

Battery-aware Static Scheduling for Distributed Real-time Embedded Systems

Jiong Luo and Niraj K. Jha
Department of Electrical Engineering

Princeton University, Princeton, NJ, 08544
{jiongluo, jha}@ee.princeton.edu

Abstract

 This paper addresses battery-aware static scheduling in battery-
powered distributed real-time embedded systems. As suggested by
previous work, reducing the discharge current level and shaping
its distribution are essential for extending the battery lifespan. We
propose two battery-aware static scheduling schemes. The first
one optimizes the discharge power profile in order to maximize
the utilization of the battery capacity. The second one targets
distributed systems composed of voltage-scalable processing
elements (PEs). It performs variable-voltage scheduling via
efficient slack time re-allocation, which helps reduce the average
discharge power consumption as well as flatten the discharge
power profile. Both schemes guarantee the hard real-time
constraints and precedence relationships in the real-time
distributed embedded system specification. Based on previous
work, we develop a battery lifespan evaluation metric which is
aware of the shape of the discharge power profile. Our
experimental results show that the battery lifespan can be
increased by up to 29% by optimizing the discharge power file
alone. Our variable-voltage scheme increases the battery lifespan
by up to 76% over the non-voltage-scalable scheme and by up to
56% over the variable-voltage scheme without slack-time re-
allocation.

1. Introduction

 Battery-powered portable systems have been widely used in
many applications, such as mobile computing, wireless
communications, information appliances, wearable computing as
well as various industrial and military applications. As systems
become more complex and incorporate more functionality, they
become more power-hungry. Thus, reducing energy consumption
and extending battery lifespan have become a critical aspect of
designing battery-powered systems.

High-performance battery-powered distributed embedded
systems are generally composed of a network of heterogeneous
processing elements (PEs). The PEs can be general-purpose
processors, application-specific integrated circuits, field
programmable gate arrays or analog circuits. The input
specifications of such systems are typically in the form of task
graphs. A task graph is a directed acyclic graph in which each
node is associated with a task and each edge is associated with the
amount of data that must be transferred between the two

Acknowledgment: This work was supported by DARPA under contract no.
DAAB07-00-C-L516 .

connected tasks. The period associated with a task graph indicates
the time interval after which it executes again. A hard deadline,
the time by which the task associated with the node must complete
its execution, exists for every sink node and some intermediate
nodes. All the hard deadlines must be met. The embedded system
can be a multi-rate system, i.e., it may contain multiple tasks
graphs with different periods. The goal of real-time scheduling
algorithms is to guarantee the deadlines of periodic task graphs
while honoring the precedence relationship among tasks. Due to
the importance of energy in battery-powered systems, the
scheduling scheme should be energy -aware and battery-efficient
as well.

Many system-level power optimization techniques have been
presented in the literature. The representative work includes
voltage scaling [9,10,11], which refers to varying the speed of a
processor by changing the clock frequency along with the supply
voltage, and power management, which refers to the use of power-
down modes when a processor or device is idle in order to reduce
power consumption [7,8]. Instead of focusing on reducing power
consumption alone, researchers have begun to study the battery
behavior and the effect of the battery discharge pattern on the
battery capacity as well [1,2,5,6].

This paper addresses the issue of battery-aware variable-voltage
scheduling for multi-rate real-time distributed embedded systems.
The goal of our scheduling algorithm is to extend the battery
lifespan while meeting the hard real-time constraints and
precedence relationships among tasks. The scheduling algorithm
is able to vary the voltage of PEs that are voltage scalable in order
to reduce the power consumption, and manage the power profile
of the whole system in order to achieve improved battery
efficiency. Our work is motivated by the ideas presented in [2,5],
which suggest that reducing the discharge current level and
shaping its distribution are essential for reducing the battery
capacity loss. The reduction of the average discharge current level
is achieved through voltage scaling and PE shutoff. The
optimization of the discharge current profile is achieved through a
series of schedule transformations starting from an initially valid
schedule. The schedule transformations aim to shape the discharge
current profile to improve the utilization of the ideal battery
capacity, while maintaining the validity of the original schedule.
Our work has several contributions: (1) We simultaneously
address the issues of optimizing the overall power consumption
profile of the distributed embedded system to improve the battery
efficiency, and guaranteeing the hard real-time constraints and
precedence relationships which are traditional tasks in real-time
distributed scheduling. This has not been done in any previous
work. (2) For distributed embedded systems consisting of voltage-
scalable PEs, we perform variable-voltage scheduling via efficient
slack time allocation, which helps reduce the average discharge
power consumption as well as flatten the discharge power profile,
while still guaranteeing the hard real-time constraints and
precedence relationships. Therefore, the scheme is very powerful
in maximizing the battery lifespan.

