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Abstract. Here we propose a novel idea for iterative search procedures
for the numerical treatment of multi-objective optimization problems,
namely to steer the search along a predefined search direction given in
objective space. Based on this idea we will present two methods: a de-
scent method, i.e., an iterative procedure which seeks for improvements
of the given model, and a novel continuation method which allows to
search along the Pareto set of a given MOP. The advantage of the first
procedure is that it has a physical meaning and the search can be steered
according to the given situation, and the advantage of the latter proce-
dure is that it does not require any 2nd gradient information and is hence
also applicable to higher dimensional models without exploiting the spar-
sity of the model. We demonstrate the strength of the two methods on
several examples.

Keywords: multi-objective optimization, descent method, continuation, goal
programming.

1 Introduction

In a variety of engineering applications—as well as in other fields—one is faced
with the problem that several objectives have to be optimized concurrently lead-
ing to a multi-objective optimization problem (MOP). Such MOPs have been
considered for aerodynamic shape optimization, autonomous vehicle navigation,
machine learning, and the design of blades, polymers, mechatronic systems, and
space missions [6, 7, 11, 16, 26, 32, 37, 39], to name just a few applications. As a
general example, two common goals in product design are certainly to maximize
the quality of the product and to minimize its cost. Since these two goals are typ-
ically contradicting, it comes as no surprise that the solution set—the so-called
Pareto set—of an MOP does in general not consist of one single solution but
rather of an entire set of solutions (see Section 2 for a more detailed discussion).



2

So far, many numerical methods for the treatment of a given MOP have been pro-
posed. There exist, for instance, many scalarization methods which transform
the MOP into a ‘classical’ scalar optimization problem (SOP). By choosing a
clever sequence of SOPs a suitable finite size approximation of the entire Pareto
set can be obtained (see [9, 28, 15, 23, 14, 13] and references therein). Another
approach to approximate the Pareto set is to use set oriented methods such as
subdivision techniques ([11, 21]) or stochastic search methods (see [10, 31, 8, 35]
and references therein). Since the Pareto set forms under some mild regularity
conditions locally a (k − 1)-manifold, where k is the number of objectives in-
volved in the MOP, specialized continuation methods which perform a search
along the Pareto set are very efficient if one (or more) solution is at hand ([1,
19]).
In certain cases one has to be content to improve a given state of a system only
locally, and in other scenarios this is even desired. The former happens when
the cost of a function evaluation is high, and the latter is for instance given in
memetic strategies, i.e., evolutionary strategies which are hybridized with local
search procedures. It has been observed that for these methods the proper bal-
ance of global and local search is a delicate problem, and that a too efficient local
search procedure could have a negative influende on the entire candidate set ([20,
27]). For such problems, the integration of a descent direction in the numerical
scheme can be of interest. A descent direction at a point x is a direction in which
(ideally) all objective values improve. Descent directions for MOPs have been
proposed in [15, 31, 3], however, one potential drawback of these approaches—at
least in the current context—is that the actual direction of the search (apart
from the fact that objectives acutally improve) is not given, which makes it hard
for the numerical scheme to ‘steer’ the optimization process.
The method we present in this paper, the Directed Search Method, allows to steer
the search process in every direction in objective space. To be more precise, given
a point x ∈ Rn in parameter space, and a vector d ∈ Rk (in objective space) a
direction vector ν ∈ Rn can be computed such that

lim
tց0

fi(x0 + tν) − fi(x0)

t
= di, i = 1, . . . , k, (1)

where fi : Rn → R denotes the i-th objective of the MOP, i.e., the relative
change of each objective value for an infinitesimal step size is given by the val-
ues of d. We use this to propose further on two methods: first, we propose
the Directed Search descent method, which can be viewed as a class of descent
methods, and discuss possible choices of d, in particular greedy directions for the
well-known Weighted Sum approach (e.g., [28]) and for Goal Programming ([5]).
Second, we use the Directed Search Method to construct a novel multi-objective
continuation method. The particular advantage of this method is that it does—
in contrast to the methods in [1, 19]—not require any 2nd gradient information
which makes it a competitive alternative at least for higher dimensional MOPs.
The idea to adjust the search direction in image space a priori to obtain a nu-
merical scheme has to our best knowledge never been discussed in literature.
Since the underlying idea is not so far off, we conjecture that the lack of the



3

consideration of this approach has two possible reasons: (i) the numerics and
(ii) the meaning of the approach. Ad (i): the computation of the search vector
ν requires the solution of a possibly highly underdetermined system of linear
equations, and the condition number of this system increases as the point x
gets nearer to a local solution. However, we have observed that state-of-the-art
numerical tools are able to handle such problems, even for higher dimensional
problems (for instance, in Section 6 the Pareto set of an MOP with n = 100, 000
parameters is presented). Ad (ii): it is ad hoc unclear how to ‘steer’ the opti-
mization process, i.e., how to choose d. Here, we make a beginning and present
some choices which are locally optimal in certain cases, however, some ‘global’
strategies are to be established in the future.
A very similar representation of the descent cone which is the basis for our de-
scent method can be found in [3], however, the authors of [3] derived their result
differently, and did not exploit the ‘steering feature’ in their work.

