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Abstract—This work introduces a hybrid between an elitist  their capability to speed up convergence. However, one ad-
multi-objective evolutionary algorithm and a gradient-based vantage that has not been documented so far (to the authors’
descent method, which is applied only to certain (selected) hagt knowledge) is their ability to scale better than tiadal

solutions. Our proposed approach requires a low number of . g .
objective function evaluations to converge to a few pointsiithe MOEAs in the presence of many decision variables. It has

Pareto front. Then, the rest of the Pareto front is reconstricted ~ 0een recently found that the performance of state-of-the-
using a method based on rough set theory, which also requires art MOEAs degrades quickly as the number of decision

a low number of objective function evaluations. Emphasis IS variables increases [8]. This may limit the applicability o

placed on the effectiveness of our proposed hybrid approach \;oEAs in real-world problems, since their use may require

when increasing the number of decision variables, and a styd o . o - .

of the scalability of our approach is also presented. a prohibitively high number of obj_ect|ve function e_vallmts._
Thus, we suggest here that hybrids of MOEAs with gradient-

|. INTRODUCTION based methods can be a suitable choice (when applicable) to

deal with this scalability issue. Note that we do not refaehe

to scalability in objective function space which is a relaly

popular research topic [3], but which we do not cover in this

A multi-objective optimization problem (MOP) is stated
as: minimize

F(z) = (fi(e), fa(@), ..., fm(2))" paper. . : .
In order to validate our hypothesis, we will present here
where f; : R" — R forall i € 1,...,m (m is the number our own proposed hybrid of a MOEA and a gradient-based

of objective functions). Evolutionary algorithms have bee method, whose design emphasis is efficiency (measured in
found to be very effective for solving MOPs, presenting sevterms of the objective function evaluations performedy an
eral advantages with respect to mathematical programminghich will be validated using scalable problems (in degisio
techniques (e.g., they are less susceptible to the shape aagiable space).
continuity of the Pareto front) [5]. The remainder of this paper is organized as follows.

In spite of the increasing popularity of multi-objectiveln Section 1, we introduce the basic concepts on which
evolutionary algorithms (MOEAs), they tend to require ahe gradient-based descent method is based. In Section IlI,
relatively large number of iterations to produce reasonablve introduce a two-stage algorithm namédadient-Based
good approximations of the Pareto optimal set of a MORMulti-objective Evolutionary StrategyGBMES), which is
This has motivated the hybridization of MOEAs (which areour proposed hybrid of a MOEA and a gradient-based
known to be good global search engines) with local seare¢hethod. The results obtained with our proposed hybrid
engines of different types (see [16]), aiming to speed ugpproach and a state-of-the-art MOEA (NSGA-II [7]) in two
convergence. scalable test problems are presented in Section IV. Finally

Gradient-based methods are a possible choice for designir conclusions and some possible paths for further work are
ing local search engines, in cases in which the objectivsated in Section V.
functions are differentiable. Indeed, this is an interesti
choice (when possible), since the use of gradient infolrnati
can give us much more precise descent directions for theDuring the search of solutions that minimize a continuous
search, than the only use of the operators of an evolutionaand differentiable function, the gradient of the function
algorithm. In fact, this sort of hybrid between a MOEA andprovides information about its growth or decrement. It is
a gradient-based method has been previously studied bywall known that the maximum decrement of the functipn
number of researchers (e.g., [21], [1], [11], [22], [14]h€Tl is obtained when following the directionV f(x), departing
hybrids proposed by these authors normally replace, add foom the pointz.
modify existing evolutionary operators, such that the grad In the multi-objective case, and along the same line,
information is used to guide the search. we want to find a movement direction iR™ that brings

MOEAs hybridized with gradient-based methods presesimultaneously the maximum decrement —or at least a
several advantages, from which the most remarkable onedecrement— in all thef; components of. Hence, we will

call descent directiora unit vectora € R™ that intuitively
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Fliege in [9]. The basic details of this method are explainedf each of them for the method proposed here is left as

next after providing some basic definitions. future work. Even though following descent directions kad
Using the canonical coordinatewise order in R™ (this  directly to good candidates for local Pareto points, penfor

is,a < bif a; <b; forall i € {i,..,n}), a pointz € R™ ing a gradient-based descent could be very expensive in

dominatesy € R™, denoted as < y, if F(z) < F(y) with  terms of function calls. For example, according to the tssul

x £y Ify £xandx £y, we say thatr andy arenot regarding the Automatic Differentiation method, reporied

comparable(not dominated) denoted hy||y. [10], we are counting in our experiments one Jacobian matrix
One pointz € A C R" is aPareto optimunif there does computation as the equivalent to five times one functioh-cal
not exist another point € A C R™ such thatz < x. effort. Then, if we have a three-objective MOP, and perform

