7 (Condition HC) [Kuo, 1991]: Let τ be a set of periodic tasks and let K be the size of
a harmonic base of τ . If the utilization factor of τ is no larger than K(2

1
K − 1), then τ is schedulable

by a preemptive fixed priority scheduler.

The following example will be used to clarify the concept of harmonic base.
Let P be the set of periods P = {3, 5, 15, 20, 60} for the task set τ = {τ1 = (T1 = 3, C1 = 1), τ2 =

(T2 = 5, C2 = 1), τ3 = (T3 = 15, C3 = 2), τ4 = (T4 = 20, C4 = 3), τ5 = (T5 = 60, C5 = 8)}.
Subset H = {3, 5} is a harmonic base of P , because there exists a partition Γ in |H| subsets, Γ =
{{3, 15}, {5, 20, 60}}, such that (1) each member of H is the smallest single element of partition Γ,
and (2) for each pair of elements within partition Γ, one of them divides the other element.

The problem of computing the harmonic base of a periodic task set can be solved by a polynomial
time algorithm. It can be observed that when the size of the harmonic base is small, the utilization
factor is large. For instance, if K = 1, then the CPU can be 100% utilized. Note that condition HC
is similar to the condition L&L when all periods of the tasks are relative primes (two numbers a and
b are relative primes, if they are non zeros and MCD(a, b) = 1).

Example 6.
In this example we will show the performance of the HC schedulability condition using the task set

described in Table 1.
After applying condition HC[Kuo, 1991], we obtained that tasks τ1, τ2, τ3 and τ4 are schedulables,

since their total utilization is no larger than K(21/K − 1) where K is the size of the harmonic base
of τ . From the example in Table 1 we observe that the size of the harmonic base of τ is 2. That is,∑4

i=1 ui = 0.8124 ≤ 2(21/2− 1). Note that the introduction of task τ5 violates condition HC because
the utilization of the task set increases beyond 2(21/2 − 1).

4.8.2 ROOT Condition

Kuo et al. [Kuo, 2000] developed the condition ROOT, and demonstrated that a task set can be
feasibly scheduled as long as the utilization of the task set is no larger than R(21/R − 1), where R is
the number of roots in the task set.

Definition 2 Root [Kuo, 2000]: Let τ = {τ1, . . . , τi, . . . , τn} be a periodic task set. Task τi is a root
in τ if there does not exists any task period in τ which is larger than and can be divided by the period
of task τi.

14

Theorem 8 (Condition ROOT) [Kuo, 2000]: Suppose that the task set {τ1, τ2, . . . , τi−1} is schedu-
lable. Let R be the number of roots in the task set τ = {τ1, τ2, . . . , τi−1, τi}. If the total utilization
factor of τ is no larger than R(21/R − 1), then τ is schedulable.

Since the number of roots in τ is much less than the number of tasks (and also less than the size of
its harmonic base), then it is expected that condition ROOT improves conditions L&L and HC. This
can be observed in Corollaries 3, 4 and 5.

Corollary 3 [Kuo, 2000]: Let τ be a set of periodic tasks. If τ is guaranteed to be schedulable
according to Condition L&L, then τ is guaranteed to be schedulable according to Condition ROOT.

Corollary 4 [Kuo, 2000]: Let τ be a set of periodic tasks. If τ is guaranteed to be schedulable
according to Condition HC, then τ is guaranteed to be schedulable according to Condition ROOT.

Corollary 5 [Kuo, 2000]: There exists a task set that is guaranteed to be schedulable according to
Condition ROOT, but not according to Conditions L&L or HC.

An important feature of Condition ROOT is that it was implemented incrementally [Kuo, 2000]
for on-line admission control. The incremental algorithm of ROOT does not need to recompute the
response times of all tasks, but only the newly arrived task.

Example 7.
In this example we will show the performance of the ROOT schedulability condition. using the task

set described in Table 1.
Using condition ROOT for our example task set, it can be noted that tasks τ2 and τ4 are the roots

of tasks τ1, τ2, τ3 and τ4. So, the schedulability condition ROOT is met for tasks τ1, τ2, τ3 and τ4, since∑4
i=1 ui = 0.8124 ≤ 2(21/2 − 1). While considering task τ5 it can be noted that this task is the root

of tasks τ1, τ2, τ3, τ4 and τ5. Therefore, task τ5 is also schedulable since
∑5

i=1 ui = 0.9374 ≤ 1(21−1).

4.8.3 H&T Conditions

Han and Tyan [Han, 1997], instead of searching for harmonic chains in the task periods, introduced a
polynomial-time schedulability test which transform the task periods into a special pattern, where all
periods belong to a single harmonic chain. That is, in this condition, given a task set τ , a transformed
task set τ ′ is computed. If the total utilization of this transformed task set τ ′, is less than 1 and
condition 1 is satisfied, then the task set τ is schedulable under RM.

Condition 1 [Han, 1997]: T ′i ≤ Ti for all i = 1, 2, . . . , n, and T ′i evenly divides T ′i+1, denoted as
T ′i |T ′j, (thus, T ′i ≤ T ′i+1) for all i = 1, 2, . . . , n− 1.

The first algorithm proposed to find a task set τ ′ that satisfies condition 1 is called algorithm SR
(Specialization Operation)[Han, 1997]. In this algorithm, each period Ti of task set τ is transformed
into another period T ′i = r · 2blog(Ti/r)c, where r is a real number chosen from the range (T1/2, T1]. It
is easy to see that T ′i ≤ Ti, for all i and Ti|T ′i for all i < j. Since T ′i ≤ Ti for all i, U(τ ′) ≥ U(τ). The
problem is how to find the best r value, such that the total utilization increase ∆ = U(τ ′) − U(τ) is
minimized. Algorithm SR, illustrated in Figure 7, finds the best value for r, and then derive the new
periods T ′i , for all i, using the best r.