The remainder of this paper is organized as follows: in Section 2 we state
the required background, and in Section 3 we present the central idea of the
Directed Search method. Based on this we propose then a descent method in
Section 4 and a continuation method in Section 5. In Section 6 we present some
numerical results, and finally conclude in Section 7.

2 Notations and Background

In the following we consider unconstrained MOPs which are of the following
form:

min
x∈Rn

{F (x)}, (MOP)

where F is defined as the vector of the objective functions

F : Q → Rk, F (x) = (f1(x), . . . , fk(x)),

and where each objective fi : Q → R is sufficiently smooth. The optimality of
an MOP is defined by the concept of dominance ([30]).

Definition 1. (a) Let v, w ∈ Rk. Then the vector v is less than w (v <p w),
if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analogously.

(b) A vector y ∈ Rn is dominated by a vector x ∈ Rn (x ≺ y) with respect to
(MOP) if

F (x) ≤p F (y) and F (x) 6= F (y), (2)

else y is called non-dominated by x.
(c) A point x ∈ Q is called (Pareto) optimal or a Pareto point if there is no

y ∈ Q which dominates x.

The set of all Pareto optimal solutions is called the Pareto set, and is denoted by
P . The image F (P) of the Pareto set is called the Pareto front. Both sets form
typically—i.e., under certain mild regularity assumptions on the objectives—a
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(k − 1)-dimensional object ([19]).
The derivative of F at a point x is given by

DF (x) =






∇f1(x)T

...
∇fk(x)T




 ∈ Rk×n, (3)

where ∇fi(x) denotes the gradient of objective fi. In case all the objectives of
the MOP are differentiable the following famous theorem of Kuhn and Tucker
[25] states a necessary condition for Pareto optimality for unconstrained MOPs.

Theorem 1. Let x∗ be a Pareto point of (MOP), then there exists a vector

α ∈ Rk with αi ≥ 0, i = 1, . . . , k, and
∑k

i=1 αi = 1 such that

k∑

i=1

αi∇fi(x
∗) = 0. (4)

The theorem claims that the vector of zeros can be written as a convex combi-
nation of the gradients of the objectives at every Pareto point. Obviously, (4)
is not a sufficient condition for Pareto optimality. On the other hand, points
satisfying (4) are certainly ‘Pareto candidates’.

Definition 2. A point x ∈ Rn is called a Karush–Kuhn–Tucker point1 (KKT–

point) if there exist scalars α1, . . . , αk ≥ 0 such that
∑k

i=1 αi = 1 and that
Equation (4) is satisfied.

Finally, given a manifold M and a regular point x ∈ M we denote the
tangent space of M at x by TxM.

3 The Central Idea of the Directed Search Method

Here we describe the underlying idea of the Directed Search Method which we
will use in the following to construct iterative search procedures.
Assume a point x0 ∈ Rn is given and a vector d ∈ Rk representing a desired
search direction in image space. To be more precise, a search direction ν ∈ Rn

in parameter space is sought such that for y0 := x0 + tν, where t ∈ R+ is the
step size, it holds:

lim
tց0

fi(y0) − fi(x0)

t
= 〈∇fi(x0), ν〉 = di, i = 1, . . . , k (5)

Using the Jacobian of F , Equation (5) can be stated in matrix vector notation
as

DF (x0)ν = d. (6)

1 Named after the works of Karush [22] and Kuhn & Tucker [25].
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Hence, such a search direction ν can be computed by solving a system of linear
equations. Since typically the number of parameters is (much) higher than the
number of objectives in a given MOP, i.e., n >> k, system (6) is (probably
highly) underdetermined which implies that its solution is not unique. To prevent
this, the solution with the lowest norm can be chosen leading to

ν = DF (x0)
+d, (7)

where A+ ∈ Rn×k denotes the pseudo inverse of a matrix A ∈ Rk×n, k ≤ n. In
case the rank of A is maximal, the pseudo inverse is given by A+ = AT (AAT )−1.

In case the MOP contains m active inequality constraints g1, . . . , gm : Rn →R at a point x—which is not within the scope of this work—one has to solve
instead of (6) the enlarged system

DF (x)ν = d

DG(x)ν ≤ 0,
(8)

where

DG(x) =






∇g1(x)T

...
∇gm(x)T




 ∈ Rm×n. (9)

For the solution of such systems we refer e.g. to [4]. An analog statement for
equality constraints, however, does in general not hold since they typically re-
duce the dimension of the search space, and hence, the feasible choice of d may
be restricted. In that case, a solution of the (extended) equation system (8) in a
least squares manner seems to be suitable.