Let JF(x) = gj; (x) be the Jacobian matrix df andR~  twenty times the descent step for just a single point, we
the set of negative real numbers. Then, a necessary canditiveed at least x 3 x 20 = 300 function calls —besides the
for the pointz € R™ to be a local Pareto point is that necessary calls to calculate the step size length. Thatys wh

Com in practice, and for the sake of implementing this algorithm
range(JF(z)) N (R7)™ =0 (1) we bound the number of descent steps spent for a single

holds. The above expression means that if we have a poRRint. This situation will be explained in the next section.
2 which is not dominated by any other point in a certain 1. THE PROPOSEDALGORITHM

n_e|gh_borhooq, na Pargto Sense, th(_an Itis n(_)t p_os&bleathat Our proposedGradient-Based Multi-objective Evolution-
directionv exists, for which the directional derivative of each

. coul be et —uhih viould L & o cescen IIEDOOES) s colomed by o sages The A,
direction. Note that the condition (1) can be fulfilled by 9 P

Pareto optimal points and byitical points as well points. In the case of facing moderate multi-frontalitye th

Setting the above in terms of our purposes, let's assurr(]a(\a/olutlonary part of the hybrid algorithm can deal with the

X . . . critical points that are not optimum; then, we assume that,
that a solutionz should be improved during the solution of . Do .
S . o by the end of this first stage, all the points in this set are
a real-valued minimization MOP. Then, df is not a critical

point, it is possible to choose a descent directionolding part of the_ global front.- The second. stage looks for_the
reconstruction of the entire front, starting from a few fsin

JF(z)v e (RT)™ lying on it.

If this is the casep can be computed [9] using the in-A. First Stage
formation provided by the Jacobian matrix of the problem For the first stage of the algorithm we use several popula-
evaluated one. As Fliege presents in [9], it is necessary tations, in a way analogous to the Micro-GA for Multiobjective
solve the next quadratic programming problem such that w@ptimization [6]. We adopt an external populatiéhwith
1 a replaceable parPr and a non-replaceable paftn. The
minimize o + =||v||? (2) former population will evolve over time and the latter wilki
2 troduce diversity into the process. We use a small popuiatio
Pt of parents|Pt| = u randomly chosen fron®rU Pn. The
subjectto (JF(z)v); <a, foral ie{l,...,m} individuals from Pt are recombined to produce a s@j; ¢
of A descendants. Unlike a traditional evolution strategy, we
Once the above problem produces a solutioh o*), the  set)\ ~ 1 because we need to bound the number of function
descent direction that we are looking fori$, and as Fliege calls in this phase —in order to spend most of them in the
suggests, the step length for the movement can be obtaing@dient-based descent part. The GBMES individuals used
by an Armijo’s rule, by decreasinguntil the condition for recombination are randomly chosen fraRt. We use
two types of recombination, arithmetic and discrete, ciraps
Fz +tv) < F(z) + BtJF(z)v one of them in a random way, with a certain (predefined)
is fullfilled. The values € (0,1) is a control parameter to probability. We set a higher probability for the discrete
decide how fine grained, numerically speaking, the descefgicombination at this stage (the proportion is 2:1). For the
will be. At this point of the process, having = = +tv, we second stage of GBMES, arithmetic recombination plays a
are in condition of repeating the movement by calculating Bnore important role.
new descent direction far! or, if this is not possible, we  Once we have selected the nondominated par@ptsrom
can assume that a critical point has been achieved. PtUP,;¢, we perform the next insertion process in order to
This method, constructed by Fliege, automatically triggerobtain the secondary populatigh and the elite population
a condition to know ifz! fulfills condition (1), which is £, E C S. This insertion process has two cases:
the case whem* = 0. In practice, it is necessary to setIn the initial generation of the first stage, for eack P, :
a tolerance parameter, = < 0 to stop the descent when 1) Perform the gradient-based descentif@nd getp’ as
7 < «* holds; note that by construction® < 0. the final point of the descent.
Several ways to calculate descent directions have been2) Insert the elementS — S U {p'}. If the necessary
proposed [19], [1], [2], [4], [12]. A study of the efficiency condition for being inE holds, thenFE — E U {p'}.



