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Abstract

A power management algorithm for an embedded system re-
duces system level power dissipation by shutting o� parts of
the system when they are not being used and turning them
back on when they are required. Algorithms for this prob-
lem are online in nature since they must operate without
knowledge of the arrival time or service requirements of fu-
ture requests. In this paper, we present online algorithms
to manage power for embedded systems. We perform an
empirical analysis of these algorithms and give theoretical
justi�cation for the empirical results. E�ective power man-
agement strategies have an adverse impact on the latency of
the system for which the strategy is designed. Typically, the
more aggressive the power management scheme, the greater
the increase in the latency of the system. In this paper, we
prove an upper bound on the additional latency of the sys-
tem introduced by power management strategies. Moreover,
we show that this upper bound occurs each time the sys-
tem is shutdown and hence is an important system design
parameter.
In addition, service time and latencies have an e�ect on

power management strategies since they alter the length
and occurrences of idle periods which. We study this phe-
nomenon experimentally, by modeling the disk drive of a
laptop computer as an embedded system. The results show
that if service times of arriving requests are modeled, the rel-
ative performance of algorithms can change leading to non-
adaptive algorithms performing better than adaptive ones.
We compare the performance of adaptive and non-adaptive
power management algorithms. In particular, our experi-
mental results show that an \immediate" shutdown strategy
that shuts down the system whenever it encounters an idle
period performs surprising better than sophisticated adap-
tive algorithms suggested in the literature. We provide an
analytical explanation for the e�ectiveness of power manage-
ment strategies.

1 Introduction

Power dissipation in a VLSI system is a primary design con-
sideration. In the design of portable computing devices,
greater attention has to be paid to power estimation and
management techniques. Over the past few years, methods
to estimate and minimize power in the design of circuits have
been reported. Several excellent reviews of power minimiza-
tion techniques are presented by Pedram [6], Devadas and
Malik [7] and Najm [8].
Low power VLSI design can be achieved at various levels

of abstraction during the design process. These include the
system level, behavioral level, the RTL level, and the gate
level. Most the techniques in the literature are focused at
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the RTL level. This paper focuses on the system level where
little prior work has been done. Furthermore, there has been
little work to measure how latency and power management
schemes e�ect each other. The notion of system level design
is described next.
An embedded system (the system for short) is typically

reactive and real-time in nature: it continually reacts to the
stimuli coming from its environment and performs this inter-
action under timing constraints. This interaction causes the
system to dissipate power in order to service the request. The
inter-arrival time between requests is unknown to the algo-
rithm. In order to determine the optimal power management
policy, it is necessary to know the sequence of inter-arrival
times of requests, the time to service each request and some
internal parameters of the system. During system level de-
sign, this information is not known. However, in order to
determine an e�ective power management strategy for such
a system, we assume that at least one power metric of the
system is known: the ratio of the idle and the startup power
dissipation. In this paper, we discuss the strategies that se-
lectively shutdown subsystems and turn them back on when
needed as well as the e�ect of such strategies on the latency
of the system. Typically, power management is needed for
subsystems that are timing critical. As a result, the e�ect of
latency arising from the power management scheme is cru-
cial to the design of a system that complies with its timing
requirements. This paper analyzes the e�ects of power man-
agement on the latency of the system.
This paper makes three contributions. The �rst is an an-

alytical upper bound on the increase in the latency of the
system due to power management. We prove that the max-
imum latency of the system is not increased by more than
the time it takes to revive the system from the shut o� state.
Furthermore, this upper bound is always achieved whenever
the system is powered down. As the second contribution, we
introduce service times and latency into the model for power
management algorithms. Most previous studies ignore these
factors. We �nd that when service times are incorporated
into the model, a simple algorithm, called Immediate, does
better than previously proposed adaptive algorithms on the
data used in our study. Algorithm Immediate simply shuts
o� the system whenever an idle period is encountered. The
third contribution is an analysis of this behavior which pro-
vides theoretical justi�cation for why Immediate performs
better in our study than previously suggested algorithms.
This leads to the conclusion that non-adaptive algorithms
perform better on distributions whose inter-arrival times are
locally uniform. We model a laptop computer's hard drive as
an embedded system and apply previously proposed adaptive
algorithms [12, 1] as well as our simple algorithm to manage
power dissipation for this system.