In the following we discuss possible descent strategies and a continuation
method for the numerical treatment of a given MOP where we utilize (6). Ap-
parently, the proper choice of the search direction d will be one central issue for
all methods.

4 The Directed Search Descent Method

In this section we present the descent methods which arise from (6) and discuss
several possible choices of the direction vector.

4.1 The Method

In the following we will re-formulate the descent cone D(x) at a point x which
allows to find a (descent) direction ν = ν(α) ∈ Rn for every search direction
α ∈ Rk. Based on this we will further on propose a new iterative search proce-
dure.
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The Set of Descent Directions The following little discussion shows that the
direct approach (6) can be used to find every descent direction at a given point
x0 ∈ Rn. By the choice of the dominance relation in Definition 4.1 it follows
that the descent cone at x0 is given by

D(x0) = {ν ∈ Rn\{0} : 〈∇fi(x0), ν〉 ≤ 0, for all i = 1, . . . , k,

and 〈∇fj(x0), ν〉 < 0, for a j ∈ {1, . . . , k}}, (10)

which does ad hoc not allow to compute any such element of D(x0). Using the
Jacobian, Equation (10) can be written in matrix vector notation as

DF (x0)ν ≤p 0 and DF (x0)ν 6= 0 (11)

After possible normalization (11) can be stated as

DF (x)ν = −α, (12)

where α ∈ Rk is a convex weight (i.e., αi ≥ 0 and
∑k

i=1 αi = 1). Hence, the
descent cone can be represented as follows:

D(x0) = {v ∈ Rn\{0} : ∃α ∈ Rk\{0} : αi ≥ 0, DF (x0)ν = −α} (13)

and thus, every descent direction να ∈ D(x0) can be computed by solving the
underdetermined system of linear equations (6) for a given vector −α = d. Note
that α has to be determined first, but by this να gains a physical meaning: by
construction, the direction in image space is given by

〈∇fi(x0), να〉 = −αi, i = 1, . . . , k. (14)

A very similar representation of the descent cone (albeit using a different deriva-
tion) can be found in [3].

A Curve of Dominating Points The above result can be used to define a curve
of dominating points. Assume that a (not necessarily fixed) convex weight α is
given and a search in that direction is desired. Using

να(x) := −DF (x)+α, (15)

one can thus try to solve numerically the following initial value problem:

x(0) = x0 ∈ Rn

ẋ(t) = να(x(t)), t > 0
(IVPα)

A solution of (IVPα) yields a curve of dominating points, and the proportion
of the improvements of the single objectives is given by α as shown in (14).
Clearly, if all objectives are continuously differentiable and if α = α(x) is con-
tinuous in x the solution curve x(t) is also continuously differentiable.
It has to be noted that even if an endpoint x∗ of (IVPα) exists—for instance if
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F (Rn) is bounded below—this point does not have to be Pareto optimal since
the approach depends next to α on the initial point x0. At least, a stopping crite-
rion for the numerical treatment of (IVPα) can be given to detect if an endpoint
of the curve is reached under certain (reasonable) assumptions: if (a) the number
of parameters n is at least as large as the number of objectives k and (b) if the
gradients of all objectives are linear independent at x0, i.e., rank(DF (x0)) = k
(which means that all objectives are indeed in conflict at x0), then for every
point x(t) along the curve the rank of the Jacobian is k, except for the endpoint
x∗ (in particular −α is not in the image of DF (x∗)). The rank of a matrix can
of course not be used to detect the endpoint of a curve numerically, but instead
the condition number κ2 of DF (x) can be used: one can e.g. compute

κ2(DF (x)) = ‖A‖2‖A+‖2 =
σ1

σk

, (16)

where σ1 and σk are the largest and smallest singular value of DF (x), respec-
tively, and stop the process if κ2(DF (xi)) ≥ tol, where tol ∈ R+ is a given (large)
threshold. This can be done since by the above discussion κ2(DF (x(t))) → ∞
for x(t) → x∗.
This discussion shows one potential drawback of the approach, namely that the
determination of the search direction by solving (12) gets inaccurate for points
near the Pareto set due to the high condition number of DF (x). However, our
experience has shown that state-of-the-art numerical tools allow to come ‘near
enough’ to the Paret set even for higher dimensional problems (here we refer to
the numerical results presented in Section 6).

Algorithm 1 describes a possible algorithm to trace the solution curve of
(IVPα). Hereby, for instance an Armijo-like step size control can be chosen for
the choice of t ([2, 15]). Alternatively, of course problem (IVPα) can be solved
using well-established numerical discretization methods (e.g., [12]).
So far, we have described a framework for possible search procedures since both
(IVPα) and Algorithm 1 depend on the choice of α. In the following we discuss
such possible choices.