2. Battery Behavior Models

The capacity of a battery cell can be defined in terms of ampere-
hours or watt-hours [4]. Many factors influence the performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

characteristics and the actual capacity that can be drawn from the
battery. Normally, the battery capacity decreases as the discharge
current increases. Fig. 1 shows the curve of battery capacity versus
the discharge current, i.e., the discharge rate. The load current is
represented as the value normalized to the battery's rated capacity.

The work in [5] explores the fact that battery efficiency is
influenced by the average discharge current as well as the average
discharge current profile. They define the actual power drawn out
of the battery as

dIIPIcIVpact)(*))(/*(
∧

∫= (1)
where I is the average discharge current for some period of time.

)(IP
∧

 is the probability density function of I. V is the discharge
voltage and is assumed to be fixed. c(I) is the utilization factor,
which is the ratio of the battery capacity (in terms of watt-hours) at
discharge current I to the ideal battery capacity 0CPA . Hence, it can
represent the battery efficiency compared to the ideal condition.
The duration of battery service life should equal 0CPA divided

by actp . This work shows that even under the constraint that the
average power consumption is the same, i.e.,

∫
∧

== dIIPIVIVp aveave)(*** is constant, different discharge

current distributions still lead to different actp . The maximum
battery life is achieved when the variance of the discharge current
distribution is minimized. Their results are supported by
experimental study based on PSPICE simulations.

The work in [2] studies the effect of intermittent discharges on
the capacity of Lithium rechargeable batteries and demonstrates
that peak power predicts battery capacity better than average
power. The work in [6] employs a cycle-accurate battery model
and evaluates the instantaneous battery capacity on a cycle-by-
cycle basis. The battery recovery effect in communication devices
is studied in [1].

3. Motivational Examples

This section presents two examples that motivate our work in
this paper. We use Equation (1) to evaluate the actual power actp
drawn from the battery. If the battery cell voltage is assumed to be
nearly constant, the relationship between the battery capacity and
the discharge current would hold for discharge power as well. In
this section, we use Peukert’s formula [4], an empirical equation
to evaluate the relationship between the battery capacity and the
discharge current

αIkIc /)(= (2)
where k and α are constants. We assume 5.0=α .
Example 1: Fig. 2 gives an embedded system specification
consisting of three task graphs. Assume for simplicity that all these
have a period of 16.0 seconds. The embedded distributed system
implementing the task graphs consists of two PEs, PE1 and PE2,

connected by a bus. Figs. 3 and 4 give two feasible schedules for
one period. The worst-case execution time of t1, t3, t4, t5, t6, t7
and t8 on their allocated PE are all 4 seconds, while the worst-case
execution time of t2 on its allocated PE is 2 seconds. The execution
time of inter-PE communication edge e1 on the bus is also 2
seconds. The average power consumption number for each
scheduled event is shown in brackets in the schedule, e.g., for t1 it
is 5 units. Based on the traditional assumption in distributed
computing, we assume intra-PE communications, e2, e3, e4 and e5,
all take zero time. We assume both PE1 and PE2 are buffered.

For simplicity, we assume that the power consumption in the
shut-off state (shaded parts in the schedule) is zero and that there
is no overhead in entering and leaving this state. Note, that our
algorithm, which is presented later, does not need to make the
above assumptions. The overall discharge power of the system is
the summation of all the power consumptions in all the PEs and
buses. For the schedule in Fig. 3, the discharge power distribution

is approximately 2/1)10(==
∧

pP and 2/1)2(==
∧

pP , while for the
schedule in Fig. 4, the discharge power distribution is

1)6(==
∧

pP . Using Equations (1) and (2), the actual power drawn
from the battery in the schedule in Fig. 3 is 17.23*c, while the
value for the schedule in Fig. 4 is 14.70*c, where c is some
constant. The latter schedule results in a 15% reduction in the
actual power drawn out of the battery, and correspondingly a 17%
improvement in the battery lifespan.