1.1 Background and Previous Work

A power management scheme is speci�ed by a series of
thresholds: one for each power level, except the powered-
down state. Each threshold determines how long the system



will remain in that state before it transitions to the next
lowest power level or until a new request for service arrives.
In this paper, we only consider two levels of power where
the system is either powered-up or powered-down. Thus,
for each idle period, the algorithm is governed by a single
threshold. However, for systems that can sequentially move
from a threshold with higher power dissipation to one with
lower power dissipation, the same algorithms can be applied
by changing the system parameters. On the other hand, for
systems that can move between any arbitary threshold state,
we believe that a randomized algorithm will be more useful
and we leave that problem open in this paper.
There are essentially two kinds of power management

strategies: non-adaptive and adaptive. For a non-adaptive
algorithm, the threshold is statically computed based on the
properties of the system and does not change when the re-
quests are received. In adaptive algorithms, the time after
which the system shuts down is determined dynamically as
the system is servicing requests. Intuitively, we would expect
adaptive algorithms to perform better than non-adaptive
ones since they have the ability to learn and exploit pat-
terns in the arrival sequence of requests. Using heuristic
algorithms, all previous work has experimentally shown that
this intuition holds.
This paper builds upon earlier works on power manage-

ment strategies [3, 1, 2, 12]. Srivastava et al. [3] conducted an
extensive analysis on di�erent system shutdown approaches.
They have proposed an adaptive shutdown algorithm for
power saving of event-driven systems. They �rst collected
sample traces of on-o� activity on an X-server, then they pro-
posed two adaptive shutdown formulas based on the analysis
of the sample traces: one using a general regression-analysis
technique to correlate the length of the upcoming idle period
and the second based on on-o� activity behavior. These re-
sults demonstrated experimentally that adaptive shutdowns
can reduce power dissipation in systems.
This result was followed up by Hwang and Wu [1]. Their

analysis adapted the exponential-average approach [9] used
in the CPU scheduling problem for the prediction of idle
periods. They proposed an algorithm using two new strate-
gies: prediction-miss correlation and pre-wakeup. The most
signi�cant contribution of this work is that these methods
were independent of the traces obtained for the system un-
der consideration. However, in the absence of analysis of
the algorithm, it is not clear how close their results are to
the optimal solution. Furthermore, their algorithm may not
be adapted to hardware systems since it requires expensive
computation resources that may not be available.
More recently, Paleologo, Benini et al. [2] proposed adap-

tive power management algorithms for embedded systems
by modeling the problem as a stochastic optimization prob-
lem. They use a laptop's disk drive as an embedded sys-
tem [16] and using the Auspex �le traces [14], they generate
a Markov model using an exponential distribution for the
arrival of the requests and to model the service times for
each request. This work does incorporate service time into
the model. Moreover, their assumption that the inputs are
exponentially distributed is not fully justi�ed and may not
always hold in view of signi�cant correlation between disk
accesses. As a result, their model is only as good as (a) the
distribution they assume the traces to fall into and (b) the
traces themselves.
None of these papers, analyze the e�ects of power manage-

ment on the latency of the system. The authors in [1] con-
sider latency to be a metric that their algorithm optimizes.
However, they only provide experimental results on the la-
tency of the system they use to illustrate their algorithms.
We believe that the e�ects of latency on the system's per-
formance is a crucial decision that the system designer must
make while designing a system that has strict timing require-