Define li = Ti/2dlog(Ti/T1)e, for 1 ≤ i ≤ n, where (T1/2 < li ≤ T1). Let k1 < k2 < . . . < ku, u ≤ n,
be the sorted sequence of li’s with duplicates removed. Since l1 = T1, we know that ku = T1. We
call {k1, k2, . . . , ku} the special base of τ . The value of r that minimizes the total utilization increase

15

∆, denoted by r∗, can always be found in the special base. Let φτ (r) be the total utilization of the
task set τ ′ with its periods {T ′1, T ′2, . . . , T ′n} specialized from {T1, T2, . . . , Tn} with respect to r, and
let φ∗τ = φτ (r∗) = min{T1/2<r≤T1}φτ (r). We can compute φτ (kv) for all kv in the special base of τ ,
select the one that result in the minimum value of φτ (kv), and use that kv for r in the specialization
operation.

In algorithm SR, πr is called r-based subset of τ defined as: πr = {τi ∈ τ |Ti = r ∗ 2j , for some
integer j ≥ 0}. The main reason to define the r-based subsets of τ is that for every task Ti ∈ πkv ,
Ti = li · 2dlog(Ti/T1)e = kv · 2blog(Ti/kv)c (because li = kv and log(Ti/kv) = blog(Ti/kv)c = dlog(Ti/T1)e is
an integer); as a result, if r = kv, Ti will be specialized to itself and hence, the utilization of τi will not
increase after the specialization operation. This also gives the intuition that why only the numbers in
the special base of τ need to be considered in finding r∗.

Input: τ = {τi = (Ci, Ti) | 1 ≤ i ≤ n}, where τ is a periodic task set

and Ti ≤ Tj, for all i < j.
Output: A task set τ ′ and φτ (r∗).

1. begin

2. for (i = 1 to n) do li = Ti/2dlog(Ti/T1)e

3. sort (l1, l2, . . . , ln) into nondecreasing order and remove duplicates.

-- Let (k1, k2, . . . , ku) be the resulting sequence;

4. for (i = 1 to n) do put τi into subset πli

5. for (v = 1 to u) do U(πkv) =
∑

τi∈πkv
Ci/Ti

6. compute φτ (ku) = φτ (T1)
7. for (v = u− 1 downto 1) do

φτ (kv) =
kv+1

kv
φτ (kv+1)− U(πkv)

8. Find r∗ such that φτ (r∗) = minr∈{k1,k2,...,ku} φτ (r)

9. for (i = 1 to n) do T ′i = r∗ · 2blog(Ti/r∗)c

10. return φτ (r∗) and (τ ′)
11. end

Figure 7: SR Algorithm

Input: A task set τ with n tasks, with its periods ordered increasingly.

Output: A task set τ ′.

1. begin
2. minf = -1; minutilization =∞
3. for f = 1 to n do
4. Zf = Tf.

5. for (i = f + 1 to n) do Zi = Zi−1 ∗ bTi/Zi−1c.
6. for (i = f − 1 downto 1) do Zi =

Zi+1
dZi+1/Tie.

7. utilization =
∑n

i=1
Ci/Zi.

8. if (utilization < minutilization) then
9. minutilization = utilization.

10. minf = f.

11. for (i = 1 to n) do T ′i = Zi.

12. endif
13. return (τ ′)
14. end.

Figure 8: DCT Algorithm

16

Example 8.
In this example we will show the performance of the SR algorithm using the task set described in

Table 1. Following agorithm SR, the value of r denoted as r∗ which minimizes the total utilization
increase can always be found in the special base of the task set.

To obtain the special base it is necessary to execute the following procedure:

- order the task set;
- compute the values li = Ti/2elog(ti/T1)e;
- l1 = 3, l2 = 2, l3 = 3, l4 = 2, l5 = 3;
- removing duplicates we obtain values 2 and 3.

Once the r values are obtained, the next step is to transform the period set using T
′
i = r 2b(Ti/r)c.

Therefore, for r = 2 we obtain:

τ1(2, 1) u1 = 0.5
τ2(8, 1) u2 = 0.125
τ3(8, 2) u3 = 0.25
τ4(16, 3) u4 = 0.1875
τ5(32, 6) u5 = 0.1875
Total utilization = 1.25.

For r = 3 we obtain:

τ1(3, 1) u1 = 0.3333
τ2(6, 1) u2 = 0.1666
τ3(12, 2) u3 = 0.1666
τ4(12, 3) u4 = 0.25
τ5(48, 6) u5 = 0.125
Total utilization= 1.0415.

From this procedure it can be observed that the value of r that minimizes the total utilizatiton
increase is r∗ = 3. However since the resulting utilization is greater than 1, the task set can not be
feasibly scheduled using algorithm SR. In other words, SR cannot find a set of periods able to form a
single fundamental frequency such that the task set utilization with this new periods be less or equal
than 1.

The second algorithm proposed by Han and Tyan in [Han, 1997] is called algorithm DCT. The
idea behind algorithm DCT is the following. For each f, 1 ≤ f ≤ n, T ′f is set to T ′f = Tf , and then
recursively, Ti, for each i > f , is transformed to the largest integral multiple of T ′i−1 that is less than
or equal to Ti. That is,

T ′i = T ′i−1 · bTi/T ′i−1c, for i = f + 1, f + 2, . . . , n. (15)

Similarly, Ti, for each i < f , is recursively transformed to the largest divisor of T ′i+1 that is less
than or equal to Ti. That is,

T ′i =
T ′i+1

dT ′i+1/Tie , for i = f − 1, f − 2, . . . , 1. (16)

The value of f that result in the minimum utilization increase will be the final index of Ti whose
transformed value of T ′i will be fixed at Ti. Given a periodic task set τ , we can use the SR or DCT
algorithms to derive a task set which satisfy Condition 1 and if the total utilization of the derived

17

task set is less than or equal to 1, it means that the original task set τ is schedulable by RM. The
computational complexity of Algorithms SR and DCT is O(n log n) and O(n2) respectively. The main
result, provided by Han and Tyan is given in the following Theorem.

Theorem 9 [Han, 1997]: Given a task set τ , if there exists a transformed task set τ ′ which satisfies
condition 1 and U(τ ′) =

∑n
i=1

Ci
Ti
≤ 1, then τ is schedulable under RM.

