JOURNAL
Embedded Linux on the PowerPC

By M. Jones
Created 2001-07-20 01:00

The x86 isn't always the best platform choice. Tim shows us how easy it is to work
with embedded Linux on the PPC.

Although Intel provides the greatest user base for Linux, many other architectures
are supported. These include ARM, MIPS, PowerPC, Alpha, SPARC and Hitachi. The
availability of cheap x86 hardware makes Intel a simple choice, but in cases where
performance is important, the PowerPC (and others) can't be ignored.

This article will demonstrate Linux using the MontaVista Hard Hat Linux distribution
on an Embedded Planet PowerPC board. We'll also discuss how to flash Linux with a
ramdisk root filesystem onto the hardware for self-boot.

Why PowerPC?

With the ubiquity of x86 and available tools, why choose anything else? A quick
summary of the architecture may answer that question.

PowerPC is a highly integrated RISC architecture optimized for communication
systems. The PowerPC combines a PowerPC processor core with a CPM
(communications processor module) that offloads traditional communications tasks,
giving the core more cycles for the actual processing requirements. The CPM also
permits a variety of serial communication controllers (SCCs) to be programmed with
a particular personality chosen from the set available from the core (such as
Ethernet, SDLC, IDA or standard serial).

The other driving force behind PowerPC is its power consumption. For applications
that require high performance with low-power consumption, PowerPC is a great
choice. Tie this altogether with wide Linux and tool support, and you have a very
capable solution.

Environment Setup

The MontaVista distribution is quite easy to install and configure, and their 100-page
CDK document provides details on host configuration, building applications and other
topics.

One of the interesting features of the MontaVista distribution is they not only provide
configurable kernel source (for a variety of hardware architectures and platforms) but
also a tested set of application packages for each architecture. These packages
include the Apache web server, standard network tools (including ipchains,
ipmasqgadm), Perl, SNMP and many others.

Porting apps to the particular architecture can sometimes be nontrivial, but in the
Linux Support Package (LSP), MontaVista has already integrated much of what you
need.

As far as your development host goes, you must have an Ethernet port and an
available serial port to work with the target. More on this later.

The RPX Net

For demonstration purposes, I've chosen the RPX Net board from Embedded Planet
(see Figure 1). The RPX Net is a PC/104 form-factor PPC855-based board that
includes 32MB of DRAM, 8MB of Flash, a Fast Ethernet Controller (FEC), four-port
LAN hub, a standard serial port and other interfaces. This particular board can serve
as an embedded gateway to provide IP-masquerading (network address translation)
and port forwarding between an external WAN and the internal LAN.

Figure 1. RPX Net

While MontaVista supports a variety of Embedded Planet boards directly through their
LSPs, the RPX Net is not currently one of them. (MontaVista currently supports the
RPX Lite, Classic and Credit Card boards.) Therefore, a number of changes were
necessary to support the new Ethernet devices. In most cases, you can pick the LSP
that most closely matches your hardware and then modify for the differences.

The RPX Net also has PlanetCore utilities, which include a bootloader, diagnostics
software and an external suite of tools for embedded development. PlanetCore can
be used for board diagnostics (for any EP board, including I/O modules) and also for
OS-neutral boot loading (in the absence of GRUB or LILO), RAM-based software

downloads and host-based Flash burning. We'll illustrate RAM-based downloading and
flashing of a kernel shortly.

Setup

Developing with the RPX Net (and virtually any other embedded network board)
requires two connections between the host development system and the target. First,
a network connection is required for high-speed download. This can be a Cat-5
crossover cable if the host is connected directly to the board or a standard Cat-5
cable if the host and target are connected through a HUB. A serial connection is
required for PlanetCore communication and is provided through a standard DB-9
connector. A terminal emulator, such as minicom, can be used for serial
communications with the RPX Net.

The ramdisk Script

The purpose of the ramdisk image is to provide a root filesystem for our kernel when
it boots. This implies that the filesystem will contain a number of things, including
filesystem structure, binaries (such as a shell and utilities), configuration files (such
as rc.sysinit), device entries (/dev/kmem, etc.) and runtime libraries.

We'll build our kernel with ramdisk using a single script. This script will perform all of
the necessary functions to build a kernel, initial ramdisk and bind them together for

Flash (see Listing 1 at ftp://ftp.ssc.com/pub/elj/listings/issue04/ [1]).

