JOURNAL
LDAP for Security, Part |

By Mick Bauer
Created 2003-07-01 01:00

OpenLDAP offers the convenience of a common directory across all applications. And
if you set it up right, it will make your network more secure, not less.

Suppose you have an Internet Mail Access Protocol (IMAP) server and a bunch of
users, but you don't want to give each user a shell account on the server. You'd
rather use some sort of central user-authentication service that can be used for
other tasks as well. While you're at it, you also need an on-line address book for
your organization's e-mail and groupware applications. And suppose, in addition to all
that, you also need to provide your users with encryption tools that use X.509
certificates and then manage digital certificates for your entire organization.

Would you believe that one service can address all four scenarios? The Lightweight
Directory Access Protocol (LDAP) does all of this and more. And wouldn't you know
it, the Open Source community is blessed with a free, stable and fully functional
LDAP server and client package that is already part of most Linux distributions:
OpenLDAP.

The only catch is LDAP is a complicated beast. To make sense of it, you're going to
have to add still more acronyms and some heavy-duty abstractions to your bag of
UNIX tricks. But armed with the next few months' Paranoid Penguin columns and a
little determination, you'll have the mighty LDAP burro pulling several large plows
simultaneously, making your network both more secure and easier to use. In my
experience, = more secure'" and " simpler for end users' rarely go hand in hand, so
I'm excited finally to be covering OpenLDAP in this column.

LDAP Basics

In a nutshell, LDAP provides directory services, a centralized database of essential
information about the people, groups and other entities that comprise an
organization. As every organization's structure and its precise definition of essential
information may be different, a directory service must be highly flexible and
customizable. It's therefore an inherently complex undertaking.

The X.500 protocol for directory services is a case in point. It was designed to
provide large-scale directory services for large and complex organizations.



Accordingly, X.500 is itself a large and complex protocol, so much so that a
lightweight version of it was created: the Lightweight Directory Access Protocol.
LDAP, described in RFC 1777, is essentially a subset of the X.500 protocol, and it's
been implemented far more widely than X.500 itself has been.

X.500 and LDAP are open protocols, like TCP/IP; neither is a standalone product. A
protocol has to be implemented in some sort of software, such as a kernel module, a
server daemon or a client program. Also like TCP/IP, not all implementations of LDAP
are alike or even completely interoperable (without modification). The particular LDAP
implementation we cover here is OpenLDAP, but you should be aware that other
software products provide alternative implementations. These include Netscape
Directory Server, Sun ONE Directory Server and even, in a limited way, Microsoft
Active Directory in Windows 2000 Server.

Luckily, LDAP is designed to be extensible. Creating an LDAP database on one
platform that is compatible with other LDAP implementations is usually a simple
matter of adjusting the database's record formats, or schema, which we'll discuss
next month. Therefore, it's no problem to run an OpenLDAP server on a Linux
system that can provide address book functionality to users running, say, Netscape
Communicator on Macs.

Getting and Installing OpenLDAP

Being such a useful and important tool, OpenLDAP is included in most major Linux
distributions. Generally, it's split across multiple packages: server deemons in one
package, client programs in another, development libraries in still another. This
article is about building an LDAP server, so naturally you'll want to install your
distribution's OpenLDAP server package, plus OpenLDAP runtime libraries if they
aren't included in the server package.

You might be tempted to forego installing the OpenLDAP client commands on your

server if no local user accounts will be on it and you expect all LDAP transactions to
occur over the network. However, these client commands are useful for testing and
troubleshooting, so I strongly recommend you install them.

The specific packages comprising OpenLDAP in Red Hat are openldap (OpenLDAP
libraries, configuration files and documentation); openldap-clients (OpenLDAP client
software/commands); openldap-servers (OpenLDAP server programs); and openldap-
devel (headers and libraries for developers). Although these packages have a number
of fairly mundane dependencies, including glibc, two are required packages you may
not have installed already: cyrus-sasl and cyrus-sasl-md5, which help broker
authentication transactions with OpenLDAP.

In SUSE, OpenLDAP is provided in the following RPMs: openldap2-client (in section n1l
of SUSE versions 7.3 and 8.0); openldap2 (includes both the OpenLDAP libraries and
server daamons and is found in section n2); and openldap2-devel (found in section
n2 for SUSE 7.3 and n4 for SUSE 8.0). As with Red Hat, be sure to install the
package cyrus-sasl, located in SuSE's secl directory.



In both the 7.3 and 8.0 distributions, SUSE provides packages for OpenLDAP versions
1.2 and 2.0. Be sure to install the newer 2.0 packages listed in the previous
paragraph, unless you have a specific reason to run OpenLDAP 1.2. This guideline
does not apply to Red Hat or Debian, both of which are standardized on OpenLDAP
2.0 in their current distributions.

For Debian 3.0 (Woody), the equivalent deb packages are: libldap2 (OpenLDAP
libraries, in Debian's libs directory); slapd (the OpenLDAP server package, found in
the net directory); and ldap-utils (OpenLDAP client commands, also found in the net
directory). You'll also need libsasl7 from the Debian libs directory.

If your distribution of choice doesn't have binary packages for OpenLDAP, or if a
specific feature of the latest version of OpenLDAP is lacking in your distribution's
OpenLDAP packages or if you need to customize OpenLDAP at the binary level, you
always can compile it yourself from source you've downloaded from the official
OpenLDAP web site at www.openldap.org [1].