ments. The system designer has to manage latency as well
as dissipate as little power as possible.
The authors in [12] have adapted the results from [5, 4] to

the power management problem. They present an optimal
non-adaptive algorithm and an adaptive algorithm that in
the worst case, dissipates three times the power dissipated
by the optimal o�ine algorithm which has complete knowl-
edge of all future requests for service. However, here too,
the authors do not model service time for a request. As
a result, their experiments show that simple adaptive algo-
rithms perform as well as complex adaptive algorithms pre-
sented by Hwang and Wu [1]. We have modi�ed the adap-
tive algorithms presented in [12] to model service time for a
given request. We show that this alters the way the adaptive
algorithms perceive the input sequence and degrades their
performance. As a result, we present a simpler non-adaptive
algorithm that performs better than the adaptive algorithms.

2 Problem De�nition

Given an embedded system, design a power management
strategy for the system. The system receives service requests
online: the requests are not known in advance and do not nec-
essarily fall into any well known distribution pattern. Each
service request, j, comes with a service time, dj , that is also
not known in advance and could potentially vary. Requests
are handled in a �rst-come-�rst-served manner. The system
must be working on some request as long as there are requests
waiting in the system. If there are no requests waiting for
the system, the system can be shut down during this idle pe-
riod. If there are no requests waiting for the system and the
system is o� then when a request arrives, the system must be
turned on immediately in order to service the newly arrived
request.
The system dissipates Er units of energy during revival.

It takes the system Tr units of time, called the revival time.
During this time, the system expends energy at a rate of Pr,
called the revival power to go from the shut o� state to a state
where it can start servicing requests. Let us assume that the
average power dissipated by the system when it is idle is Pi.
Let us assume that Pr > Pi. This implies that turning the
machine on requires more power per time unit than leaving
the machine in the on state. We denote c = Er

Pi

. For the

sake of simplicity we assume that c = dEr

Pi

e The e�ects of

this assumption are explained in detail in [13].
We say that an algorithm is online if it operates without

knowledge of the arrival time or service requirements of fu-
ture requests. In other words, it does not depend on the
complete data set to make its decisions: decisions are made
based on data that has already arrived and the decisions
making process is changed as the historical data changes.
Our goal will be to minimize the total power consump-

tion. At the same time, we would like to guarantee an upper
bound on the latency of any request which enters the system.
Further, the power management strategy should reect the
e�ects of implementations in hardware as well as software.

3 E�ect of Power Management on Latency

Let � be any sequence of arrivals of n requests into the sys-
tem ordered according to arrival time. Since the service of
these requests is on a �rst-come-�rst-served basis, we num-
ber the requests from 1 to n. Let aj be the arrival time
of request j. Let dj denote the service time for request j.
If the system is kept powered up the entire time, then the
latency of each request is minimized. Suppose the follow-
ing algorithm is adopted. Consider the arrival of request j
at time aj . If the system is idle at time aj , then request j
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Figure 1: Power dissipation in watts of the laptop's disk drive
when the Auspex server traces are applied to it. Each column
shows the power dissipated when that particular power man-
agement algorithm is used for the disk drive. Immediate's
power dissipation for trace 5 is more than Adapt, whereas it
is lower on traces 7 and 9. On traces 5. 7 and 9, HwangWu
coincides with Immediate. We present these since the di�er-
ences between the power dissipation is quite small and maynot
be clear on the graph.

is begun immediately and incurs no latency. Alternatively,
suppose that the system is busy when request j arrives and
suppose that the last idle time ended with the arrival of re-
quest k. Then the system will be free to begin request j at

time ak +
Pj�1

l=k
dl. The system starts request k at time ak

and must complete requests k through j � 1 before starting
request j. This means that the latency of request j denoted
by W (�; j) is

W (�; j) =

 
ak +

j�1X
l=k

dl

!
� aj : (1)

Note that for any i 6= k such that i � j, 
ai +

j�1X
l=i

dl

!
� aj �

 
ak +

j�1X
l=k

dl

!
� aj : (2)