Example 9.
In this example we will show the performance of the DCT algorithm using the task set described in

Table 1. The approach followed by algorithm DCT is to recursively transform the periods of all tasks
such that they form a single harmonic chain.

Following algorithm DCT described in Figure 8 we obtain:

For task τ1:
τ1(3, 1) u1 = 0.3333
τ2(6, 1) u2 = 0.1666
τ3(12, 2) u3 = 0.1666
τ4(12, 3) u4 = 0.25
τ5(48, 6) u5 = 0.125
The total utilization from the resulting task is 1.0415.

For task τ2 we obtain:
τ1(2.66, 1) u1 = 0.375
τ2(8, 1) u2 = 0.125
τ3(8, 2) u3 = 0.25
τ4(16, 3) u4 = 0.1875
τ5(48, 6) u5 = 0.125
The total utilization from the resulting task set is 1.0625.

For task τ3 we obtain:
τ1(3, 1)u1 = 0.3333
τ2(6, 1)u2 = 0.1666
τ3(12, 2)u3 = 0.1666
τ4(12, 3)u4 = 0.25
τ5(48, 6)u5 = 0.125

The total utilization for the resulting tast set is 1.0415. Note that this transformation of periods
gives a similar result than the one applied to task τ1.

Applying the same transformation for tasks τ4 and τ5 we obtained similar results to those of tasks
τ2. From the prevous results the minimum utilization of 1.0415 which makes the resulting task set
unschedulable using the DCT algorithm.

4.8.4 Chen, Mok & Kuo Algorithms

Chen, Mok and Kuo [Chen, 2003] developed three algorithms with polynomial-time complexity, that
yield better bounds than the Liu and Layland Bound.

On algorithm 1 (illustrated in Figure 9), a task set τ is transformed into another task set, in which
the ratio of any Ti and Tj (for all i 6= j), is no larger than 2. An utilization bound is developed based
on Theorem 10. If the utilization of τ is less than the resultant utilization, Ubound (after applying
algorithm 1), then the task set is schedulable under RM.

18

Theorem 10 [Chen, 2003]: Let τ = {τ1, τ2, . . . , τn} be a set of periodic tasks. Let ~T be the array of
periods for the task set. If T1 < T2 < . . . < Tn < 2T1, then the exact utilization bound Ubound for the
task set is obtained when,

Ci = Ti+1 − Ti, 1 ≤ i < n (17)

Cn = 2T1 − Tn (18)

Ubound =
n−1∑

i=1

Ti+1 − Ti

Ti
+

2T1 − Tn

Tn
(19)

Input: Array Period[n] in nondecreasing order

Output: Utilization Bound Ubound.

1. begin
2. Ubound = 1;

3. for (i = 2 to n) do
4. for (j = 1 to i) do

5. NewPeriod[j] = Period[j] x b Period[i]
Period[j]

c;
6. U =

∑i−1

j=1

NewPeriod[j+1]−NewPeriod[j]
NewPeriod[j]

+ 2NewPeriod[1]−NewPeriod[i]
NewPeriod[i]

;

7. if (Ubound > U) then
8. Ubound = U;

9. return(Ubound)

10. end.

Figure 9: Algorithm 1

The second algorithm (illustrated in Figure 10), introduced by Chen, Mok and Kuo [Chen, 2003]
developed an strategy to compute with higher efficiency the size of the harmonic base from a set of
tasks, than that introduced in condition HC [Kuo, 1991]. Algorithm 2 is based on Lemma 2.

Input: The array Period[n] in nondecreasing order

Output: Utilization bound Ubound.

1. begin
2. for i = 1 to n− 1 do
3. TasksAttr[i] = ∞
4. for (j = n downto i + 1) do
5. if ((Period[j] mod Period[i]) = 0) then
6. TasksAttr[i] = Period[j];

7. Tasksattr[n] = ∞;

8. k = 0;
9. for (i = 1 to n) do
10. j=0;

11. for (m = 1 to i) do
12. if (TasksAttr[m] ≤ Period[i]) then j = j + 1;
13. if (k < i− j) then k = i− j;

14. return(Ubound = k(21/k − 1))
10. end.

Figure 10: Algorithm 2

19

Input: The array Period[n] in a nondecreasing order

Output: Utilization Bound Ubound.

1. begin
2. Ubound = 1;

3. for (i = 1 to n) do

4. Reduced-period1 [] = Array ~Preduced

5. for (j=1 to i) do

6. Reduced− period2[j] = Reduced− period1[j]× bReduced−period1[i]
Reduced−period1[j]

c
7. U = Utilization factor calculated from Reduced-period2

using Theorem 10.

8. if (Ubound > U) then
9. Ubound = U;

10. return(Ubound)

11. end.

Figure 11: Algorithm 3

Definition 3 For a given task set τ = {τ1, τ2, . . . , τn} with T1 < T2 < . . . < Tn, let:

Tn = tiTi + ri, 0 ≤ ri < Ti (20)

Ci =
Ti − ri

Ti
(21)

αij = Number of instances of τj between tiTi and Tn when tiTi ≤ tjTj.

Lemma 2 [Chen, 2003]: If Ti divides Tj, 1 ≤ i < j ≤ n, then the exact utilization bound Ubound from
the period array ~T equals the exact utilization bound of ~T ′ = [T1, T2, . . . , Ti−1, Ti+1, . . . , Tn].

Lemma 3 [Chen, 2003]: Consider Tj and Tk in ~T , tn = tjTj + rj = tkTk + rk. If tjTj ≤ tkTk and
Ck ≤ αjkCj, then the exact utilization bound Ubound from the period array ~T is equal to the exact
utilization bound ~T ′ = [T1, T2, . . . , Tk−1, Tk+1, . . . , Tn].

Definition 4 (~Treduced array) [Chen, 2003]: Given an array of periods ~T , assume all periods from
this array are eliminated according to Lemmas 2 and 3. Let us denote the resultant period array:
~Treduced the reduced array to ~T .

Algorithm 3 proposed in [Chen, 2003], is an improvement of algorithm 2, where the input data used
is ~Treduced, instead of the ~T array. In algorithm 3, Theorem 10 is applied to obtain the utilization
bound.