Algorithm 1 Directed Search Method

Require: starting point x0 ∈ Rn with rank(DF (x0)) = k, tol ∈ R+, convex weight
α0 ∈ Rk.

1: i := 0
2: while κ2(DF (xi)) < tol do

3: compute νi = −DF (xi)
+αi

4: compute ti ∈ R+

5: set xi+1 := xi + tiνi

6: choose αi+1 ∈ Rk

7: set i := i + 1
8: end while
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4.2 On the Choice of α and Implications for Related Methods

Here we discuss several possibilities for α and resulting implications and rela-
tions to well-known related methods. For the Directed Search Method and Goal
Programming we will investigate the most greedy search direction indicating
how the novel approach can be used in certain situations. As discussed above,
the knowledge of a greedy direction can be beneficial if the function evaluation
is costly and just a few iterations can be performed within a given time budget.

Weighted Sum Approach Given a convex weight α, the Weighted Sum method,
which is probably the most famous scalarization method for MOPs, reads as
follows:

min
x∈Rn

k∑

i=1

αifi(x). (17)

Apparently, the relation of the Directed Search Method to the the Weighted
Sum Approach is given by the search direction which is equal to the weight of
the scalarization method: the vector να for the same vector α can be viewed due
to (14) as the most greedy search direction for problem (17).
This feature, however, does not neccessarily hold for the Weighted Sum Method:
when e.g. solving problem (17) with the steepest descent method (i.e., choosing

ν(x) := −∑k

i=1 αi∇fi(x) ∈ Rn as search direction), the (infinitesimal) change
in objective space is given by

lim
tց0

fi(y0) − fi(x0)

t
= 〈∇fi(x0),−

k∑

i=1

αi∇fi(x)〉, (18)

which does certainly not have to be equal to −αi for the i-th objective.
When comparing the two weighting approaches the main advantage of the Weighted
Sum approach is certainly that every first order optimal point of (17) is a first
order Pareto optimal solution of the MOP which does not neccessarily hold for
an endpoint of a solution of (IVPα). On the other hand, it is known that it
is not easy to detect optimal solutions x whose images F (x) are located on a
concave region of a Pareto front (since every global solution of (17) is located at
the boundary of the Pareto front or within a convex part). This feature prevents
the Weighted Sum Method from computing a suitable finite size representation
of the entire Pareto front in general. By Equation (14), however, it follows that
this problem does not hold for the novel approach.
Hence, if α is given by the application or the decision maker—the fact that
the Weighted Sum approach is still used indicates that this is sometimes the
case—we think that the Directed Search method can at least locally be seen as
a potential alternative.

Goal Programming In Goal Programming (GP) the task is, roughly speaking,
to find a point those image is as close as possible to a given target value Z ∈
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optimization problem (see e.g. [5] for more information):

min
x∈Rn

d(Z, F (x)), (19)

where d(·, ·) is a chosen distance in Rk. When choosing the Euclidean distance,
apparently the (local) best search direction at a point x0 is given by

αZ,2 :=
F (x0) − Z

‖F (x0) − Z‖1
, (20)

where we assume that Z ≤p F (x0). To satisfy user preferences or to be able to
reach several Pareto optimal points it is commonly desired to use a weighted
metric instead of a fixed metric (e.g., [28]). When using the weighted 2-metric

dD(x, y) :=
√

(x − y)T D(x − y), (21)

where D is a diagonal matrix with positive diagonal entries, the most greedy
direction at x0 is given by

αZ,D :=
D(F (x0) − Z)

‖D(F (x0) − Z)‖1
(22)

This can be seen as follows: define for a given point x0 and a fixed α ∈ Rk the
curve cα : R→ Rk by

cα(t) = F (x0) + tα (23)

Let gα : R→ R be the square of the weighted 2-metric of Z and cα(t), i.e.,

gα(t) = dD(Z, cα(t))2 =

k∑

i=1

di(Zi − fi(x0) − tαi)
2, (24)

where di is the i-th diagonal element of D. The derivative is given by

g′α(t) = −
k∑

i=1

2diαi(Zi − fi(x0) − tαi), (25)

and hence

g′α(0) = −2

k∑

i=1

diαi(Zi − fi(x0)) (26)

Using (26) we can determine the most greedy choice of α: the steepest descent
with respect to α is given by

−∇α(g′α(0)) = D(Z − F (x0)), (27)

and the claim follows (note that the directional vector is negated in (12)).
As for the Weighted Sum Method, the vectors ν(αZ,2) and ν(αZ,D) can be viewed
as the ‘best’ local search direction for the Goal Programming (19) according to
the given metric. While αZ,2 is constant, αZ,D varies continuously with x in case
F is continuous.
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Steepest Descent Though the choices of α presented above are locally optimal
according to their purposes, none of them guarantees that the solution curve
of (IVPα) converges to a (local) Pareto point. Based on the famous theorem of
Kuhn and Tucker, a suggesting method—at least in light of (12)—to choose α
at a given point x is for instance to take

αSD ∈ argmin
α

∥
∥
∥
∥
∥

k∑

i=1

αi∇fi(x)

∥
∥
∥
∥
∥

2

2

,

s.t. αi ≥ 0, i = 1, . . . , k

k∑

i=1

αi = 1.