Thus, the wait time of request j is

W (�; j) = max
i�j

 
ai +

j�1X
l=i

dl

!
� aj : (3)

We call this the inherent wait time of request j since it is
the smallest possible wait time achievable for job j by any
power management scheme. The maximum inherent wait
time incurred by any request in � will be called the inherent
wait time of sequence � and will be denoted by W (�).
Part of the problem de�nition states that any algorithm

must keep the machine on as long as there are requests to
service. Therefore, we consider only the algorithms that con-
sider powering down the system only during an idle period.

Lemma 1 The wait time of any power management algo-
rithm on any sequence � is at most W (�) + Tr. Tr is called
the revival time for the system.
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Figure 2: Increase in latency (in secs) of the laptop's disk
drive when the Auspex server traces are applied to it. Each
column shows the increase in latency when that particular
power management algorithm is used for the disk drive.
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Figure 3: Number of shutdowns of the laptop's disk drive
when the Auspex server traces are applied to it. Each column
shows the number of shutdowns when that particular power
management algorithm is used for the disk drive.

Proof of Lemma 1. Fix an arbitrary algorithm A. Consider
request j in �. Suppose that when j arrives, the previous idle
period ended with the arrival of request k. If the algorithm
A did not power down during this period, then the amount
of time that request j waits is just 

ak +

j�1X
l=k

dl

!
� aj = W (�; j) (4)

If the algorithm A did power down during this time period,
then the amount of time that request j waits is

Tr +

 
ak +

j�1X
l=k

dl

!
� aj � Tr +W (�; j) (5)

Since this is true for every request j, it follows that no
requests waits longer than W (�) + Tr.

Next we prove that under a worst case analysis, an algo-
rithm can always be forced to have a request which must
wait an additional time Tr as shown in the following lemma.



Lemma 2 Let A be any deterministic power management
algorithm whose energy dissipation is some �nite though vari-
able value. Given a sequence � with an inherent wait time W
when A is used on �, there is a sequence �0 whose inherent
wait time is W for which A has a request which is delayed by
W + Tr.

Proof of Lemma 2. Pick an arbitrary algorithm A. Suppose
that after a period of time � , the algorithm will shut down the
system if no requests have arrived. (� cannot be in�nite since
the energy dissipation is �nite). Pick any sequence � such
that W (�) = W . Let j be a request such that W (�; j) = W .
Suppose that under the algorithm which nevers turns the
system o� the idle period previous to j's arrival ends with
the arrival of request k. Make a new sequence �0 of j� k+1
requests. The arrival time of request i in the new sequence
is denoted by a0i and will be � + ai+k�1 � ak from the old
sequence. The duration of request i in the new sequence is
denote by d0i and is di+k�1 from the old sequence. Since the
algorithm A, powers down after time � , the delay of request
j � k + 1 in �0 will be 

Tr +

j�k+1X
l=1

d
0
j

!
� a

0
j�k+1 (6)

= Tr + ak +

jX
l=k

dl � aj (7)

= Tr +W (�; j) = Tr +W (�) (8)

Thus we have constructed a new sequence �0, from an
existing sequence �, such that �0 has an inherent wait time
ofW and at least one request in �0 will be delayed byW+Tr.

Theorem 1 In the presence of a power management algo-
rithm A, that shuts down a system when it is idle and revives
it when needed for service, no request in any arrival sequence
� will be delayed by more than W + Tr time units. Tr is the
time it takes to revive the system from a shut o� state to a
state where it can service the request and W is the inherent
wait time of � on A.

Proof of Theorem 1. Lemma 1 and Lemma 2 prove this
theorem.

This result may seem intuitive, however, this is the �rst
formal proof presented to validate the intuition. In addition,
this proof is constructive in that it speci�es how a worst
case sequence could be generated that would force any shut-
down algorithm to incur the latency. Further, this worst case
bound is not esoteric, it occurs whenever the system is shut-
down and therefore provides a metric that system designers
should consider while designing the system.