Example 2 below is used to illustrate the effect of voltage
scaling in real-time distributed embedded systems composed of
voltage-scalable PEs. The relationships among clock period,
supply voltage and power consumption, which is used in this
example to calculate power consumption, are presented next.

The processor clock period, T, can be expressed in terms of the
supply voltage, ddV , and threshold voltage, tV , as follows:

 2)/(tdddd VVkVT −= (3)

30
40
50

60

70

80
90

100

Co20

Co10−

Co20−
 0.1 1 10

Discharge rate (C rate)

Rated capacity, %

Fig. 1 Performance of 2/ LiNiOC Lithium-Ion AA-size
cell at various temperatures and discharge rates

Deadline: 16

e4

e5

Fig. 2 Task graphs for Example 1

t1

t2

t3

t4 t5

t6

t7

t8

Deadline: 16 Deadline: 16
Deadline: 16

Period: 16

e1 e2
 e3

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Fig. 4 New valid schedule for Example 1

Fig. 3 Original valid schedule for Example 1

power: 10 2 2 10

PE1:

PE2:

Bus:

t1(5)

t6(5)

t3(1)

t7(1)

t4(1) t5(5)

t8(5)
 e1(1)

 t2(1)

power: 6 6 6 6

PE1:

PE2:

Bus:

t3(1)

t6(5)

t1(5)

t7(1)

t4(1) t5(5)

t8(5)

 t2(1)

e1(1)

where k is a constant. We assume tV = 0.8V. The processor
power, p, can be expressed in terms of the frequency, f, switched
capacitance, N, and the supply voltage, ddV , as:

2

2
1

ddfNVp = (4)

Example 2: Consider the task graphs shown in Fig. 5. Fig. 6(a)
gives an as-soon-as-possible feasible static schedule on a
distributed system consisting of PEs, PE1 and PE2, connected by a
bus. Assume a power supply voltage of 3.3V. The worst-case
execution time of t1, t3, t4, t5 and t7 on their allocated PE are all
0.2 seconds. The worst-case execution time of t2 and t6 on their
allocated PE are both 0.3 seconds. The execution time of inter-PE
communication edges e1 and e2 are both 0.1 seconds. We assume
the average power consumption for each task is 1 unit, while the
average power consumption for each inter-PE communication
edge is 0.2 unit. Fig. 7(a) gives a new feasible schedule after
schedule slots interchanging and shifting of the schedule in Fig.
6(a).

We perform voltage scaling on these two schedules by
extending the execution time of the tasks to their latest finish time.
The new schedules are shown in Fig. 6(b) and Fig. 7(b),
respectively. For example, in Fig. 6(a), t2 is scheduled at time
instant 0.2. Since it can finish as late as time instant 0.6, the speed
of PE1 can be scaled down by a ratio of (0.6 – 0.2) / 0.3 for t2.
Correspondingly, the supply voltage can be scaled down from
3.3V to 2.8V, extending the actual running length of t2 from 0.3
to 0.4. In Fig. 6(b), the working voltages for task t1, t2, t3, t4, t5,
t6 and t7 are 3.3, 2.8, 3,3, 3.3, 1.8, 2.8, and 2.7V, respectively. In
Fig. 7(b), the working voltage for tasks t1, t2, t4 and t6 are all 3V,
while for task t3, t5 and t7 are all 2.3V. The performance metrics
for the different schedules, including the average power
consumption and battery service life evaluated by Equation (2)
using average power consumption, are shown in Table 1. In Table
1, c′ is some constant.

Table 1: Performance characteristics of different schedules

Schedule Overall average

power consumption
of the system

Service life evaluated
based on average

power consumption
Fig. 6(a) 1.37 0.62 * c′
Fig. 6(b) 1.05 0.93 * c′
Fig. 7(b) 0.96 1.06 * c′

Compared to the schedule in Fig. 6(a), the schedule in Fig. 6(b)

results in a 23% reduction in average system power consumption
and a 50% improvement in battery service life evaluated based on
average power consumption. For the schedule in Fig. 7(b), there is
a 30% reduction in the average system power consumption and a
71% improvement in battery service life evaluated based on
average power consumption, compared to the schedule in Fig.
6(a). This example shows, not supprisingly, that voltage scaling
reduces system power consumption and increases the battery
lifespan. Moreover, a more efficient voltage scaling scheme can
lead to better results, as the difference between Fig. 6(b) and Fig.
7(b) shows.