5 Extensions to Schedulability Conditions

The scheduling analysis described in previous sections has been extended to solve diverse problems re-
lated to synchronization [Sha, 1990], aperiodic tasks [Sprunt, 1989], resource sharing [Rajkumar, 1991,
Lipari, 2000], fault-tolerance [Lauzac: 2000, Burns, 1996], non-preemptive tasks [Liu, 2000], and over-
load handling [Buttazzo, 1998].

Other studies developed schedulability conditions for aperiodic scheduling [Abdelzaher, 2004], prece-
dence constrained scheduling [Liu, 2002], multiple processor scheduling [Andersson, 2001, Burchard, 1995,
Lopez, 2003], and QoS scheduling [Lee, 2004].

20

Algorithm Utilization Bound Complexity limn→∞ Restrictions Remarks

L&L U ≤ n(21/n − 1) O(n) ln 2 - n must be known - Sufficient condition
- Tigth condition

IP un ≤ 2(1 +
Un−1
n−1)

−(n−1)
− 1 O(n log n) 2e−u − 1 - n and Ti must be known - Sufficient condition

- T1 ≤ T2 ≤ . . . ≤ Tn
- Un−1 ≤
(n− 1)(21/(n−1) − 1)

where Un−1 =
∑n−1

i=1
ui

PO U ≤ (n− 1)(2β/(n−1) − 1) O(n log n) 1− β ln 2 - n and Ti - Sufficient condition

+21−β − 1
- S1 ≤ S2 ≤ . . . ≤ Sn - Tigth condition
where Si = log Ti − blog Tic
- β < 1/(1− n)
where β = max Si −min Si

RBOUND U ≤ (n− 1)(r1/(n−1) − 1) O(n log n) ln r + 2
r
− 1 - n and Ti must be known - Sufficient condition

+ 2
r
− 1

- r =
max Ti
min Ti

≤ 2 - r ≤ 2

- T1 ≤ T2 ≤ . . . ≤ Tn r = ratio of any
two periods

UO, HB
∏n

i=1
(1 + ui) ≤ 2 O(n) N/A - n and ui must be known - Sufficient condition

- Condition is tight

HC U ≤ k(21/k − 1)) O(n5/2) ln 2; n=k - k must be obtained - Sufficient condition
- k = number of harmonic chains

ROOT U ≤ r(21/r − 1)) O(n2) ln2; n = r - r must be computed - Sufficient condition
r = number of roots

IFF L = max {1≤i≤n}Li ≤ 1 pseudo- N/A - n, Ci and Ti must be known - Necessary and sufficient

where: polinomial condition
Li = min {t∈Si}Wi(t)/t ≤ 1

Si = {kTj |j = 1, . . . , i;
k = 1, . . . , bTi/Tjc} - T1 ≤ T2 ≤ . . . ≤ Tn

Wi(t) =
∑i

j=1
Cjdt/Tje

SR N/A O(n log n) N/A - n and Ti must be known - Transform the set of
periods into a single

- T1 ≤ T2 ≤ . . . ≤ Tn harmonic chain

DCT N/A O(n2) N/A - n and Ti must be known - Transform the set
of periods into a

- T1 ≤ T2 ≤ . . . ≤ Tn single harmonic chain

Algorithm 1 N/A O(n2) N/A - n and Ti must be known - Algorithm 1 finds
an utilization bound

- T1 ≤ T2 ≤ . . . ≤ Tn

Algorithm 2 N/A O(n2) N/A - n and Ti must be known - Algorithm 2 finds
the number of harmonic

- T1 ≤ T2 ≤ . . . ≤ Tn chains

Algorithm 3 N/A O(n3) N/A - n and Ti must be known - Algorithm 3 finds
a utilization bound

- T1 ≤ T2 ≤ . . . ≤ Tn

6 Characteristics of the Schedulability Conditions

In this section, Table 6 is introduced to show all schedulability conditions and their corresponding
utilizacion bounds, time complexities, limn→∞, restrictions and tightness. It can be noted that al-
gorithm 3 has the highest complexity among all conditions, while conditions L&L and UO have the
lowest complexities. Recall that a tight test is the best possible test that can be found using that task
set knowledge. Note that in some cases the authors of some tests did not provided a tightness proof.

21

7 Simulation Experiments

In this section, a performance analysis is conducted for the schedulability conditions previously dis-
cussed. In our experiments, the schedulability conditions were computed for each task set. The metric
used in our experiments for obtaining the performance of the schedulability conditions is the guarantee
ratio.

Guarantee Ratio =
number of task sets accepted
total number of experiments

(22)

The guarantee ratio (GR) of schedulability condition A will be denoted as GR(A). A task set is
accepted only if its schedulability condition yield positive results (i.e., all tasks meet the condition).
The guarantee ratio is obtained by the ratio of the experiments (number of task sets) accepted and the
total number of experiments (i.e., 1000). We are including for comparison the results of the experiments
for the Le exact test.

7.1 Experiment 1

In the first set of experiments, shown in Figures 12, 13, 14, and 15, simulations were conducted
as follows. Each data shown in the Figures, denote the average of the results obtained for 1000
simulations. On each simulation the task generation is as follows.

The periods of each task were generated following a uniform distribution with values in the range
of 100 and 500. The execution times of the tasks were generated following a uniform distribution with
values, 1 ≤ Ci ≤ α Ti, with α = 0.2, α = 0.5, α = 0.8, and α = 1.0. α denotes the maximum utilization
Umax

i allowed for each task in the system, so for example when α = 0.5, the utilization of each task ui

varies in the range [0.01, 0.5]. The number of tasks in each simulation varies depending on the total
utilization U , which varies between 70% and 95%. Tasks are generated until UT =

∑n
i=1 ui = U is

achieved. When generating a new task τn+1 with utilization un+1, if U−0.01 ≤ (UT +un+1) ≤ U +0.01
tasks generation finishes. If (UT + un+1) ≤ (U − 0.01) more tasks need to be generated, but when
(UT + un+1) ≥ (U + 0.01) task τn+1 is discarded.