The next generations the process is slightly different, as w 4) SelectP,,; nondominated individuals from the union
describe next: of parents and offspring.
1) SetP’, as the elements fronf,q that are not domi- 5) Perform the insertion process with the gradient?based
natednby any € E. descen'F, and feed the secondary populaﬂ(_)rhe elite
2) For eactp € P!, : populationF, and the replaceable populatidi.
5 6) Repeat steps 2 to 5 until having at least four individuals
in the elite population or until running out of the
function-calls budget allowed for this first stage.

« Perform the gradient-based descent foand get
p’ as the final point of the descent.

« Removes € S such thaty’ < s.
« Inserty in S (in E if applicable). For all the problems tested here, the values/foand A

« Removeq € P/, such thaty’ < ¢. were 20, the initial population size was of 130 individuals,
and the proportion between the non-replaceable and the re-
placeable parts of the initial population was 3:10. Regaydi
the value ofu, in general, it must be a trade-off because it
The secondary population is directly conformed by théas to be big enough in order to allow a good sampling of
points obtained after the descent. The condition for a poiffie population for the evolution strategy but not too laige,
x € S to be in E is having finished the descent with ari  order to avoid that too many function calls are spent.
(see Section Il) value of zero —which means it is a candidate
to be a local Pareto point. Note that the latter could n
be the case for all the points ifl. Thus, this separation is
made because the descent could be stopped before obtainin@nce the Pareto front has been approached, the next step
a local Pareto point. This happens because, in practice, wensists of applying a technique that performs a reconstruc
restrict the number of steps used in the descent. Addifignaltion of the entire front departing from a few points from
we could also stop the descent if certain tolerance valugich front. One possibility at this point is to use contimat
between the initial and the final points in the movemenmnethods [20], [15]; if this is the case, only one point in the
is achieved. Also, in order to handle box constraints, wheiont is necessary to start, but we would have to be able
the computed steepest descent direction leads outside theafford the computational cost of calculating the second
feasible region, the process must quit exploiting thattemhy  derivatives of the functions, which is high, even if clever
and then, take the point nearest to the boundary betwetathniques are devised [13].
the feasible and infeasible regions, as the final point of the In this work, we propose using Rough Sets [17], [18] for
movement. This is necessary, since it is possible that thlke second stage, and we reserve at least one third of our
movement of the descent points leads to a local optimufanction-calls budget for this part. This approach (rouets)s
located in the infeasible region or to a local optimum lodateconsists of a stochastic technique which uses information
in the boundary between the feasible and the infeasibéhout individuals that were dominated in the last itergtion
region. In both cases, it is unnecessary to perform a finé order to construct new solutions close to the nondomahate
grained steepest descent, and the cost of performing iticouhdividuals and far away from the dominated ones. This
lead to an important increase in the number of functioaims to generate new nondominated solutions and, as a
calls. Then, during the procedure these end points from thwensequence, fill up the missing parts of the Pareto front.
descent would enter the elite population only if the elitdNext, we briefly describe the approach that we use.
population is empty. The algorithm’s implementation sldoul
detect the case when, after certain number of generations, a O Elite
no point has entered the elite population. In this case, we .
perform uniform mutation on the individuals in the seconydar \
population and we only retain the nondominated solutions
as candidates for becoming the outcome of the first-stage.
In order to feed the replaceable population, we tdK§,
which is conformed by individuals fror®,, , that entered the
secondary population at that generation, and we use them to
replace those individuals fron®r that are dominated. To
select they parents to conformPt for the next generation,
we take min{mu/3,|P/,|} individuals from P/, and the N .
remainder are randomly selected frafm ) N True front
The general process of the first stage is described next:
1) Initialize the replaceablé. and non-replaceabl,,,  Fig 1. This figure shows the box formed by two elements in fite e

parts of the population. set. Their offspring lie on the line that joins them, and ie tieighborhood
2) Selectu parents forP;. bounded by their own coordinatea-fimensional box).