4. Static Resource Allocation, Assignment and
Scheduling

The static resource allocation, task/communication assignment
and scheduling algorithms we use are from a system synthesis tool
presented in [12]. It uses a slack-based list scheduling algorithm to
generate static PE and communication link schedules for each task
and communication event along the hyperperiod, which is the least
common multiple of all the task graph periods in a multi-rate
system specification. It is well known that there exists a feasible
schedule for the periodic task graphs if and only if there exists a
feasible schedule for the hyperperiod [15]. A slack-based list
scheduling scheme is used in the inner-loop of system synthesis in
order to generate a cost-efficient distributed architecture and a
feasible schedule. The scheduling scheme is not optimized for
battery-aware power consumption. We modify the static schedule
in a post-processing stage through a series of schedule
transformations, which we discuss in Sections 5 and 6.

5. Battery-aware Scheduling Scheme

In this section, we present a battery-efficient scheduling scheme
which aims to optimize the system discharge power profile.
Heuristics to optimize the battery efficiency, as suggested in
Section 3, are based on minimization of the peak power
consumption and reduction of the variance of the discharge current
profile. The goal of our scheduling scheme is to reduce the overall
average of the actual power drawn out of the battery, actp , which
is evaluated by

t1

t2 t3 t7

t4 t5

t6

e1

e2

Deadline: 1.2

Deadline: 1.2

Deadline: 1.2

Period: 1.2

Deadline: 0.5

Fig. 5 Task graphs for Example 2

b. Corresponding variable-voltage schedule

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

a. Original feasible schedule

PE1:

PE2:

Bus:

PE1:

PE2:

Bus:

t1 t4

t3

t6

t5 t7

t2

 e1 e2

t2 t1 t4 t6

t3 t5 t7

 e1 e2

Fig. 6 Original schedule and the corresponding variable-
voltage schedule for Example 2

PE1:

PE2:

Bus:

Fig. 7 New Schedule after schedule slot shifting and
swapping and the corresponding variable-voltage schedule

Fig. 6 Original schedule and the
corresponding variable-voltage

b. Corresponding variable-

t2 t1 t6

t3 t5

t7

 t4

e1 e2

a. New feasible
schedule

t2 t1

t3

t7

 t4 t6

t5

e1 e2

a. Original feasible schedule

b. Corresponding variable-voltage schedule

PE1:

PE2:

Bus:

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

∫= dhyperperio

p

act dt
tc
tp

dhyperperio
p 0)(

)(1 (5)

where p(t) is the power consumption at time t, and)(tc p is the
battery utilization factor evaluated at time t. Note that Equation (5)
is just a variation of Equation (1). p(t) is the summation of all the
power consumptions in all the PEs and buses, or any other system
component which draws power from the battery. Thus, we assume

∑
∪∈

=
) PEs (

)()(
busesallalli

i tptp . Other components of system power

consumption can be easily incorporated as well, which normally
can be represented as a fixed contribution. For each task, we
assume we know its average power consumption and its worst-case
execution time through simulation and analysis tools [16,17]. The
energy consumption of a PE in the idle period ip of a system
entering sleep state i can be modeled as

iiiwieii pweippwpeEC
ii

*)(** −−++= [8], where ie (iw) is the

delay overhead and
iep (

iwp) is the power consumption in entering

(leaving) sleep state i, and ip is the power consumption in this
state. A PE always assumes a sleep state that minimizes EC.

First, we define some variables and functions that are used later
in presenting our heuristics. We define event_list as a list of
statically scheduled events in the order of their start times on each
PE or bus for one hyperperiod. sched is an array of event_list for
all the PEs and buses. The scheduled event can be a periodic task
or a communication event. In the static schedule, every event is
characterized by a start time, a finish time, and a duration, which
is the worst-case execution time for that event. For a scheduled
event, next_event is the next scheduled event in the same
event_list. For a task, in-edges (out-edges) refers to all the inter-
PE communication edges entering (coming out of) the task, where
inter-PE communication edges refer to those edges for which the
parent task and child task are assigned to different PEs. A deadline
may be associated with a task. For a task i,

))_(,,min(min
)(constraint_
)(starteventnextideadlineistartj

ifinish
iedgesoutj →→→→

=
−∈

The battery-aware schedule optimization scheme is composed of
two parts. The initial schedule is first optimized through global
shifting with a goal to reduce the peak power consumption and to
increase the flexibility in the schedule. Then local schedule
transformations are employed to optimize the discharge power
profile. The details of the scheduling scheme are presented in sub-
sections 5.1 and 5.2.