From Figure 12 we can observe that under α = 0.2, conditions L&L, IP, UO, HC and ROOT,
obtain similar results (Guarantee Ratio ≤ 2%). A comparison of Guarantee Ratios of the remaining
conditions for α = 0.2 is as follows: GR(Le) > GR(A3) > GR(DCT) > GR(A1) > GR(SR) >
GR(PO) > GR(RBOUND) > GR(ROOT).

From Figure 13 we can observe that under α = 0.5, a comparison of Guarantee Ratios of the
conditions is as follows: GR(Le) > GR(A3) > GR(DCT) > GR(SR) > GR(A1) > GR(PO) >
GR(RBOUND) > GR(UO) > GR(ROOT) > GR(IP) > GR(HC) > GR(L&L).

From Figure 14 we can observe that under α = 0.8, a comparison of Guarantee Ratios of the
conditions is as follows: GR(Le) > GR(DCT) > GR(SR) > GR(A3) > GR(A1) > GR(PO) >
GR(RBOUND) > GR(UO) > GR(IP) > GR(ROOT) > GR(HC) > GR(L&L).

From Figure 15 we can observe that under α = 1.0, a comparison of Guarantee Ratios of the
conditions is as follows: GR(Le) > GR(DCT) > GR(SR) > GR(A3) > GR(A1) > GR(UO) >
GR(IP) > GR(RBOUND) > GR(PO) > GR(ROOT) > GR(HC) > GR(L&L).

The results obtained from comparing the inexact conditions in the first experiment are the following.

• From this experiment, it can be observed that L&L is the condition with worst performance.
This is because other conditions use more information from the task set, allowing them to obtain
better bounds. Condition L&L obtains better performance when utilization factor α increases.

22

This is because at higher utilizations, the number of tasks decreases, and L&L yield better
bounds. The same behavior is observed in all schedulability conditions.

• Algorithm 3 is the inexact condition with best performance for α < 0.5, but its performance is
the third best for α ≥ 0.5.

• Algorithm DCT is the algorithm with second best performance for α < 0.5 and the best for
α ≥ 0.5.

• For all values of α algorithm 1 achieves a performance only worst than algorithms SR, DCT and
algorithm 3.

• Algorithm SR achieves the second best performance for α ≥ 0.5, and fourth best performance
for α < 0.5. Note that, algorithms DCT and SR yield slightly better guarantee ratio than
algorithms 1 and 3 for low values of utilization.

• The excelent performance of DCT and SR is explained from the fact that both algorithms
transform the period set to another period set where all tasks belong to a single harmonic chain.
However, it is clear that DCT always yield better performance than SR.

• Algorithm PO achieves the fifth best performance for α < 1.0, and the eight best for α = 1.0.

• Algorithm RBOUND achieves the sixth best performance for α < 1.0, and the seventh best for
α = 1.0.

• Since PO and RBOUND compute and transform the ratio of the periods of the tasks their
performance is better than other non-harmonic algorithms.

• Algorithm UO achieves the worst performance along with algorithms IP, ROOT, HC, and L&L
for α = 0.2, but seventh best performance for 0.5 ≤ α ≤ 0.8, and fifth best for α = 1.0.

• HC and ROOT yield poor performance because few harmonic tasks are generated in the experi-
ment. This can be explained as follows: In the case of HC, the size of the harmonic base is near
the number of tasks. When α increases the number of tasks decreases, producing an increases
in the performance of HC. The same situation occurs for ROOT, where the number of roots is
also near the number of tasks. However note that ROOT always outperform algorithm HC.

• Algorithms ROOT, IP, HC and L&L are the algorithms with worst performance. In general the
performance of ROOT is better than IP for values of α ≤ 0.5, and worst for α > 0.5.

• Algorithm IP is always better than L&L because in its bound it uses more information from the
task set (i.e., Un and Un−1). However its performance is not better than other algorithms.

7.2 Experiment 2

In the second set of experiments, shown in Figures 16, 17, and 18, there is a fixed number of tasks, 5,
10 and 20 tasks. Ci and Ti are computed as in the previous set of experiments, and α is set to 1.0, so
the value of ui varies in the range [0.01, 1.0].

From Figure 16 (5 tasks) it is possible to note that in general the performance of the conditions is
as follows: GR(Le) > GR(DCT) > GR(SR) > GR(A3) > GR(A1) > GR(PO) > GR(RBOUND) >
GR(UO) > GR(IP) > GR(ROOT) > GR(HC) > GR(L&L). Note however that, in this case, UO
yield better performance than RBOUND and PO for small values of utilization (i.e., U ≤ 75%). From

23

Figures 17 and 18 it is possible to note that the performance order of the conditions is similar as that
observed in Figure 16 but with decreased performance.

From this experiment we conclude the following.

• SR and DCT are the algorithms with best performance. The reason for this excellent perfor-
mance, as explained before, is because they transform the task sets to another set containing
a single harmonic chain. This explains why they obtain good performance even when few har-
monic chains are generated in this experiments. Furthermore, note that this effect is more
notorious when the utilization of the task set is low, which means that they have more difficulty
on transforming task sets with high utilizations.

• Algorithms L&L, IP, UO, RBOUND, PO, HC and ROOT yield poor performance (near zero)
when the number of tasks is greater than 5.

• Condition HC only improves condition L&L. The poor performance of algorithm HC is because
it considers the size of the harmonic base in its test, which in this experiments in most of the
cases the size is almost equal than the number of tasks in the sets.

• Algorithms PO and RBOUND yield good performance under low number of tasks (i.e., less than
10 tasks). So, even when they compute period transformations, their performance is clearly
affected by the number of tasks.

• ROOT is a condition based on the harmonicity of the periods, and it yields better performance
than HC (and other algorithms) because it computes the number of roots in the task set, which
in most of the cases is smaller than the size of the harmonic base (and consequently smaller than
the number of tasks). In any case, the poor performance of HC and ROOT is explained because
very few harmonic chains are generated in this experiment.

7.3 Experiment 3

The third set of experiments was conducted for testing the performance of the conditions considering
variations in the period ratio. The generation of tasks did not considered the generation of harmonic
chains in the task sets.