The first task of the script is to define a few symbols so that the script knows where
to get the necessary elements, like binaries and libraries. These are configurable, as
their location may differ in your setup.

After some general cleanup (removing old compressed ramdisk images), we'll create
our blank ramdisk image with dd and then make it an ext2 filesystem with mke2fs.
It's important that the ramdisk image is zeroed to aid in efficient compression of the
filesystem later on. Next, we mount the ramdisk image on /mnt using the loop
device. The loop device allows us to treat a raw file as a device and then mount a
filesystem on it. Your development host's Linux kernel needs support for the loop
device; if it's not available, a quick host kernel rebuild will be required (see

" "loopback device support" in the block devices configuration section of kernel
config).

At this point, we have a 4MB ext2 filesystem mounted on /mnt. We can now
populate this filesystem with our files so it can act as a root filesystem on our
embedded device. We'll create the necessary subdirectories (bin, lib, etc, dev) and
copy a variety of files from the MontaVista LSP. These include PowerPC binaries,
libraries and various other files from the LSP target subdirectory. We'll also create
our necessary device entries using the standard mknod utility.

One item to note here is that all binaries and libraries are stripped as they are copied
to our mounted filesystem. This reduces their size by removing excess symbols and

debugger information and maximizes our utilization of the available Flash memory.

The script makes liberal use of the pushd/popd utility to ensure that all symbolic
links are created correctly. I've been bitten by that one way too many times.

After the filesystem has been populated, we create a statistics file called image.map
that defines how much space was used for each of the major subdirectories.

Finally, with our filesystem complete, we umount it and then compress it. I've used
a symbolic link of the gzipped image to my kernel's mbxboot subdirectory to avoid
copying it directly.

The next step in the script is the building of the Linux kernel using the
zImage.initrd rule. This builds a kernel with the bound compressed ramdisk image
and sets the expectations for the kernel that the ramdisk will be present for the root
filesystem.

The final section of the script binds the Embedded Planet burner program
(burner.srec) with the new kernel/ramdisk. The burner program is a parasitic utility
that, when downloaded to the RPX Net and run, will take the Linux kernel and
filesystem and write them into Flash.

Next, we'll talk about getting this image into Flash and the variety of ways to make it
happen.

Flashing a Kernel

Downloading the kernel from an external host via TFTP is great in the debugging
environment, but few embedded applications exist in an environment where they can
bootstrap themselves from another device. The ability to boot from onboard Flash is
therefore required.

Of the two flashing methods I've used (absent a BDM programmer), the one
presented below is the simplest. The other method utilizes an application called
linuxflash to burn the image from an NFS mounted filesystem. The problem with
this method is a Linux kernel must already be booted on the board for this to work.
The former method requires only the onboard EP PlanetCore utilities to perform the
flashing and can therefore be done much faster.

The development host must be configured for TFTP (as discussed in the MontaVista
CDK), and an IP address must be known for transfer. Listings 2 and 3 are extracted
from the minicom session.

Listing 2. Burner Program [2]
Listing 3. Starting the Flashed Image [3]

As shown in Listing 2, once power is applied the PlanetCore bootloader will begin and
provide a command prompt. Typing help here provides a useful list of available

commands. It's interesting to note that all RPX boards use the same PlanetCore
bootloader for operation. Therefore, the same software is used whether executing on
an RPX Net or a newer RPX Super (8260).

I use the t command to start a TFTP session and provide the parameters for the
load. I've stored some of these parameters in the onboard serial EEPROM to simplify
debugging (only typing the items that have changed). In this case, I tell the
bootloader my image to download is flmage.mot. My Linux development hosts know
this file will be located in the /tftpboot directory, as it's identified in the TFTP service
line in my inetd.conf.

Pressing Enter for the unchanged parameters (S--record format and 0--offset) starts
the download, as shown by the binary number progression. Once the download
completes, I tell the bootloader go, which executes the flmage.mot application just
downloaded. Listing 2 shows the work of the burner program.

So, we've now flashed the RPX Net with our image. We can now start this image by
telling the bootloader where to find it (see Listing 3); in this case it's at 0xff840000,
as defined within our script. From here, we see a typical Linux boot, with a quick test
to show network connectivity.