3) Use the set of inserted poings to replace the domi-
nated individuals fromP,.

¥, Second Stage

offspring

3) Recombine the parents to produceffspring Of f.



1) Preliminary Phase:Our approach requires an initial 4) Apply v mutations to each parent and confoghwith

population (1) which is close to the true Pareto front. them.
This population is partitioned into two setd).S, which 5) Divide the population? U @’ into the DS and NS
contains the dominated solutions andS, which contains sets.

the nondominated solutions. At the end of the first stage 6) If v < |NS|, we use a crowding or a clustering
of our GBMES, we assume that we have a few (at least technique to reduce the size to v is a user-defined
four) individuals in the true Pareto front. Then, to star th parameter.

rough sets procedure, we can generate a small populatior7) If v < |DS|, we keep the solutions that were non-
in the neighborhood of these solutions in the following dominated in the last iteration, and we choose the
way: For each point in the elite population, we generate rest randomly from the dominated solutions in the
an n—dimensional box with each point as one vertex and population, until reaching the maximum size allowable
its nearest neighbor located in the opposite corner. Then, for v'. v’ is a user-defined parameter.

we generate two types of offspring: first, we apply total 8) Repeat steps 2 to 7 until a certain (predefined) number
arithmetic recombination to get descendants in the line of function-calls is performed.

that joins the reference point and its nearest neighbor @&d w For the examples we present here, we uked 20, ¢ =
produce another offspring outside the box, but in the samg) « = 4, v = 100 for the bi-objective problemy = 150
direction as before (see Figure 1). Next, the second kind @fr the three-objective problem, and = 100 in both cases.
offspring consists of descendants which are randomly built

inside the box. For the examples presented here, we used IV. EXPERIMENTAL RESULTS

s =2 andt = 3. The performance measures used here are described next.
2) Rough SetsOnce the population is close enough to thén the following,; denotes the minimum Euclidean distance
true Pareto front, and once is partitioned into tNe& and from the imageF'(z;) € F}, of a solutionz;,i =1,...,n =

DS sets, we perform a set of iterations until reaching thé&Fy|, to the true Pareto fronfy,..; di; is the Euclidean
maximum allowable by our function-calls budget. At eachtistance betwee®'(z;) and F'(z;). Finally, we define
iteration, we build a grid withk dominated points fronD.S,
which serve as vertices. We also takendividuals from the di:= min d;;; d:= 1 Zdi’
set of nondominated solution¥ S and we apply bounded P ni4
mutation to them._ The bounds for these _mutations are _s%tr uwe R", A BCR"

from half of the distance over each coordinate to the limits

of the grid (See Figure 2). If there is no edge bounding the dist(u, A) := inf [Ju — v|]

mutation operator, we set the limit for that specific cooatkn ’ vEA

as the natural limits of the box constraints from the problenynd

The procedure is the following: dist(B, A) := sup dist(u, A).
ueB

x2 . ‘ ‘ f2 The performance measures are:

« Generational Distance5D, IGD)

)
.

=)

The Inverted Generational Distand&D) is analogous
to GD but measured fronk}, . to Fj.

x1 fl

« Spacing §)
o non dominated (NS)
* dominated (DS) 1 <& _
m  offspring @) S = n_1 Z(dl —d)?

Fig. 2.  This figure shows the grid for the rough sets methodnéat e di

with the elements ofDS serving as vertices (marked as black dots in the « Hausdorff's distance

figure). The nondominated individuals (taken fraWS), which are used dpr := max{dist(Frue, Frnown)s dist(Finown, Firue) }

as the reference solutions, are marked with gray circlesiridescendents,

produced by mutation, are marked with the letter 'm’. Since we want to test the scalability of our proposed hybrid

approach, we adopted the two problems defined in Table I,
1) Divide the populationP1 into the DS and NS sets.  which have two and three objectives, respectively. They are
2) Randomly choosk elements fronD S to set the limits  both scalable in decision variable space. The final pomnati
of the grid. for both algorithms was set to 100 individuals for the prable
3) Randomly choosg elements fromV.S to form @ (the  with two objectives and to 150 individuals for the problem
set of parents). with three objectives (a larger value was adopted in this cas