(28)

Doing so, a numerical solution of (IVPα), where (28) is chosen for each point x(t),
can be viewed as a steepest descent method for MOPs. This has already been
investigated in [15, 31], where the descent direction is instead of (12) computed
by solving the scalar optimization problem (28) and using the search direction

νSD = −∑k

i=1 αSD,i∇fi(x) (hence, for k = 1 the descent direction is always
given by −∇f1(x) resulting in the classical steepest descent method for scalar
optimization problems). In that case the solution curve always ends in a KKT
point, and this holds also for suitable numerical solutions of the initial value
problem ([15]). On the other hand, by choosing αSD, its values are given implic-
itly which implies that an ‘external steering’ of the search is hardly possible. In
particular for some set oriented approaches for the treatment of MOPs such as
subdivision techniques ([11]) or memetic strategies ([3, 24, 38]) any bias of the
descent method is undesired since this could lead to insufficient approximations
of the Pareto set.

Normal Boundary Intersection There is at first sight a strong relation of the
Directed Search method to the Normal Boundary Intersection (NBI, see [9]),
namely the (quasi) normal direction η obtained by the convex hull of the in-
dividual minima of the objectives (CHIM) is a particular choice of α. On the
other side, the direction η in NBI is a tool to obtain a suitable spread of the
solutions obtained by a sequence of scalarizations of the MOP, and the search in
direction η is not performed directly in contrast to the Directed Search Method.
Nevertheless, we think the particular choice of η can for instance be beneficial
when using the Directed Search Method within a memetic strategy: if a rough
approximation of the Pareto front is at hand, the CHIM can be approximated,
and thus, η can be chosen as in NBI in order to obtain a sufficient spread of
the solutions. We do, however, not explore this idea here but leave it for future
research.
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5 A Continuation Algorithm Based on the Directed

Search Approach

In this section we propose a new Predictor Corrector (PC) method for the con-
tinuation along (local) Pareto sets of a given MOP. The central difference to a
classical method is that we suggest a new predictor direction which is based on
the geometry of the Pareto front and realized by the Directed Search Method.
Interesting is the fact that this new method—unlike classical PC methods—
does not require to compute the Hessians of the objectives. This implies that
this method can be used to handle even higher dimensional models (n >> 1000)
without exploiting the possibly given sparsity of the system. In the following
we present the alternative predictor direction and propose then a ‘complete’ PC
method which does not require any 2nd derivative information.

5.1 An Alternative Predictor Direction

Assume we are given a (local) Pareto point x and the related convex weight α,
i.e., such that

k∑

i=1

αi∇fi(x) = 0 (29)

and further we assume that

rank(DF (x)) = k − 1 (30)

It is known (e.g., [19]) that in this case α is orthogonal to the Pareto front, i.e.,

α ⊥ Ty∂F (Rn), (31)

where y = F (x) and ∂F (Rn) denotes the border of the image F (Rn). Thus, a
search orthogonal to α (in objective space) could be promising to obtain new
predictor points. To use the direct approach (12), for instance a QR-factorization
of α can be computed, i.e.,

α = QR, (32)

where Q = (q1, . . . , qk) ∈ Rk×k is an orthogonal matrix and qi, i = 1, . . . , k,
its column vectors, and R = (r11, 0 . . . , 0)T ∈ Rk×1 with r11 ∈ R\{0} (for the
computation of such a factorization we refer e.g. to [29]). Since by (32) α = r11q1,
i.e., α ∈ span{q1}, and Q orthogonal it follows that the column vectors q2, . . . , qk

build an orthonormal basis of the hyperplane which is orthogonal to α. Thus, a
promising well-spread set of search directions νi may be the ones which satisfy

DF (x)νi = qi, i = 2, . . . , k. (33)

Since α is not in the image of DF (x) (else x would not be a Pareto point) and by
assumption (30) it follows that the vectors q2, . . . , qk are in the image of DF (x),
i.e., Equation (33) can be solved for each i ∈ {2, . . . , k}. Note that by this choice
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of predictor direction no second derivative of the objectives are required.
In contrast, for instance in [19] the zero set of F̃ : Rn+k → Rn+1 is traced,
where

F̃ (x, α) =








k∑

i=1

αi∇fi(x)

k∑

i=1

αi − 1








. (34)

Predictor directions at a point (x0, α0) are found by linearizing the solution set
in parameter space, and this can be realized by a QR-factorization of DF̃ (x0, α0)
which requires the second derivative of each objective.