4 Adaptive Power Management Algorithms

Adaptive power management algorithms change the length
of the threshold after which shutdown occurs dynamically
based on past performance. Such algorithms typically have
improved performance due to their ability to base decisions
on the nature of the data and dynamic system behavior.
Some power management algorithms have assumed that each
idle period can be considered to be a random variable and
the length of each idle period is independently and identically
distributed. These algorithms have attempted to learn the
distribution of idle periods as time progresses and optimize
the threshold based on the estimate of this distribution [5, 4].

Algorithm Adapt:

(1) � = curr arrival time - prev arrival time

+ service time;

(2) if (idle state) then

(3) idle intervals = idle intervals + 1;

(4) if (� � c) then

(5) shutdown

(6) else

(7) if (idle intervals � c) then

(8) shutdown

Figure 4: A Simple Adaptive Algorithm For Power Manage-
ment. This algorithm uses the previous inter-service time to
predict the next idle interval.

Other algorithms have assumed that there is signi�cant
correlation between the length of recent idle periods and the
length of idle periods in the near future. These strategies use
recent idle periods to predict whether the upcoming idle pe-
riod is likely to be more or less than the parameter c derived
in Section 2. Recall that c is the length of time such that if
the system is idle for time c, the energy that is expended is
the same as the energy required to revive the system from
the powered down state. If an online algorithm knew whether
the upcoming idle period were going to be shorter or longer
than c, it could perform optimally: if the interval is less than
c, stay powered up, otherwise power down at the beginning
of the idle period. Thus, given an estimate of the length of
the upcoming idle period, if the estimate is less than c, stay
powered up, if it is greater than c then power down immedi-
ately. If however, the algorithm chooses to stay powered up
and �nds that the idle period has lasted time c, the algorithm
then powers down. This latter step is important in case that
the idle period is extremely long. These adaptive schemes
are very e�ective if the arrivals are very bursty, a property
which characterizes many request arrival sequences. That is,
the predictions are accurate if short idle periods tend to be
followed by short idle periods and long idle periods tend to
be followed by long idle periods.

The Adapt algorithm shown in Figure 4, uses the length
of the last idle period to predict the length of the next idle
period. This algorithm was introduced in [5, 4] and adapted
in [12] for power management in embedded systems. The
algorithm presented by Huang and Wu [1] predicts that the
length of the next idle period is an exponentially weighted
average of the lengths of the previous idle periods. None of
these studies incorporates service time or power-up latency
into their models. That is, they assume that these values are
zero.

Inter-arrival time is de�ned as the time between two con-
secutive arrivals in a sequence. We denote inter-arrival time
between requests j and j+1 as Ij = aj+1� aj . Inter-service
time is de�ned as the time between the end of one request and
the arrival of the beginning of the next request. The adaptive
algorithms described here were all introduced in the context
where all service times and power-up times are assumed to
zero. In this case, the length of the last idle period is the
same as the last inter-service time which is also the same as
the last inter-arrival time. Thus, it is not obvious which value
to use with the adaptive schemes when introducing timing
considerations into the model. Although we experimented
with all three values, the results we present here use inter-
service time since that value seems to capitalize the most on
correlations in the arrival sequence.



Error Statistics for Immediate
Traces Wrong Energy Wasted

decisions in microjoules
per wrong decision

t6.H1062 12289 7067.65
t6.H1074 22311 6479.40
t6.H2012 18205 7070.09
t6.H2014 2762 9347.30
t6.H2149 4065 8161.47
t6.H3069 29888 7450.14
t6.H3073 1803 7400.29
t6.H3113 17762 5897.85
t6.H4060 3731 9861.81
t6.H4119 5992 7719.42
t6.H4127 6921 5522.84
t6.H4181 3686 7686.84

Table 1: Statistics that show the number of times Immediate predicted the next idle interval to be greater than c. The table
shows the number of times it was correct and wrong. The table also shows the power dissipated due to the wrong decision.