TABLE |
MOPS ADOPTED FOR OUR EXPERIMENTS

Problem 1

fi(@) = (@1 — D*+ 20 (@ — 1)2

fa(@) = 30, (@ + 1)°

with n =10

Problem 2 (DTLZ2) .

fi(w) = cos("4) cos(37) ... cos( 51 T)(1 + g(x))
Fa(x) = cos(HT) cos(22T) . sin(EZT)(1 + g(x))

1
o(@) = 3 (i = 32
i=
0<z; <1,i=1,...,n
with k=3, n=12

2

n=10

T
GBMES
MNSGA Il

True Front

+

60

Fig. 3. This graph shows the Pareto fronts generated by owEBand
NSGA-II for Problem 1 (withn = 10), after 3,000 function evaluations.

because of the higher number of objectives). Our results are
compared with respect to those generated by the NSGA-II
[7] using 100 and 150 individuals, respectively (same as our

approach), and performing the same number of evaluatior
as our proposed hybrid approach. Tables Il and IIl shov
our comparison of results after performing 3,000 objective
function evaluations for both problems. In this case, we us
n = 10 for Problem 1, and» = 12 for Problem 2. From
Tables Il and Ill, we can see that our GBMES achieve:
much better convergence than the NSGA-Il. This can b
corroborated by looking at Figure 3, in which it is clear that
the NSGA-II is unable to converge, even when Problem :
only has ten decision variables.

Then, we increased the number of decision variables of th
problem and we focused our analysis on the convergent
of each approach (ours and the NSGA-II). Figures 3, 4, !

o
sl

and 6 show the plots of the final population, corresponding

to the run in the mean obtained for IGD over 30 runs, foEI

Problem 1, using: € {10,30,60,100} decision variables.

We can observe that, as we increase the number of decision
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T T
GBMES

NSGA I
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+
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ig. 4. This graph shows the Pareto fronts generated by oMEBand

SGA-II for Problem 1 (withn = 30), after 3,000 function evaluations.

variables, our proposed GBMES is still able to generate

an important portion of the Pareto front (e.g., it is able to
generate the “knee” in all cases) with the same number ¢
evaluations as before (3,000). The values of the performan:
measures (shown in Tables IV, V and VI) indicate that bott
approaches suffer a performance degradation as we incree
the number of decision variables. This behavior is consiste
in the case of Problem 2, as well. Although the performanc
of our proposed GBMES degrades as we increase the numk
of decision variables, such degradation is less significar
than the one suffered by the NSGA-Il. Also, in all cases
(for both problems), our approach outperforms the NSGA
Il with respect to all the performance measures used t
assess convergence (see Tables IV, V and VI). This ce
be better appreciated in Figures 7 to 9 for Problem 1 an
from 10 to 12 for Problem 2, in which we show a graphical
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n=60

e
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comparison of the performance (regarding convergence) 659-65- ?ﬂs gr%rl)h shows :le Pareto ffrtontg ggge]cratet? by Olhf"ﬁl?and
the two approaches (ours and the NSGA-Il) as we increab8GA-!! for Problem 1 (withn = 60), after 3,000 function evaluations.

the number of decision variables.