5.2 A New PC Variant for Multi-Objective Optimization

Using the above observation for a possible predictor direction we construct in the
following a PC method which does not require any second deriative information.
Hereby, we concentrate on the bi-objective case (i.e., k = 2) since a consideration
of k > 2 requires an additional data structure for the efficient representation of
the approximation (for this we refer e.g. to [18, 34, 33]). Apart from that and the
orientation all subsequent ideas will apply for models with k > 2.

Predictor Assume we are given a Pareto point x0 with associated weight α0 as
in (29). The predictor direction can—except for its sign—be chosen as described
above, i.e., one of the normalized vectors ν := ±ν2/‖ν2‖2, where ν2 satisfies (6)
as described above for d = q2. To orientate the curve (i.e., to determine the sign
of ν) we can not proceed as for ‘classical’ PC methods since this would require
as well the derivative of F̃ as in (34). Instead, one can define an orientation
in the context of bi-objective optimization by the increase (or decrease) of one
objective. For this, the signum of the according entry of the direction vector q2

can be taken. If, for instance, an improvement according to f2 is sought, then

p := x0 − sgn(q2,2)tν (35)

can be chosen as predictor, where q2,2 denotes the 2nd entry of q2, and t is the
desired step size. Note that when choosing one of the data structures in [18, 34,
33] for models with k > 2 no orientation of the solution manifold is required.
To choose the step size t we suggest to proceed as follows: assume we are given
x0 and the search direction ν with ‖ν‖2 = 1 associated to the direction q in
objective space for the predictor, i.e., p = x0 + tν, where t ∈ R+ has to be
chosen. The underlying idea of the step size control is as follows: to obtain an
adequate spread of the solutions the function values fj(x) and fj(p) of at least
one objective j ∈ {1, . . . , k} differ ideally by a (problem dependent) value ǫ
while the difference for all other objectives do not exceed this threshold. Since
this value can differ for each objective the demand on the spread can be stated
(after possible renormalization) as follows:

dw(F (p), F (x)) ≈ ǫ (36)
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where dw is the weighted infinity distance, i.e.,

dw(x, y) =

k∑

i=1

wi|xi − yi|. (37)

Assuming that each objective is Lipschitz continuous and that the step size ti
for the i-th objective is sufficiently small we obtain for i = 1, . . . , k:

|fi(p) − fi(x)|
︸ ︷︷ ︸

!

=

ǫ
wi

≈ Li,x ‖p − x‖2
︸ ︷︷ ︸

=ti

(38)

Since Li,x can be approximated by the norm of the directional derivative we
obtain for each objective the control

ti =
ǫ

wi|〈∇fi(x), ν〉| , i = 1, . . . , k, (39)

and hence for the entire MOP

t := min
i=1,...,k

ti. (40)

By construction, the difference vector F (p) − F (x) is ideally orthogonal to α
which can be used to determine if the chosen step size (40) is too large. If

|〈α, F (p) − F (x)〉| ≤ tol, (41)

where tol ∈ R+ is a given tolerance, the predictor p can be accepted. If (41) is
not true, then p does probably not serve as a good predictor, and the step size
has to be decreased accordingly.
Alternative step size controls for multi-objective continuation can be found e.g.
in [19, 36].

Corrector Given a predictor p, the subsequent solution along the curve can be
computed by solving numerically (IVPα), using p as initial value and choosing
α0, i.e., the weight from the previous solution x0 leading to a new solution x1.
This together with the step size control (40) and the ‘quasi-orthogonality’ test
(41) is intended to obtain an even spread of the solutions. In fact, this is the
case if the value of ǫ in (36) and hence the step size t is sufficiently small. The
new associated weight α1 can be updated by solving the following quadratic
optimization problem (28).

Algorithm 2 shows a possible realization of the continuation method which
does not require the second derivatives of the objectives. Hereby, we start with
an approximate minimizer of the first objective f1 and trace the curve seeking for
improvements according to the second objective f2. Hence, a possible stopping
criterion is that the associated weight of a candidate solution is approximately
α̃ = (0, 1). Other stopping criteria, however, are possible according to the given
setting.
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Algorithm 2 Bi-Objective Continuation

Require: Initial solution (x0, α0) with α0 ≈ 1, threshold ǫ ∈ R+, tolerance δ ∈ R+.
Ensure: Set of candidate solutions xi

1: i := 0
2: while 1 − α2 > δ do

3: compute q2 as in (32)
4: compute ν as in (33) (i.e., ν := ν2)
5: compute t as in (40)
6: pi := xi − sgn(q2,2)tν
7: compute xi+1 by solving (IVPα) with initial value pi and using αi.
8: compute αi+1 as in (28)
9: set i := i + 1

10: end while

6 Numerical Results

Here we present some numerical results to illustrate both the Directed Search
descent method as well as the novel continuation approach. All computations
have been done using Matlab

2.