In this experiment all schedulability tests and algorithms followed the algorithm for task generation
algorithms described in [Bini04, 2004]. Bini et − al [Bini04, 2004] argued that traditional evaluation
metrics and methods used for random generation of tasks parameters are greatly biased affecting the
overall performance of the experiments. For these reasons they provided some efficient algorithms for
generating task parameters.

Algorithm UniFast [Bini04, 2004] requires as input the number of tasks and the total utilization U ,
and provides the utilization of each task in the system, ui.

This experiment (shown in Figures 19 to 22) was conducted for 5 tasks following the UniFast
algorithm [Bini04, 2004].

Each data on the Figures, denotes the average of a set of 1000 experiments. The total utilization, U ,
is varied from 70% to 95% in steps of 5%. For each utilization value U , 1000 task sets where generated.
The values of ui for a given task on any task set was computed using the UniFast algorithm considering
a given value of r. Once this utilizations are computed for each experiment, the period Ti of each task
is computed following a uniform distribution with values in the range [50, 1000], and Ci = Ti/ui.

We generated 4 cases, each one with the same 1000 tasks sets, but with different values of r. In this
test the ratio of the periods, r, is varied in values of r ≤ 2, r ≤ 4, r ≤ 8, and r ≤ 16. r is computed as
r = maxTi/minTi (for i = 1, ..., n). For any task set, the periods of the tasks were computed following

24

a uniform distribution in the range [10, 20], [10, 40], [10, 80], and [10, 160] for values of r equal to
2, 4, 8, 16 respectively.

From this test we conclude the following.

• From Figures 19 to 22 it can be noted that the performance of the algorithms for 5 tasks is
as follows: GR(Le) > GR(DCT) ≥ GR(SR) > GR(PO) > GR(RBOOUND) > GR(UO) >
GR(ROOT) > GR(IP) > GR(HC) > GR(L&L). However, for low utilization values (i.e., 75
%) the performance of ROOT, HC and UO, is greater than the performance of algorithms IP,
PO and RBOUND.

• In general, it can be observed that algorithm L&L, IP, UO do not change their performance with
higher period ratios. The reason for this behavior is that their conditions do not depend on the
tasks’s periods.

• Algorithms PO, RBOUND, SR and DCT increase slightly their performance with higher period
ratios. Algorithms PO compute the difference between two periods in the set. So, it computes
how close from being harmonic, are any 2 periods in the set. When r is higher PO finds an
smaller value of β (see condition PO), so it finds that the tasks are closer from being harmonic,
and consecuently it yields better performance.

Algorithm RBOUND tranforms the task set into another task set where the period ratio is in
the range [1,2]. So, when the value of r increases the task set resulting from scaletaskset tend
to move towards 1, yielding better performance.

The excelent performance of DCT and SR is explained because they transform the task sets to
another set containing a single harmonic chain.

• Algorithms HC and ROOT show an slight decrease on their performance with higher period
ratios. So, for these algorithms it is clear than lower harmonic chains are generated with higher
period ratios, expalining the decrease in their performance.

• We executed similar experiments for 10 and 20 tasks (not showed in the paper), but their behavior
was similar to that observed for 5 tasks, although with decreased performance.

7.4 Experiment 4

The fourtht set of experiments was conducted for testing the performance of the conditions considering
the generation of harmonic chains. As discussed before, in previous experiments the generation of
tasks did not considered the generation of harmonic chains in the task sets. Each data on the Figures,
denotes the average of a set of 1000 experiments.

In this experiment tasks were generated using the UniFast Algorithm, as in Experiment 3, and two
tests were conducted.

First Test. The first test (shown in Figures 23 to 34) was conducted considering a given percentage
(20%, 40%, 60% and 80%) of harmonic task for 5, 10 and 20 tasks. That is for each experiment,
a given percentage of tasks is harmonic and tasks are formed from a single harmonic chain. While
generating such single harmonic chain, the periods of the tasks Ti (for i = 2, ..., n) are transformed as
follows. Ti = x Ti−1 where x is a number obtained from a uniform distribution in the range [2, 9].

From Figure 23 (5 tasks) note that DCT and SR are the best algorithms, followed by UO, PO, IP,
RBOUND, ROOT, HC and L&L. However, note that ROOT and HC yield better performance than
IP, PO, and RBOUND only for small utilization values (i.e., 75 %).

25

From Figure 24 (5 tasks) note that DCT and SR and the best algorithms, followed by PO, RBOUND,
ROOT, UO, HC, IP, and L&L. However, note that ROOT, HC and UO, yield better performance than
PO, RBOUND and IP only for small utilization values (i.e., 75 %).

From Figure 25 (5 tasks) we note again that algorithms DCT and SR yield the best performance,
followed by RBOUND, ROOT, UO, HC, IP and L&L. However, note that algorithms ROOT, HC,
and UO yield near 100 % guarrantee ratio for low utilization values.

From Figure 26 note that the performance of algorithms is similar to the one observed in Figure 25.
Figures 27 to 30 indicate again that algorithms DCT and SR are the algorithms with best per-

formance. From this figures it can be observed that in general the performance of the algorithms
is as follows: GR(Le) > GR(DCT) > GR(SR) > GR(PO) ≥ GR(RBOUND) ≥ GR(ROOT) ≥
GR(HC) ≥ GR(IP) ≥ GR(L&L). However, UO tend to yield better performance than PO and
RBOUND for low utilization values and when the percentage of harmonic tasks is low (20 % and 40
%).

From Figures 31 to 34 note that the performance of most of the algorithms is zero. Only algorithms
DCT and SR yield good performance under any percentage of harmonic tasks. In this case, only
algorithms PO, RBOUND and ROOT yield performance higher than zero when 80 % of the tasks are
harmonic.

From this test we conclude the following:

• DCT and SR always yield the best performance.

• Algorithms ROOT, HC and UO yield high performance for low utilization values (less than 80
%), but their performance decreases sharply at high utilization values. Their performance is
quite poor for number of tasks greater than 5.