TABLE Il TABLE IV

COMPARISON OF RESULTS FORPROBLEM 1, USING . = 10, AND COMPARISON OF RESULTS REGARDING D FOR BOTH PROBLEMS WHEN
PERFORMING3000FUNCTION EVALUATIONS. STATISTICS WERE USINGn =original,30, 60, 100, AND AFTER PERFORMING3,000
GATHERED FROM30 INDEPENDENT RUNS THE BEST RESULTS ARE FUNCTION EVALUATIONS. THE VALUE CORRESPONDS TO THE MEAN
SHOWN IN boldface. OVER 30 INDEPENDENT RUNS THE original VALUES ADOPTED FORn IN
EACH PROBLEM ARE THOSE DEFINED INTABLE |. THE BEST RESULTS
GD ARE SHOWN INboldface.
Method Best Mean Worst
GBMES | 0.023375 | 0.049261 0.103776 GD Problem 1 Problem 2
NSGA Il 0.242919 0.415592 0.539319 n GBMES | NSGAII GBMES NSGAII
GD original 0.0493| 0.4156| 0.019648]| 0.035683
Method Best Mean Worst 30 0.3063 2.6406 | 0.032565| 0.131245
GBMES | 0.092534 | 0.222116 | 0.549907 60 0.8925| 6.8851| 0.015376| 0.308811
NSGA i 0367473 0565376 0.863660 100 1.7495 | 12.9756 | 0.029423| 0.567924
Spacing
Method Best Mean Worst
GBMES 0.004457 0.029559 0.081939 TABLE V
NSGA Il | 0.002789 | 0.022826 | 0.070167 COMPARISON OF RESULTS REGARDINGGD FOR BOTH PROBLEMS
Hausdorf's distance WHEN USINGn =original,30, 60, 100, AND AFTER PERFORMING3,000
Method Best Mean Worst FUNCTION EVALUATIONS. THE VALUE CORRESPONDS TO THE MEAN
GBMES | 3493272 | 9823990 | 21.668491 OVER 30 INDEPENDENT RUNS THE original VALUES ADOPTED FORn IN
NSGA T 7092420 15473611 25 665400 EACH PROBLEM ARE THOSE DEFINED INTABLE |. THE BEST RESULTS
: . : ARE SHOWN INboldface.
TABLE IlI IGD Problem 1 Problem 2
COMPARISON OF RESULTS FORPROBLEM 2, USING . = 12, AND n GBMES | NSGAIl | GBMES | NSGAII
PERFORMING3000FUNCTION EVALUATIONS. STATISTICS WERE original | 0.2221| 0.5654 | 0.000643| 0.001746
GATHERED FROM30 INDEPENDENT RUNS THE BEST RESULTS ARE 30 0.7449 | 3.0245| 0.000829| 0.006448
SHOWN IN boldface. 60 1.6436 7.6595 | 0.001116| 0.016010
100 2.8417 | 14.6620| 0.001249 | 0.029858
GD
Method Best Mean Worst

GBMES | 0.003234 | 0.019648 | 0.032110
NSGA Il 0.027392 0.035683 0.043271

Te) we believe that is shared by other hybrids between MOEAs

Method Best Mean Worst and gradient-based methdylss that it scales well as we
GBMES | 0.000421 | 0.000643 | 0.001017 increase the number of decision variables of a MOP. This is
NSGA Il | 0.001422 | 0.001746 | 0.002200 : . . :

o illustrated in the paper by two examples in which we use up
Viethod Best b %,lean Worst to 100 decision variables. Our proposed approach is found to
GBMES | 0.000737 | 0.004314 | 0.009814 degrade significantly less than a state-of-the-art MOEA (th
NSGA Il | 0.001360 | 0.005380 | 0.032598 NSGA-II), while still performing 3,000 objective function

Hausdorff’s distance evaluations.

Method Best Mean Worst . . .
GBMES | 0.385372 | 0.842908 | 1.3351%9 As part of our future work, we are interested in extending
NSGA Tl | 0.556158 | 0.798111 | 1.170840 our hybrid approach in several ways. For example, for

problems with many critical (non Pareto-optimum) points,
our approach cannot distinguish between such points and
V. CONCLUSIONS ANDEUTURE WORK those which are Pareto optima. Thus, the gradient-based

h introduced a hvbrid h called information is not very effective in this case, and the MOEA
We have introduced a hybrid approach called GBMESyy,; 1 e ysed in order to deal with this situation (e.gnuisi

Whi(.:h Is designe:jdfto tak(? _a(z)\./antage of_grgdignt-basgiinf(%{ higher mutation rate to avoid getting stuck). Otherwike, t
mation extracted for multiobjective optimization probem hybrid turns out to be too expensive (computationally speak

Sl_nce .MOEAS. are kr_10wn to perform well n prObIemS‘ing). Thus, a more careful algorithmic design is required to
with high multi-frontality, our method focuses instead ONyeal with this sort of situation

bl in which th dient d ti d option ¢ . . .
probiems [n Which the gradient descent 1S a good option o Additionally, the rough sets mechanism can be improved

speed up the first stages of the search. Although Obtainirk‘& introducing gradient-based information into it. Howeve
gradient information is an expensive process (becausethIS should be done very carefully, because of the high

requires several objective function evaluations), it isgiole . ) X o o
to design a gradient-based hybrid which is very efﬁciengomputatlonal cost associated with obtaining this informa
tion. For this sake, it is possible to take advantage of the