5.1 Battery-aware local schedule transformations

In the battery-aware local schedule transformation scheme, we
first rank the time point along the hyperperiod in the order of p(t).
Then from the highest power consumption time point to the lowest
point, we try to interchange adjacent events or shift forward or
shift backward events around that time point, with a goal to reduce
cost function actp evaluated by Equation (5). In order to guarantee
the validity of the schedule in each transformation, if
interchanging two scheduled events i and j, or shifting forward a
scheduled event i, or shifting backward a scheduled event j
violates the precedence relationship, we evaluate the possibility of
shifting forward the out-edges of i and/or shifting backward the in-
edges of j for exactly the amount needed in case i and j are tasks,
or shifting forward the child task of i and/or shifting backward the
parent task of j exactly for the amount needed in case i and j are
communication events, and take into consideration these effects on

actp as well. No local schedule transformation is performed if it
violates the precedence relationship or hard timing constraints, or
it does not reduce actp . After each round of transformations, the
power profile is re-ranked and the above process repeats until
sched is no longer changed. The following example illustrates the

scheme.
Example 3: Consider the task graphs in Fig. 2 and the initial
schedule in Fig. 3 once again. Fig. 8 illustrates the steps involved
in applying the above-mentioned method to the schedule in Fig.
3. The ranking of time periods in terms of power profile p(t)
initially is {(0,4),(12,16),(4,8),(8,10),(10,12)}. There are four steps
involved. In the first step, t1 and t3 are interchanged to reduce the
power consumption in time period (0,4). Similarly, in the second
step, t2 and t8 are interchanged. Then t8 is shifted backward to
deal with time period (10,12). The resulting schedule is shown in
Fig. 8(b). The ranking of time periods in terms of p(t) is then
updated. In the second round, e1 is shifted forward to relax the
current peak power consumption in time period (8, 10). The

resulting schedule is shown in Fig. 4. At each step, actp is
reduced.

5.2 Global shifting scheme

The above local transformation scheme is greedy, and is
dependent upon a good initial solution. This can be illustrated
through Example 4.
Example 4: Fig. 9 shows an embedded system specification
consisting of three task graphs. Fig. 10(a) gives a feasible static
schedule on a distributed system consisting of two PEs, PE1 and
PE2, connected by a bus. The worst-case execution time of t1, t2,
t3, t4, t5 and t6 on their allocated PE are all 2 seconds, while the
worst-case execution time of t7 and t8 on their allocated PE are
both 1 second. The execution time of inter-PE communication
edge e1 on the bus is 1 second. The power consumption number
for each scheduled event is shown in brackets in the schedule.
There is no opportunity for local movements in order to reduce

actp in the schedule of Fig. 10(a). However, the schedule is not
optimal for battery efficiency.

 In order to get a good initial solution, we process the schedule
through a battery-aware global shifting stage, which tries to shift
the schedule slots in a global manner with the goal of reducing the
peak power consumption and increasing the flexibility in the

Deadline: 8

t1

t2

t3

t4 t5

t6

t7

t8

Deadline: 4
Deadline: 8

Deadline: 8

Period: 8

e4 e2
e3

e1

e5

Fig. 9 Task graphs for Example 4

 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

a. Original schedule

b. New schedule after first three steps
Fig. 8 The schedule transformation steps for the task graphs

in Fig. 2

(1)

t1(5)

t6(5)

t3(1)

t7(1)

t4(1) t5(5)

t2(1) t8(5)

PE1:

PE2:

Bus:

(2) (3)

 e1(1)

t3(1)

t6(5)

t1(5)

t7(1)

t4(1) t5(5)

t8(5)

PE1:

PE2:

Bus: (4)

 t2(1)

e1(1)

schedule. This process starts from an initial schedule where every
scheduled event is shifted backward to its as early as possible
position. Then we create an event processing queue and initialize
it by inserting the last event on every event_list which does not
have out-going communication edges. Then we try to shift the
tasks and communication events in the processing queue as late as
possible, so long as in the new position where the tasks and
communication events are shifted to, the overall average power
consumption for that duration does not exceed some given
threshold value (power_threshold), while the negative effect, if
any, resulting from the changing of the grouping of idle periods,
are less than some threshold value (side_effect_threshold). If there
is no such position, we shift forward the scheduled events to the
best position in terms of the reduction in actp . A new task or
communication event is added into the processing queue if its
next_event and all those events which have data dependency on it
have finished shifting. Shifting forward as late as possible helps
increase the flexibility of the overall schedule so that more
opportunities can be opened up for further schedule
transformation.

The global shifting scheme is illustrated through Example 4. In
the initial schedule in Fig. 10(a), there are no valid local
movements possible to reduce actp . We take the average power
consumption (4.675) as the power_threshold and assume the
side_effect_threshold is zero. During global shifting, first, t8 is
shifted to the as-late-as-possible slot. The average power
consumption for the new time period (7, 8) of t8 is 4, hence, the
power_threshold is not exceeded. Similarly, t7 is shifted as late as
possible to time period (6,7). Then e1 is shifted as late as possible
to (5,6). After this global shifting procedure, the new schedule is
shown in Fig. 10(b). Now t6 and t3 can be interchanged to reduce

actp , without violating the precedence relationships and hard
real-time constraints. The final schedule is shown in Fig. 10(c).
Compared to the schedule in Fig. 10(a), the variance of the
discharge power profile is reduced in the schedule in Fig. 10(c).

6. Variable-voltage Scheduling Scheme

Some embedded systems may be composed of voltage-scalable
PEs, for example, Crusoe processors [14]. Since voltage scaling
has a high potential for reducing system energy consumption, our
algorithm is tuned to facilitate the possibility of scaling down the
voltage for each task whenever possible.

We define slack time for each scheduled task as the difference
between its finish_constraint and its finish time. The slack time in

the distributed schedule makes it possible to scale down the
voltage without sacrificing the real-time constraint. Our
scheduling scheme tries to allocate the slack time in a close-to
optimal way to improve the performance of the consequent
voltage scaling. Assume for each task i, id is its execution time
plus its slack time, ie is its execution time, and ip is its power
consumption under maximum voltage maxV . For a PE, total_slack
is the summation of the slack times of all the tasks on that PE in
the initial schedule, and total_duration is the summation of the
execution times of all the tasks on that PE. We use total_slack to
approximate the total available slack time for all the tasks. Using
Equations (3) and (4) to evaluate the effects of voltage scaling, for
a task i, the speed reduction ratio should be iii edscale /= , and the
corresponding working voltage should be

22)
*

()
*

(tt
i

i

i

i
ti VV

d
e

d
e

VV −+++=
ββ

, where
2

max

max

)(
*2

tVV

V

−
=β .

Our objective is to minimize the energy consumption of all the
tasks after voltage scaling, which is

∑∑ ==
∈

2
max

2

 tasks

2
max

2 /**)/(*)/(* VVepVVscaledpenergy iii

alli

iiii (6)

under the constraint

≥
+==∑

ii

i

ed
slacktotaldurationtotaltotald __

 If the threshold voltage tV is close to zero, the optimal solution

can be approximated by
∑

=
3

3
*

ii

ii
i

pe

pe
totald , so long as

id i ei ∀≥ .
The allocation of slack time is performed through global

schedule shifting and schedule slots interchanging to match the
optimal slack assignment, which is ii ed − for task i.

7. Experimental Results

In this section, we present the experimental results. The task
graphs in our example are generated with the aid of a randomized
task graph generator, TGFF [13].