6.1 Example 1

First we consider the following parameter dependent MOP ([40]):

f1, f2 : R2 → R
f1(x, y) =

1

2
(
√

1 + (x + y)2 +
√

1 + (x − y)2 + x − y) + λ · e(−x−y)2

f2(x, y) =
1

2
(
√

1 + (x + y)2 +
√

1 + (x − y)2 − x + y) + λ · e(−x−y)2

(42)

For λ = 0.85 the Pareto front contains a dent. To be more precise, the Pareto
front is connected and consists of one concave and two convex parts.
Figure 1 shows a comparison of the Weighted Sum approach using the steepest
descent method and the Directed Search method. Starting point for both meth-
ods was x0 = (1.5, 1.5), and the weight vector was chosen as α = 1/

√
2(1, 1)T .

For the stopping criterion (16) we have chosen for this as well as for the subse-
quent examples tol = 1e8. To demonstrate the solution curves we have chosen
very small step sizes. While the solution curve of the Directed Search Method
steers one a straight line from F (x0) to the corresponding point on the Pareto
front (and in this case the same appears in parameter space), the solution curve
of the Weighted Sum approach eludes this straight line leading to a (for this
method) better solution. We have repeated this for 100 randomly chosen start-
ing points within Q = [−5, 5]2. Figure 2 shows the resulting endpoints for both
methods. While it may be argued that for a single solution the Weighted Sum

2 http://www.mathworks.com
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approach obtained a better solution (Figure 1), this does apparently not hold in
terms of a possible representation of the entire Pareto set since the concave part
of the Pareto front is left out nearly completely.

6.2 Example 2

Next we consider the following convex MOP:

f1, f2 : Rn → R
fi(x) =

n∑

j=1

j 6=i

(xj − ai
j)

2 + (xi − ai
i)

4, (43)

where
a1 = (1, 1, 1, 1, . . .) ∈ Rn

a2 = (−1,−1,−1,−1, . . .) ∈ Rn,

First we turn our attention to the goal programming problem (19) where we
choose the target value as Z = (0, 0). Figure 3 shows some numerical solution
curves for several starting points where the Euclidean Distance has been chosen.
In Figure 4 some numerical results are shown for several problems where x0 has
been fixed, but the weighed 2-metric has been chosen for different matrices. To
be more precise, the curves ci, i = 1, . . . , 5 belong to the matrices Di, where

D1 =

(
0.9 0
0 0.1

)

, D2 =

(
0.7 0
0 0.3

)

, D3 =

(
0.5 0
0 0.5

)

,

D4 =

(
0.3 0
0 0.7

)

, D5 =

(
0.3 0
0 0.7

)

.

Next, we are interested in solving MOP (43) by continuation methods. Fig-
ure 5 shows a numerical result for n = 10. The figure shows the images of the
solutions F (xi) as well as the images of the predictors F (pi) which are already
near to the solutions.
We have observed that the corrector step uses approximately three iterations
to be near enough to the Pareto set (to be more precise: in the above example
we needed in average 2.4 iterations). We use this to make a comparison to the
classical PC method:
the classical PC method uses in each predictor step one QR-factorization of
(F̃ ′)T (x, α) which implies one Jacobian call (for all objectives) and one Hessian
call. For the corrector at least one Gauss-Newton step has to be performed which
implies again one Jacobian and one Hessian call (here we neglect possible addi-
tional function calls due to backtracking strategies). In total, we can assume that
for the generation of a new candidate solution two Jacobians and two Hessians
have to be calculated. The PC method as described above requires one Jacobian
call for the predictor and we estimate three Jacobians for the corrector (as ob-
served in this example), which makes in total the computation of four Jacobians
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Fig. 1. Numerical result for MOP (42): comparison of the numerical solution paths
of the weighted sum and the directed search approach for x0 = (1.5, 1.5) and α =
1/

√
2(1, 1)T .



17

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

f
1

f 2

(a) Directed Search

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

f
1

f 2

(b) Weighted Sum

Fig. 2. Numerical result for MOP (42): comparison of the solutions (end points) of the
weighted sum and the directed search approach for α = 1/

√
2(1, 1)T and 100 randomly

chosen initial points.



18

0 10 20 30 40 50 60

0

10

20

30

40

50

60

f
1

f 2

Z

F(x
0
)

F(x
1
)

F(x
2
)

F(x
3
)

F(x
4
)

F(x
5
)

Fig. 3. Numerical result for MOP (43): solution paths for several initial conditions
xi, i = 0, . . . , 5, using the 2-metric for d.