For this sake, it is important to devise a careful interlagvi . . . . .
b 9 cgpstruction explained in Section 11I-B1. Such constrmcti

between the MOEA and the gradient-based search engine, ld b lectivel ted and mixed with dient
that we do not exceed a modest function-calls budget. Sugﬂu € selectively repeated and mixed with a gradient-

balance is achieved by our proposed GBMES, which onl ased descent applicable only to a few selected individuals
performs a total of 3,000 objective function evaluations fo

the pr9b|em5 _inCIUded here. ) 1This depends on the sort of method adopted to approximateeifieates
An interesting aspect of our proposed approach (whicsf the functions.
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Fig. 6. This graph shows the Pareto fronts generated by owEBand

NSGA-II for Problem 1 (withn = 100), after 3,000 function evaluations.
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Fig. 7.  Graphical illustration of the performance of our GBB! and
the NSGA-II in Problem 1, regarding the GD performance megsas we
increase the number of decision variables. In all cases,esfenmed 3,000
function evaluations.

Problem 1
16

GBMES (IGD) —+— j
NSGA 11 (IGD) - -

10 | 4

mean distance
®
T
L

L L L L
0 20 40 60 80 100
# of variables

Fig. 8. Graphical illustration of the performance of our GBBI and the
NSGA-Il in Problem 1, regarding the IGD performance measa®e we
increase the number of decision variables. In all cases,asfenmed 3,000
function evaluations.

Problem 1

GBMES (Haussdorf) —— ' T T T
NSGA Il (Haussdorf) --x--

150 - 4

mean distance
x

100 4

1 1
0 20 40 60 80 100
# of variables

Fig. 9. Graphical illustration of the performance of our GBBIl and the
NSGA-Il in Problem 1, regarding Hausdorff's distance, asim@ease the
number of decision variables. In all cases, we performe®® finction
evaluations.

Problem 2 (dtlz2)
08 ™ ames (GD) —— i i i !
NSGA Il (GD) ---x- e
05 - B
04 g
8
s .
S o3t e g
£
02 4
.X"'
01| B
0 \ \ i \ ,
0 20 40 60 80 100
# of variables
Fig. 10. Graphical illustration of the performance of our 8BS and

the NSGA-II in Problem 2, regarding the GD performance megsas we
increase the number of decision variables. In all cases,esfenmed 3,000
function evaluations.

Problem 2 (dtiz2)

T x

GBMES (IGD) ——
NSGA Il (IGD) -+-:-

0.025 - 7 g

0.015 - - —

mean distance

0.005 - - —

0 I L L L L
0 20 40 60 80 100

# of variables

Fig. 11. Graphical illustration of the performance of our I@BS and
the NSGA-II in Problem 2, regarding the IGD performance roeasas we
increase the number of decision variables. In all cases,esfenmed 3,000
function evaluations.



COMPARISON OF RESULTS REGARDINGIAUSDORFF S DISTANCE FOR

TABLE VI
(7]

BOTH PROBLEMS WHEN USINGn =original,30, 60, 100, AND AFTER

CORRESPONDS TO THE MEAN OVERBO INDEPENDENT RUNS THE
original VALUES ADOPTED FORn IN EACH PROBLEM ARE THOSE

PERFORMING3,000FUNCTION EVALUATIONS. THE VALUE

(8]

DEFINED IN TABLE |. THE BEST RESULTS ARE SHOWN InNboldface.

Haus. dist Problem 1 Problem 2
n GBMES | NSGA-l | GBMES | NSGAI e
original 9.8240 | 15.4736| 0.842908| 0.798111
30 28.3035| 55.6760| 1.625643| 2.354311
60 54.7381 | 126.3136| 1.164723| 4.914662 (10]
100 80.3792 | 217.4507| 2.065171| 8.331932
[11]
Problem 2 (dtiz2)
o GBMES (Haussdorf) —— T T T
NSGA Il (Haussdorf) -+~ X
sl i
7F 4 [12]
6 [ 4
£ [13]
3+ g
2 X 4
°s 0 0 % % 100 [14]
# of variables
Fig. 12.  Graphical illustration of the performance of our I@BS and
the NSGA-II in Problem 2, regarding Hausdorff’s distance,we increase
the number of decision variables. In all cases, we perfor&)8d0 function
evaluations.
[15]
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