Extending the Image

So now we can boot a Linux kernel with a ramdisk root filesystem. What's needed is
customization for our particular application. Let's have a look at what's required to
build a simple application and then update our script so it becomes part of our
embedded system.

We'll start with a very simple app that will test our ability to create an application:

#include <stdio.h>
main()

{
printf("Our app works.\n");

}

I run an x86 Red Hat development host, but MontaVista's tools allow you to create
PowerPC systems on x86 systems (known as cross development). The resulting
binary cannot be executed on an x86 host but, when bound with our kernel, can be
run on the RPX Net target.

We first set our path to make the cross-development tools visible (optl12 is where
mine are):

export PATH=/optl2/hardhdat/devkit/ppc/8xx/bin:$PATH
Then we use the PowerPC C compiler to build our binary:

ppc_8xx-gcc -o testapp testapp.c

This binary can now be included in our script by adding the following line in the /bin

section. This assumes we've built the binary at the same level that our makerd
scripts are run from.

cp testapp /mnt/bin/testapp

Once we rebuild with our script, burn it into Flash and restart the board, we can test
our new app:

sh-2.03# testapp
Our app works.
sh-2.03#

If we wanted to start our app automatically, it could be easily added to our rc.sysinit
script:

#!/bin/sh

#

rc.sysinit
#
>/etc/mtab
mount -a -n
#

ifconfig eth0 192.168.1.15 up
ifconfig ethl 10.0.0.1 up
inetd &

If our new binary had required any libraries not present in our current root
filesystem, we would also need to migrate these as well. To find out which libraries
are used by a particular binary, the following command can be used:

ppc_8xx-objdump -p testapp | grep NEEDED
In the case of testapp, that would provide:

NEEDED libc.so.6

Since our script already collects this library, nothing else is required. Otherwise, the
/lib population section of the script would need to be updated for new library
stripping and symbolic link setting.

Final Details

The final issue is how to get the board to boot our Linux kernel when power is
applied. We again go back to PlanetCore to configure the bootloader on how to
behave on boot.

Three EEPROM parameters are used to define our boot behavior. These are defined in
the PlanetCore bootloader (see Listing 4).

Listing 4. Setting the autoboot Parameters [4]

First, we set the autoboot key to Confirm, telling the bootloader to wait two seconds
before execution. In this way, we can still stop the boot from our terminal session in

the event something goes wrong. Next, we set the format key to Flash to specify
where to get our boot image. Finally, we set the start key to the address in Flash
where our kernel has been stored (in this case ff840000). Finally, by using the store
command, we store these in EEPROM so they're present at the next boot.

On the next boot, we'll see the following from PlanetCore:

Autoboot in 2 seconds.
ESC to abort, SPACE or ENTER to go.
loaded at: FF840000 FF84B1FC
relocated to: 00180000 0018B1FC
board data at: 001801C8 001801E4
relocated to: 00200100 0020011cC

zimage at: FF846000 FF8A64EC
initrd at: FF8A64EC FF9C23B2
relocated to: O01lEE4000 Ol1FFFEC6
avail ram: 00201000 O01EE4000

Linux/PC load: root=/dev/ram

Summary

Hopefully this article has provided some insight into developing embedded
applications with Linux on a PowerPC target. It should also be apparent that working
with Linux, whether on an Intel desktop or an embedded PowerPC, is very similar. To
me, this is one of the greatest strengths of Linux and why traditional embedded
operating system vendors are concerned about the future.

Resources [5]

M. Tim Jones has been developing embedded software since 1986
(1979, if you count T-BUG on the TRS-80 Level | with 4KB). He
has designed and developed software ranging from OS kernels for
geostationary spacecraft to a variety of terrestrial embedded
network applications. Mr. Jones is currently employed as an OS
developer with Avaya Communication in Westminster, Colorado.
He can be reached at mtj@mtjones.com.

Links

[1] http://www.linuxjournal.com/

[2] http://www.linuxjournal.com//articles/web/2001-07/4624/462412.html
[3] http://www.linuxjournal.com//articles/web/2001-07/4624/462413.html
[4] http://www.linuxjournal.com//articles/web/2001-07/4624/462414.html
[5] http://www.linuxjournal.com//articles/web/2001-07/4624/4624s1.html

Source URL: http://www.linuxjournal.com/article/4624