5 Experimental Results

We use the disk drive [16] in a laptop as an embedded sys-
tem. We have obtained traces for the use of an Auspex File
Server [14] from Berkeley's NOW project and apply these
traces as stimuli to the laptop's disk drive. This drive and
the traces were also used in the experiments performed by [2].
The disk drive has the following power characteristics. Its in-
ternal clock works at 10 microseconds. The average power
dissipated in servicing any request is denoted by Pi = 0:85
watts. The revival power dissipated is Pr = 4:5 watts. The
revival latency is Tr = 4 milliseconds. Using these param-
eters, we modeled and simulated the following scenarios to
compute the power dissipated:

Algorithm Optimal : This algorithm is assumed to know
the sequence of arrival of requests and their service time,
all in advance. As a result, it can make decisions based
on knowledge of the future. The algorithm will shut
down the system immediately if the next idle period is
greater than c time units. An oracle will keep the system
idle if the idle period is less than c time units. Any
proposed algorithm tries to compete with this oracle
strategy. This oracle is also referred to as the optimal
adversary since every algorithm is trying to achieve the
results obtained by an algorithm that has knowledge of
the future.

Algorithm Immediate : This algorithm shuts down the
system whenever it sees an idle period, however small
and incurs the overhead cost of revival.

Algorithm Adapt : This algorithm uses the previous
inter-service, � , to predict the next idle period. If this
value is greater than c it shuts down immediately as-
suming that the next idle time will be greater than c
time units. If � is less than c, it keeps the system idle
for a period of c unless a new request arrives.

Algorithm HwangWu : This algorithm is an adaptation
of Hwang and Wu's algorithm [1]. It uses a cumulative
average, � , of the inter-service times to predict the next
idle period. If � is greater than c, it shuts the system
o� as soon as an idle period is seen, otherwise it keeps
the system idle for c time units before shutting down
the system.

5.1 Discussion

Figure 1 and Figure 2 show the performance of the four power
management algorithms in terms of power eÆciency and la-
tency. The latency of the system as a result of power manage-
ment does not increase any more than 4 milliseconds which is
the analytical upper bound on the increase in system latency.
We note that Immediate outperforms the other algorithms
in terms of power dissipation. However, its e�ect on latency
is worse than Optimal and Adapt.
There are two primary reasons for the success of Imme-

diate over the other adaptive algorithms. This �rst is that
the patterns in the request arrival sequence which the adap-
tive algorithms were exploiting are no longer present when
service time and power-up time are incorporated into the
model. Secondly, Figure 3 shows the number of shutdowns
for each of the four algorithms. Although Adapt is making
fewer mistakes than Immediate in predicting whether the
upcoming idle period is greater than or smaller than c, the
mistakes made by Adapt are on average more costly than
the mistakes made by Immediate. We discuss these two is-
sues in more detail below.
In bursty arrival patterns, there are a sequence of very

short inter-arrival times followed by a sequence of longer
inter-arrival times. However, we found that when the service
times and power-up times are incorporated into the model,
many of the shorter inter-arrival times do not translate into
idle times because during bursts, requests get queued up in
the system and executed one right after the other. The queue
�nally empties out when the burst is over and there is a
longer inter-arrival time. This tends to result in less correla-
tion between the previous service time (or previous idle time)
and the next idle time.
In order to test this hypothesis, we ran Adapt and Imme-

diate on the same data, except that we arti�cially set service
time and power-up time to be zero. The results are shown in
Table 3. Although Adapt does not beat Immediate on all
trace �les, it uses less power on �ve out of the twelve traces
(instead of only one out of the twelve traces when timing
considerations are incorporated). The reason that Adapt is
not doing even better is explained below.
Table 2 shows the number of `mistakes' made by Adapt