In the first experiment, we evaluate the performance of our
battery-aware scheduling scheme presented in Section 5. The
actual power consumption drawn out of the battery is evaluated by
Equation (5), where)(tc p is evaluated using the short-term
average power consumption. The duration of the short-term
average should match the order of the battery’s time constant for
response to the change of the discharge rate, which is assumed to
be 1 second [2]. The evaluation of the battery efficiency is based
on data extracted from the specifications for Lithium-Ion Polymer
batteries in [3]. We evaluate two test sets, a and b, based on the
same four task graphs. For the purpose of evaluation, we set the
rated battery capacity (in terms of W-hours) for test set a(b) to be
2X(1.67X) of the average power consumption of the system. The
results for the original schedule and the schedule optimized in
terms of the discharge power profile are compared in Table 2. In
Table 2, avep is the average power consumption of the system.
The optimized schedule results in an improvement of battery
lifespan in the range of 8.5% to 16.6% and 12.6% to 28.8% for
test sets a and b, respectively. This experiment shows that without
sacrificing the performance constraints and introducing overheads
into the system, the shaping of the discharge power profile alone
can help boost the battery performance effectively. The
optimization scheme would be more powerful under stringent
discharge conditions, for example, at lower temperatures or
limited battery capacity, where the battery capacity loss is more
pronounced when the discharge rate is high. As shown for test set

Fig. 10 Battery-aware optimization for Example 4

 PE1:

 PE2:

 Bus:

a. Initial schedule

c. Final schedule after schedule interchanging

 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

 PE1:

 PE2:

 Bus:

 PE1:

 PE2:

 Bus:

b. New schedule after global shifting

t1(5) t2(1)

t6(5) t3(1) t4(2) t5(3)

e1(1)

t7(1) t8(1)

b. New schedule after global
shifting

t1(5) t2(1)

t3(1) t6(5) t4(2) t5(3)

e1(1)

t7(1) t8(1)

t1(5) t2(1)

t6(5) t3(1) t4(2) t5(3)

e1(1)

t7(1) t8(1)

b, as the rated battery capacity decreases compared to test set a,
the optimization of the battery discharge power profile is more
effective in increasing battery performance.

 In the second experiment, we evaluate the performance of our
variable-voltage scheduling scheme presented in Section 6. We
compare three schemes: (1) non-variable-voltage scheme, (2)
variable-voltage scheduling without slack time re-allocation, and
(3) variable-voltage scheduling with slack time re-allocation. We
evaluate both the battery performance with and without
considering the shape of the discharge power profile. The
experimental results are shown in Table 3 for another set of task
graphs. Scheme (3) achieves an average power reduction in the
range of 17% to 38% and 14% to 31% compared to Scheme (1)
and Scheme (2), respectively. In terms of the battery lifespan
evaluated using actp , Scheme (3) results in an improvement in the
range of 26% to 76% and 20% to 56% over Scheme (1) and
Scheme (2), respectively. In terms of the battery lifespan
computed as the battery capacity (evaluated using average power
consumption) divided by average power consumption, Scheme (3)
results in an improvement in the range of 23% to 68% and 17% to
50% over Scheme (1) and Scheme (2), respectively. It can be
observed that the improvement is more pronounced when the
shape of the discharge power profile is taken into consideration,
i.e., the evaluation is based on actp , which indicates our scheme is
helpful in reducing both the average discharge power level and its
variance. Thus, the scheme is very powerful in boosting the
battery performance.

Table 2: Comparison of different scheduling schemes for
battery-aware power consumption

actp (mW) / Battery
lifespan(hours)

Test #tasks # PEs / #
buses

avep
(mW)

Non-
optimized

Optimized

Battery
lifespan
increase
(%)

1(a) 71 2/1 126 164/1.53 152/1.66 8.5%
2(a) 114 8/16 361 445/1.62 409/1.77 9.3%
3(a) 94 6/13 359 463/1.55 420/1.71 10.3%
4(a) 146 6/13 537 738/1.45 636/1.69 16.6%

1(b) 71 2/1 126 185/1.14 159/1.32 15.8%
2(b) 114 8/16 361 476/1.27 420/1.43 12.6%
3(b) 94 6/13 359 508/1.18 439/1.36 15.3%
4(b) 146 6/13 537 857/1.04 669/1.34 28.8%