• In general, we observe that for most of the cases, GR(PO) > GR(RBOUND) > GR(IP) ≥
GR(L&L).

• L&L, IP and UO does not change their performance with higher percentage of harmonic tasks.
On the other hand, there is a clear increase in the performance of DCT, SR, PO, ROOT, HC
and RBOUND when higher harmonic tasks are included in the tasks sets.

• In general, it is notorious the decrease in performance when the number of tasks increases for
all algorithms, except for algorithms DCT and SR.

Second Test. In the second test (shown in Figures 35 to 37) the number of tasks is fixed (10 tasks) and
the number of harmonic chains is varied. In this test, any task belong to only one harmonic chain and
the number of harmonic chains generated was 2, 4 and 6. The number of tasks on each harmonic chain
is computed as b(number of tasks / number of chains)c. The remaining tasks are included into the
last harmonic chain. In the generation of each harmonic chain the periods of the tasks is transformed
as follows. An initial period is computed following a uniform distribution in the range [50, 1000], the
following periods in the chain are multiplied by a unique integer uniformly distributed in the range
[2, 9].

From this test we conclude the following.

• Results from Figures 35 to 37 indicate that DCT and SR are the algorithms with best perfor-
mance.

• ROOT and HC yield 100 % performance for 2 harmonic chains and utilization less than 85 %,
and for 4 harmonic chains and utilization less than 80 %. However, their performance decreases
sharply after those values of utilization.

26

• From Figure 35 we note that, for utilizations higher than 80 % the performance of the al-
gorithms is as follows: GR(Le) > GR(DCT) > GR(SR) > GR(PO) > GR(RBOUND) >
GR(ROOT) > GR(UO) > GR(IP) > GR(HC) > GR(L&L).

• From figure 36 we note that, for utilizations higher than 75 % the performance of the algorithms is
as follows: GR(Le) > GR(DCT) > GR(SR) > GR(PO) > GR(RBOUND) > GR(ROOT) >
GR(UO) > GR(IP) > GR(HC) > GR(L&L).

• From Figure 37 we note that the performance of the algorithms is as follows: GR(Le) >
GR(DCT) > GR(SR) > GR(PO) > GR(ROOT) > GR(RBOUND) > GR(UO) > GR(IP) >
GR(HC) ≥ GR(L&L).

• It is important to note that in this test algorithms L&L, IP and UO yield the same performance
on all experiments.

8 Conclusions

Many real-time applications demand efficient and low cost schedulability tests for on-line admission
control. In this paper we survey the best known exact and inexact schedulability tests for Rate
Monotonic executing on one processor. Extensive simulation experiments were conducted to evaluate
the performance and computational complexity of the inexact schedulability tests. In our simulation
experiments, the schedulability tests are evaluated for different utilization factors, α values and num-
ber of tasks. Additional experiments were conducted considering task sets generated with harmonic
periods. In this experiments, most of the algorithm showed an increased performance.

We believe that the decision of choosing one schedulability tests or another for a particular real-
time application should depend not only on its performance, but also it must consider the allowed
computational complexity.

As part of our future research, we plan to extend this study to include schedulability tests for
aperiodic and resource-sharing tasks and for multiple processors.

References

[Andersson, 2001] B. Andersson, Sanjoy Baruah and Jan Jonsson, “Static-priority Scheduling on Mul-
tiprocessor”, Proceedings of the IEEE Real-Time Systems Symposium, London, England, Decem-
ber 2001.

[Abdelzaher, 2004] Abdelzaher, T.F., Sharma, V., and Lu, C., “A Utilization Bound for Aperiodic
Tasks and Priority Driven Scheduling,” IEEE Transactions on Computers, 53(3): 334-350, March
2004.

[Audsley, 1993] Audsley, N. C., Burns, A., Tindell, K., and Wellings, A. “Applying New Scheduling
Theory to Static Priority Preemptive Scheduling”, Software Engineering Journal, vol. 8, no. 5,
pp. 284-292, 1993.

[Bini, 2001] Bini, E., Buttazzo. G.C., and Buttazzo, G. “A Hyperbolic Bound for the Rate Monotonic
Algorithm”, In IEEE Proc. of the 13th Euromicro Conf. on Real-Time Systems, pp. 59-66, 2001.

[Bini04, 2004] Bini, E. and Buttazzo. G.C. “Biasing Effects in Schedulability Measures”, In IEEE
Proc. of the 13th Euromicro Conf. on Real-Time Systems, 2004.

27

[Burchard, 1995] Burchard, A., Liebeherr, J., Oh. Y., and Son, S.H. “New Strategies for Assigning
Real-Time Tasks to Multiprocessor Systems”, IEEE Transactions on Computers, vol. 44, number
12, pp. 1429-1442, December 1995.

[Burns, 1996] A. Burns, R. Davis and S. Punnekkat, “Feasibility Analysis of Fault-Tolerant Real-Time
Task Sets”, In IEEE Proceedings of the Euromicro Workshop on Real-Time Systems, 29-33, 1996.

[Lipari, 2000] G. Lipari, G. Buttazzo, “Schedulability Analysis of Periodic and Aperiodic Tasks with
Resource Constraints”, J. of Systems Architecture, (46) 2000.

[Buttazzo, 1998] G.C. Buttazzo, “Red: A Robust Earliest Deadline Scheduling Algorithm”, Proc. of
Third Int. Workshop on Responsive Computing Systems, Spain, Dec. 1998.

[Chen, 2003] Chen, D., Mok, A.K., and Kuo, T. “Utilization Bound Revisited”, IEEE Transactions
on Computer, vol. 52, No. 3, pp. 351-361, March 2003.

[Dhall, 1978] Dhall, S.K., and Liu, C.L. “On a Real-Time Scheduling Problem”, Operations Research,
vol. 26, number 1, pp. 127-140, 1978.

[Han, 1997] Han, C.C., and Tyan, H.Y. “A Better Polynomial-Time Schedulability Test for Real-
Time Fixed-Priority Scheduling Algorithms”, Proc IEEE 18th Real-Time Systems Symp., pp.
36-45, 1997.