on all the traces. That is, it shows the number of times
Adapt predicted that the next idle period would last less
than time c when it actually lasted longer. In addition, it
shows the number of times Adapt predicted the next idle pe-
riod would last longer than time c, but it actually lasted less
time. Similar results for Immediate are shown in Table 1.
Immediate has only one-sided error: by shutting down im-



mediately, it is always in e�ect predicting that the idle period
will be longer than c. The average wasted energy for each
mistake is also given. This is the extra amount of energy
expended because the algorithm predicted incorrectly. Note
that the most costly kind of mistake is when the algorithm
predicts that the idle period will be short when it is in fact
long. Since only Adapt makes this kind of error, it is pay-
ing a much higher price for each mistake even though it is
making fewer mistakes.
Suppose an algorithm stays powered up (thinking the idle

period will be short) and then powers down when the idle
period has lasted c time units. Its cost is c � Pi + Er = 2Er.
If the algorithm had powered down, it would have expended
only Er units of energy. Thus, the wasted energy is Er.
On the other hand, if it powers down immediately and the
length of the idle period is t < c, then the algorithm spends
Er = c �Pi but could have only spent t �Pi. The extra energy
expended is (c� t)Pi which is typically only a fraction of Er.
This explains why the �rst kind of error is more costly than
the second kind of error.
The authors in [5, 4] give a more detailed analysis of this

phenomenon under the assumption that the length of each
idle period is generated independently by identical distribu-
tions. Let T be the random variable which denotes the length
of the idle time. Let P [T = t] be the probability that T = t.
For simplicity, we will assume that time is discretized. Then
if the algorithm's threshold is � , its expected amount of en-
ergy dissipated is

�X
t=1

P [T = t] � t � Pi +

1X
t=�+1

P [T = t](� � Pi + Er) (9)

If the distribution is known, then the optimal online algo-
rithm will use the equation above and choose � to minimize
the expected cost.
In order to understand why Immediate performed as well

as it did, we determined the distribution based on the statis-
tics for the idle periods of each sequence and then determined
the optimal � for each sequence. The results are given in Ta-
ble 4. Each threshold is expressed as a fraction of the time
interval c. What is noticeable here is that in all but a very few
cases (where immediate does not perform well), the optimal
threshold is very small which indicates that Immediate is
using close to the optimal threshold. Thus, if we are restrict-
ing our attention to algorithms which use a �xed threshold,
then for the data used in our study, a threshold of zero is
closer to the optimal.

6 Conclusions

In this paper, we have presented an upper bound on the
increase in latency of the system in the presence of a power
management algorithm. This upper bound allows system de-
signer to get a handle on the worst case increase in latency
they may encounter when determining a power management
system for timing critical subsystems. Since this latency is a
function of the revival time, the system designers can make
design decisions that can shorten the revival time for sub-
systems for which aggressive power management may be re-
quired.
We have also presented a performance comparison between

two algorithms, Adapt and Immediate on a set of trace
data [14] applied to the disk of a hard drive [16]. Our ex-
perimental results show that if service times of arriving re-
quests are modeled, the relative performance of algorithms
can change. We show that the simple algorithm that shuts
down the system whenever it encounters an idle period sur-
prisingly performs better than adaptive algorithms suggested

in the literature on the data used here. We provide an an-
alytical explanation for this empirical result. However, Im-
mediate's better performance comes at the cost of increased
system latency. This paper demonstrates the power-latency
tradeo� and provides insight into the e�ects of modeling ser-
vice time on the power dissipation algorithm.
Note that it is not always the case that timing considera-