0 10 20 30 40 50 60
−5

0

5

10

15

20

25

30

35

40

45

50

f
1

f 2 F(x
0
)

Z

c
1

c
2

c
3

c
4

c
5

Fig. 4. Numerical result for MOP (43): solution paths for one initial point and for
several weighted metrics (see text).
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to obtain a new solution. For sake of comparison, we assume that the gradient
information is not available but has to be calculated or approximated, and hence
measure the cost to find a new candidate solutions in terms of the number of
required function calls. If for instance automatic differentiation (AD) is used to
compute the derivatives, we can estimate 5 ∗ k function calls for each derivative
call and k∗(4+6n) function calls for each calculation of the Hessian ([17]). Then
we obtain for our example (n = 10, k = 2):

|fc(PCclassical)| = 276, |fc(PCnew)| = 40, (44)

where fc(A) denotes the number of required function calls for method A. These
values change when using finite differences (FD). If for instance the forward
difference quotient

∂f

∂xi

(x) ≈ f(x1, . . . , xi + δi, . . . , xn) − f(x1, . . . , xn)

δi

, i ∈ {1, . . . , n} (45)

where δi ∈ R+ is a small value, is used to estimate the gradient, apparently
n function calls are required to estimate each gradient. The central difference
quotient leads to more accurate approximations, but does in turn require 2n
function calls ([17]). A forward difference quotient approximation of the second
derivative requires a total of n2 function calls (and 2n2 or 4n2 function calls
when using the central difference quotient, depending on how the rule is applied).
Hence, using the forward difference rule in FD we obtain

|fc(PCclassical)| = 440, |fc(PCnew)| = 80. (46)

In both cases,i.e., AD and FD, the new PC method requires a much smaller
amount of function calls for the computation of the subsequent solution.

Figure 6 shows a numerical result for the same model and the same setting
but using n = 100, 000 parameters. Also here, the cost to obtain a new candidate
solution is approximately given by four Jacobian calls (we omit here a compari-
son as in (44) and (46)). Since a naive storage of the Hessian matrix (i.e., without
exploiting the sparsity) requires the size of n2 floats, a straightforward imple-
mentation of the classical PC method is restricted on a standard computer to
approximately 2, 000 free parameters, which does not hold for the new method.
Since the second derivatives are not needed for the latter approach, we think
that this one is—independent of the storage problem—a promising alternative
to the classical PC method in particular for higher dimensional problems.

6.3 Example 3

Finally, we reconsider MOP (42) from Example 1 and turn our attention again
to Goal Programming. Though it was shown above, that αZ is locally the best
search direction, it is not even guaranteed that a solution of (IVPα) leads to a lo-
cal solution of (19). This is due to the fact that the approach depends next to x0

and Z also on the shape of the Pareto front which is clearly a priori not known.
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Fig. 5. Numerical result for MOP (43): solution of the continuation algorithm for
n = 10. Shown are the images of the predictors and the solutions.
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As a possible remedy it seems possible to combine the two methods proposed
in this work to obtain a two-stage algorithm for the detection of local solutions
of (19): first, one can compute, starting from x0, the endpoint x∗ those image is
on the border of F (Rn). In the second step, a movement along ∂F (Rn) can be
performed seeking for a decrease of the distance toward Z.
Figure 7 shows such an example for MOP (42). The continuation has been done
as described above but we have changed the orientation according to the prob-
lem, and stopped the process as soon as the search direction flipped (monitored
by the value of q2). Though the first result is quite promising, we feel that much
more investigation has to be done in that direction which we leave for future
research.
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Fig. 7. Numerical result for MOP (43): a combination of the Directed Search descent
method (indicated by the stars) and a modified continuation procedure (crosses) leads
to the solution of the goal programming problem (filled circle).

7 Conclusions and Future Work

We have presented the Directed Search Method for multi-objective optimization
which allows to steer the search into any given direction d in objective space.
Based on this idea we have presented a new class of descent methods and a novel
continuation procedure. The descent methods depend next to the initial point x0

on the choice of d. For this, we have discussed several possibilities, among others
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the greedy search directions for the Weighted Sum approach and for Goal Pro-
gramming. Though these directions are locally optimal, the resulting approaches
do, however, not guarantee that at least a locally optimal point is reached. The
essential novelty in the alternative continuation method we have presented is
the choice of the predictor direction. Instead of linearizing the Pareto set we
have used a linearization of the Pareto front to obtain a new predictor solution.
By this, no 2nd gradient information is required as in ‘classical’ continuation
methods which makes the new strategy a competitive alternative in particular
for the treatment of higher dimensional problems. Finally, we have illustrated
behavior of both methods on some benchmark problems.
For the future, there are some interesting topics which can be addressed to ad-
vance the present work. For instance, further choices of the search direction d for
the descent method would be interesting together with the investigation of their
convergence properties. Another interesting issue is the application of the Di-
rected Search Method to other problems. For instance, as a local searcher inside
a memetic strategy, or on a high-dimensional real-world engineering problem.
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