Configuring and Starting slapd

The main server deemon in OpenLDAP is called slapd, and configuring this program is
the first step in getting OpenLDAP working once it's installed. Its configuration is
determined primarily by the file /etc/openldap/slapd.conf. The * " OpenLDAP 2.0
Administrator's Guide" at www.openldap.org/doc/admin20/guide.html [2] has an
excellent quick-start procedure for getting slapd up and running: it's in Section 2,
starting at Step 8. That document also explains directory services and LDAP concepts
in more depth than this article does, using tree/hierarchy diagrams.

Let's walk through this procedure to make sure you get off to a good start. The first
thing to do is edit slapd.conf, an example of which is shown in Listing 1. As you can
see, slapd.conf is a typical Linux configuration file: each line consists of a parameter
name followed by a value.

Listing 1. Customized Part of /etc/openldap/slapd.conf [3]

The first parameter shown in Listing 1, database, specifies what type of database
back end to use. Usually, the best choice here is Idbm, which uses the fast dbm
database format, but shell (for custom shell-script back ends) and passwd (to use
/etc/passwd as the back end) also are valid choices. There may be multiple database
definitions, each with its own set of applicable parameters; all the lines in Listing 1
comprise a single database definition.

The next parameter in Listing 1 is suffix, which determines what queries match this
database definition. Here, the specified suffix is wiremonkeys.org, expressed in LDAP-
speak as a series of domain component (dc) statements, which are parsed from left
to right. In other words, if an LDAP client queries our example server for information
about the distinguished name (dn) cn=bubba,dc=wiremonkeys,dc=o0rg, our server
matches that query against this database definition, as the dn ends with
dc=wiremonkeys,dc=org. See the Sidebar " "A Crash Course in X.500 Naming' for



more information about distinguished names.

Sidebar: A Crash Course in X.500 Naming [4]

The next two entries in Listing 1 have to do with LDAP database administration;
rootdn and rootpw specify the user name and password, respectively, that must be
supplied by remote or local commands that perform administrative actions on the
LDAP database. Interestingly, this entry is used only for this purpose. It doesn't show
up in regular LDAP database queries.

This addresses the paradox of how to authenticate the actions required to populate
the authentication (LDAP) database. Later, after you've populated your LDAP
database with real entity records, designate one of them as the administrative
account, using slapd.conf access control lists (acls), and delete the rootdn and rootpw
entries. I'll cover that step in a future column; for now, rootdn and rootpw suffice.

It's a very, very bad idea to store the value of rootpw as clear text. Instead, you
should use the slappasswd command to generate a password hash, shown in Listing
2.

Listing 2. The slappasswd Command [5]

As you can see, slappasswd prompts you for a password and prints that password
hashed with the algorithm you specify with the -h option. Be sure to enclose this
value in curly brackets--see the slappasswd(8C) man page for a list of valid choices.
You can copy and paste slappasswd's output directly into slapd.conf, which is
precisely what I did to create the rootpw value in Listing 1.

Getting back to Listing 1, the next parameter in this directory definition is directory.
Obviously enough, this specifies in which directory on the local filesystem your LDAP
directory should be created. Because /var is the customary place for growing files
such as logs and databases, Listing 1 shows a value of /var/lib/ldap. This directory
must already exist, and make sure it's owned by OpenLDAP's user and group, usually
Idap and Idap. Its permissions should be set to 0700 (-rwx====-- ).

Technically, that's enough to get started: you can try starting slapd with your Idap
startup script, most likely /etc/init.d/ldap, though this may vary among distributions.
I encourage you to start adding practice entries to your LDAP database using the
Idapadd command--the quick-start procedure I mentioned earlier shows how.

Before you begin managing and querying your LDAP database over the network,
however, you'll want to configure and enable TLS encryption. This is important, as
the simple authentication method used by OpenLDAP sends authentication credentials
over the network unencrypted. But I'm out of space for now, so we'll cover that next
month. If you can't wait until then, Vincent Danen explains how in his on-line article
" “Using OpenLDAP for Authentication', at www.mandrakesecure.net/en/docs/ldap-
auth.php [6], though it is somewhat Mandrake-centric. I'll also discuss some
considerations in determining the structure of your LDAP database and show how to
build one. Until then, good luck!



Mick Bauer, CISSP, is Linux Journal's security editor and an IS
security consultant for Upstream Solutions LLC in Minneapolis,
Minnesota. Mick spends his copious free time chasing little kids
(strictly his own) and playing music, sometimes simultaneously.
Mick is author of Building Secure Servers With Linux (O'Reilly &
Associates, 2002).

email: mick@visi.com [7]

Links

[1] http://www.openldap.org

[2] http://www.linuxjournal.com/

[3] http://www.linuxjournal.com//articles/lj/0111/6789/6789I11.html
[4] http://www.linuxjournal.com//articles/lj/0111/6789/6789s1.html
[5] http://www.linuxjournal.com//articles/lj/0111/6789/678912.html
[6] http://www.mandrakesecure.net/en/docs/ldap-auth.php

[7] http://www.linuxjournal.com/mailto:mick@visi.com

Source URL: http://www.linuxjournal.com/article/6789