[Joseph, 1986] Joseph, M., and Pandya, P. “Finding Response Times in a Real Time System”, The
Computer Journal. British Computer Society, vol. 29, no. 5, pp. 390-395, 1986.

[Kuo, 1991] Kuo, T., and Mok, A.K. “Load Adjustment in Adaptive Real-Time Systems”, Proc. IEEE
Real-Time Systems Symp., pp. 160-171, 1991.

[Kuo, 2000] Kuo. T., Liu, Y., and Lin, K. “Efficient On-Line Schedulability Tests for Priority Driven
Real-Time Systems”, Sixth IEEE Real Time Technology and Applications Symposium (RTAS
2000), May 31 - June 02, pp. 4-13, 2000.

[Lauzac, 2003] Lauzac, S., Melhem, R., and Mosse, D. “An Improved Rate-Monotonic Admission
Control and its Application”, IEEE Transactions on Computers. vol. 52. No. 3, pp. 337-350,
March 2003.

[Lauzac: 2000] S. Lauzac, “Multiprocessor Scheduling of Preemptive Periodic Real-Time Tasks with
Error Recovery”, PhD. Thesis. Computer Science Department, University of Pittsburgh, 2000.

[Lee, 2004] Lee, C.-G., Sha, L., and Peddi, A., “Enhanced Utilization Bounds for QoS Management”,
IEEE Transactions on Computers, Vol. 53, No. 2, Feb. 2004

[Lehoczky, 1989] Lehoczky, J.P., Sha, L., and Ding, Y. “The Rate-Monotonic Scheduling Algorithm:
Exact Characterization and Average Behavior”, Proceedings of the IEEE Real-Time Systems
Symposium, pp. 166-171, 1989.

[Lehoczky, 1990] Lehoczky, J.P. “Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Dead-
lines”, in Proc. IEEE, Real-Time Systems Symposium, pp, 201-209, 1990.

[Leung, 1982] Leung, J. Y.-T., and Whitehead, J. “On the Complexity of Fixed-Priority Scheduling
of Periodic Real-Time Tasks, Performance Evaluation, number 2, pp. 237-250, 1982.

[Liu, 1973] Liu, C.L., and Layland, W. “Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment”, Journal of the ACM, vol. 20, number 1, pp. 46-61, January 1973.

[Liu, 2000] Liu, J.W.S. “Real-Time Systems”, Prentice-Hall, 2000.

[Liu, 2002] Liu H., and Hu X., ”Processor utilization bounds for real-time systems with precedence
constraints”, Design Automation for Embedded Systems, An International Journal, v7, p89-114,
September, 2002.

28

[Lopez, 2003] López, J.M., Garćıa. M., Dı́az J.L., and Garćıa D.F., “Utilization Bounds for Multipro-
cessor Rate-Monotonic Scheduling”, Real Time Systems, vol. 24, Issue 1, January 2003.

[Oh, 1995] Oh, Y., and Son, S.H. “Fixed Priority Scheduling of Periodic Tasks on Multiprocessor
Systems”, Tech. Report CS-95-16, Univ. Of Virginia. Dept. of Computer Science, March 1995.

[Park, 1996] Park, D.W., Natarajan, S., and Kanevsky, A. “Fixed Priority Scheduling of Real-Time
Systems using Utilization Bounds”, Journal of Systems and Software, Elsevier. Vol. 33, pp. 57-63,
1996.

[Rajkumar, 1991] R. Rajkumar, “Synchronization in Real Time Systems: A priority inheritance Ap-
proach”, Kluwer Academic Publishers, 1991.

[Sha, 1990] L. Sha, R. Rajkumar and J. P. Lehoczky, “Priority Inheritance Protocols: An Approach
to Real-Time Synchronization”, IEEE Transactions on Computers, 39(9):1175-1185, 1990.

[Sprunt, 1989] B. Sprunt, L. Sha and J. Lehoczky, “ Aperiodic Task Scheduling for Hard Real Time
Systems”, Journal of Real-Time Systems, pp. 27-60, 1989.

29

Figure 12: Guarantee ratio with α = 0.2

Figure 13: Guarantee ratio with α = 0.5

Figure 14: Guarantee ratio with α = 0.8

Figure 15: Guarantee ratio with α = 1.0

30

Figure 16: Guarantee ratio with 5 Tasks and α = 1.0

Figure 17: Guarantee ratio with 10 Tasks and α = 1.0

Figure 18: Guarantee ratio with 20 Tasks and α = 1.0

31

Figure 19: Test with 5 tasks and ratio of periods r ≤ 2

Figure 20: Test with 5 tasks and ratio of periods r ≤ 4

Figure 21: Test with 5 tasks and ratio of periods r ≤ 8

Figure 22: Test with 5 tasks and ratio of periods r ≤ 16

32

Figure 23: Harmonic Chains Test: with 5 tasks and 20 % of harmonic tasks

Figure 24: Harmonic Chains Test: with 5 tasks and 40 % of harmonic tasks.

Figure 25: Harmonic Chains Test: with 5 tasks and 60 % of harmonic tasks.

Figure 26: Harmonic Chains Test: with 5 tasks and 80 % of harmonic tasks.

33

Figure 27: Harmonic Chains Test: with 10 tasks and 20 % of harmonic tasks.

Figure 28: Harmonic Chains Test: with 10 tasks and 40 % of harmonic tasks.

Figure 29: Harmonic Chains Test: with 10 tasks and 60 % of harmonic tasks.

Figure 30: Harmonic Chains Test: with 10 tasks and 80 % of harmonic tasks

34

Figure 31: Harmonic Chains Test: with 20 tasks and 20 % of harmonic tasks

Figure 32: Harmonic Chains Test: with 20 tasks and 40 % of harmonic tasks.

Figure 33: Harmonic Chains Test: with 20 tasks and 60 % of harmonic tasks.

Figure 34: Harmonic Chains Test: with 20 tasks and 80 % of harmonic tasks.

35

Figure 35: Harmonic Chains Test: with 2 harmonic chains

Figure 36: Harmonic Chains Test: with 4 harmonic chains

Figure 37: Harmonic Chains Test: with 6 harmonic chains

36