tions will have such an important impact on the performance
of power management strategies. This will depend on the dis-
tribution of inter-arrival times of requests as well as service
times. In addition, it will not always be the case that Imme-
diate will outperform Adapt since that will depend on the
parameter c relative to the input sequence. However, we have
demonstrated that timing considerations can be important
and should be incorporated into any model used to assess
power management schemes. We have also demonstrated
the e�ect of system parameters on the power management
schemes. In general, a successful power management scheme
will depend on typical arrival patterns, service times as well
as system parameters.
This paper leaves many open questions as well, for in-

stance, the conditions where adaptive strategies are likely
to be bene�cial. We plan to explore shutdown strategies in
other embedded applications, including real-time operating
systems (at the task level), web servers, networked embedded
systems, etc.
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Error Statistics for Adapt
Predicted idle period < c Predicted idle period > c

Traces Wrong Energy Wasted Wrong Energy Wasted Total Avg Waste
in Joules in Joules Wrong in microjoules

Decisions per wrong decision
t6.H1062 4793 90.10 4793 30.96 9586 12630.06
t6.H1074 11460 215.44 11460 81.27 22920 12945.87
t6.H2012 4920 92.49 4920 34.17 9840 12872.95
t6.H2014 1315 24.72 1315 11.93 2630 13938.85
t6.H2149 1755 32.99 1755 14.38 3510 13498.89
t6.H3069 13494 253.68 13494 98.29 26988 13042.22
t6.H3073 966 18.16 966 6.68 1932 12860.41
t6.H3113 8433 158.54 8434 50.01 16867 12364.60
t6.H4060 1675 31.49 1676 16.69 3351 14379.95
t6.H4119 3008 56.55 3008 25.33 6016 13611.62
t6.H4127 3533 66.42 3534 20.17 7067 12253.19
t6.H4181 1647 30.96 1647 13.69 3294 13558.34

Table 2: Statistics that show the number of times Adapt predicted the next idle interval to be greater than c and less than c.
The table shows the number of times it was wrong in both cases and the power dissipated due to this wrong decision. The last
column displays the average power dissipated due to a mistake performed by Adapt 1.

Power Dissipation with Zero Service Time and Latency
Adapt Immediate

Trace Power dissipated Shutdowns Power dissipated Shutdowns
t6.H1062 10.72 23145 10.96 33656

t6.H1074 24.16 51736 21.97 67470
t6.H2012 10.00 18640 10.82 33236

t6.H2014 02.10 4145 02.36 7246

t6.H2149 03.05 5947 03.39 10395

t6.H3069 23.17 45402 22.69 69710
t6.H3073 01.70 3671 01.58 4868
t6.H3113 15.13 32547 13.80 42391
t6.H4060 02.96 5998 02.93 9003
t6.H4119 05.51 12028 05.14 15797
t6.H4127 06.04 12855 05.56 17090
t6.H4181 03.59 7174 04.33 13306

Table 3: Statistics that show the power dissipated in milliwatts by Adapt and Immediate when service time and latency are
not modeled. This implies that they are considered to be zero. Notice that Adapt performs better than Immediate

only in 5 of the traces. These cases are highlighted.

Best Shutdown Threshold
Trace Best Threshold Best Threshold Power Dissipated

in clock ticks as a fraction of by using threshold
c for shutdown (milliwatts)

t6.H1062 15 0.006782 18.881
t6.H1074 18 0.008138 18.899
t6.H2012 1956 0.884362 18.085
t6.H2014 787 0.355824 15.470
t6.H2149 787 0.355824 16.834
t6.H3069 391 0.176782 18.541
t6.H3073 58 0.026223 19.231
t6.H3113 10 0.004521 18.870
t6.H4060 397 0.179495 17.029
t6.H4119 28 0.012660 19.016
t6.H4127 25 0.011303 18.774
t6.H4181 391 0.176782 15.907

Table 4: The best shutdown threshold computed from all possible thresholds available for a particular trace. The third column
shows this threshold as a fraction of c. The last column presents the power dissipated if this threshold were used instead of c
as the shutdown threshold.
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