8. Conclusions

 In this paper, we presented two schemes to optimize the battery
lifespan in battery-powered real-time embedded distributed
systems by reducing the average discharge power profile and
shaping its distribution. One scheme optimizes the discharge
power profile. Another scheme performs variable-voltage
scheduling via efficient slack-time re-allocation in the distributed
system composed of voltage-scalable PEs. It helps reduce the
average discharge power consumption as well as minimize the
variance of the discharge power profile. Both schemes increase the
battery lifespan while still guaranteeing the real-time constraints

and precedence relationships in the distributed embedded system,
based on an evaluation metric which is aware of the shape of the
discharge power profile. In future work, the evaluation metric
should incorporate the battery recovery effect as well.
References
[1] C.F. Chiasserini and R.R. Rao, “Pulse battery discharge in
communication devices,” in Proc. Mobilcom, pp. 88-95, Aug.
1999.
[2] T. Martin, “Balancing batteries, power and performance:
System issues in CPU speed-setting for mobile computing,” Ph.D.
Dissertation, Carnegie Mellon University, Department of
Electrical and Computer Engineering, Aug. 1999.
[3]http://www.batteryeng.com/lithium_ion_fs.htm
[4] H. D. Linden, Handbook of Batteries , 2nd ed., McGraw-Hill,
New York, 1995.
[5] M. Pedram and Q. Wu, "Design considerations for battery-
powered electronics," in Proc. Design Automation Conf., pp. 861-
866, June 1999.
[6] T. Simunic, L. Benini and G. De Micheli, “Energy efficient
design of battery powered embedded systems,” in Proc. Int. Symp.
Low Power Electronics and Design, pp. 212-217, Aug. 1999.
[7] Q. Qiu and M. Pedram, “Dynamic power management based
on continuous-time Markov decision processes,” in Proc. Design
Automation Conf., pp. 555-561, June 1999.
[8] E. Y. Chung, L. Benini, and G. De Micheli, “Dynamic power
management using adaptive learning tree,” in Proc. Int. Conf.
Computer-Aided Design, pp. 274-279, Nov. 1999.
[9] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B.
Srivastava, “Power optimization of variable-voltage core-based
systems,” IEEE Trans. Computer-Aided Design, vol. 18, no. 12,
pp. 1702-1714, Dec. 1999.
[10] Y. Shin and K. Choi, “Power conscious fixed priority
scheduling for hard real-time systems,” in Proc. Design
Automation Conf., pp. 134-139, June 1999.
[11] J. Luo and N. K. Jha, “Power-conscious joint scheduling of
periodic task Graphs and aperiodic tasks in distributed real-time
embedded systems,” in Proc. Int. Conf. Computer-Aided Design,
pp. 357-364, Nov. 2000.
[12] R. P. Dick and N. K. Jha, “MOCSYN: Multiobjective core-
based single-chip system synthesis,” in Proc. Design Automation
& Test in Europe Conf., pp. 263-270, Mar. 1999.
[13] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs
for free,” in Proc. Int. Workshop Hardware/Software Codesign,
pp. 97-101, Mar. 1998.
[14] http://www.transmeta.com/
[15] E. L. Lawler and C. U. Martel, “Scheduling periodically
occurring tasks on multiple processors,” Information Processing
Letters, vol. 7, pp. 9-12, Feb. 1981.
[16] Y. S. Li, S. Malik, and A.Wolfe, “Performance estimation of
embedded software with instruction cache modeling,” in Proc. Int.
Conf. Computer-Aided Design, pp. 380-387, Nov. 1995.
[17] W. Ye, N. Vijaykrishan, M. Kandemir, and M. J. Irwin, “ The
design and use of SimplePower: A cycle-accurate energy
estimation tool,” in Proc. Design Automation Conf., pp. 340-345,
June 2000.

Table 3: Comparison of different voltage-scaling and non-voltage-scaling schemes

actp (mW) / Battery lifespan

evaluated by actp (hours)

Battery lifespan (evaluated

by actp) increase (%)

Ave. power consumption (mW) / Battery lifespan
evaluated by average power consumption (hours)

Test #tasks #PEs/
#buses

(1) (2) (3) (3) vs. (1) (3) vs. (2) (1) (2) (3)
1 52 2/1 136/1.57 111/1.94 86/2.51 59.9% 29.4% 107/1.8 92/2.14 72/2.77
2 101 4/6 500/1.70 475/1.79 398/2.14 25.9% 19.6% 425/1.8 406/1.89 351/2.22
3 114 8/16 476/1.74 418/1.98 338/2.45 40.8% 23.7% 413/1.8 369/2.04 307/2.49
4 100 5/10 302/1.72 274/1.89 206/2.52 46.5% 33.3% 260/1.8 240/1.96 187/2.58
5 133 7/16 490/1.70 434/1.92 278/2.99 75.9% 55.7% 416/1.8 375/2.02 258/3.03

