
Paranoid Penguin - Linux VPN Technologies
By Mick Bauer
Created 2005-01-05 02:00

Which virtual private network is right for you? Mick runs down the options and comes
up with some winners and some warnings.

Virtual private networks, or VPNs, are useful and convenient things. Road warriors
use them to connect to their home networks securely while traveling; geographically
dispersed organizations use them to encrypt WAN links that use public bandwidth;
and wireless LAN users use them to add a layer of security to their WLAN
connections.

A number of VPN packages are available for Linux: FreeS/WAN, OpenS/WAN, PoPToP,
OpenVPN and tinc, just to name a few. But how do you choose the right one for a
given job? I show you how in this month's column.

VPN Architecture
VPNs generally address two different needs. The first is the need to allow users to
connect to a private network with an encrypted connection through some untrusted
medium, such as the Internet or a wireless LAN (WLAN). Figure 1 illustrates the
remote-access scenario.



 [1]

Figure 1. Remote-access VPNs allow one remote system to connect to a network.

In Figure 1, the dashed-blue data flow implies access to the entire corporate LAN. In
practice, a remote-access VPN tunnel can limit that access through access control
lists (ACLs) or firewall rules. Access can even, in the case of SSL-VPN, be limited to a
single application on a single host (I'll explain SSL-VPN shortly).

For simplicity's sake, Figure 1 shows a single client; however, this scenario nearly
always involves many clients. In other words, the remote-access scenario requires a
client-server architecture in which a single VPN server or concentrator can build
tunnels with hundreds or even thousands of remote users. (In this article I'm using
the term client-server in a very broad sense, not in the specific software
development sense.)

Although Figure 1 shows a VPN server acting as the corporate LAN's VPN endpoint,
the firewall also could be used for this-both commercial and free firewalls, including
Linux iptables/Netfilter, support VPN protocols.

Important: in this article when I say tunnel, I mean encrypted tunnel. Yes,
technically the term tunnel simply means one data stream encapsulated into another.
But the whole point of VPNs is encryption, so in this context, tunnel equals
encryption.

The second VPN need is to create an encrypted point-to-point connection between
two different networks over some untrusted medium. Whereas remote-access VPNs
use a client-server model, point-to-point tunnels use a peer-to-peer model. Figure 2
shows a point-to-point VPN architecture.



 [2]

Figure 2. Point-to-point VPNs connect two networks.

Routers often are used in the point-to-point VPN scenario. Cisco's IOS router
operating system, for example, supports several different VPN protocols. Firewalls
and dedicated VPN concentrators/servers, however, also can be used as VPN
endpoints.

Those are the two problems that VPN architectures address. Two more architectural
considerations are worth mentioning, network address translation (NAT) and
performance.

With most VPN protocols, NAT can be problematic. That is, your VPN servers
generally can't have translated addresses. This is why, in both Figures 1 and 2, none
of the VPN endpoints are in corporate LANs, except for the remote client in Figure 1-
remote-access clients are the exception to this rule.

Using your firewall as a VPN server is one way to get around the NAT problem, but
that brings us to the second consideration: VPN tunnels can be CPU-intensive. Unless
your firewall has a crypto-accelerator card or doesn't need to support many
concurrent VPN tunnels, you're probably better off using a dedicated VPN server than
you are using your firewall for VPNs.

Now that we've covered the basics, let's look at specific VPN software for Linux.

FreeS/WAN and OpenS/WAN
The IPSec protocol, which really is a set of security headers in the Internet Protocol
(IP) v6 back-ported to IPv4, is the most open, powerful and secure VPN protocol. It's



also the most ubiquitous. IPSec support is now part of virtually all important
computer and network-device operating systems. On Linux, it's provided by
FreeS/WAN and OpenS/WAN.

I covered FreeS/WAN in depth in "An Introduction to FreeS/WAN", Parts I and II [in
the January and February 2003 issues of LJ, respectively]. In a nutshell, FreeS/WAN
adds a couple of kernel modules and user-space commands to your Linux system.
Because the IP protocol is part of your kernel, it follows that extensions to the IP
protocol also must be incorporated into your kernel.

The Linux 2.6 kernel includes these IPSec modules, called the 26sec modules. The
Linux 2.4 kernels included with Red Hat Enterprise Linux do as well-they contain
backported versions of the 26sec modules. If you already have IPSec kernel modules,
you need install only FreeS/WAN's user-space commands.

FreeS/WAN may be included with your Linux distribution of choice (SuSE, which is
mine, includes it). However, the FreeS/WAN Project recently folded, so if your
distribution doesn't include FreeS/WAN and you need to compile it from source,
you're better off using OpenS/WAN.

OpenS/WAN was started by a group of FreeS/WAN developers who were unhappy
with how things were going with the FreeS/WAN Project. Thus, when FreeS/WAN
ended, OpenS/WAN succeeded it. Eventually, we can expect the major Linux
distributors to replace their FreeS/WAN packages with OpenS/WAN. In the meantime,
you can obtain the latest OpenS/WAN source code from the OpenS/WAN Web site
(see the on-line Resources).

Advantages of FreeS/WAN and OpenS/WAN include:

Maturity: this is one of the older Linux VPN technologies.

Security: IPSec is a robust, powerful and well-designed protocol.

Interoperability: client systems running other OSes probably have IPSec client
software that interoperates with Free/OpenS/WAN.

Flexibility: IPSec is ideal for both remote-access and point-to-point VPNs.

Disadvantages include:

Complexity: IPSec is not easy to understand, and it requires digital certificates.

Power: if all you need to do is provide remote users with access to one
application running on one internal system, IPSec may be overkill. IPSec is
designed to connect entire networks to each other.

Having said that, if after reading this entire article you're still confused as to which
VPN solution is best for you, I recommend that you default to FreeS/WAN or
OpenS/WAN. IPSec is by far the most mature and secure VPN technology for Linux.
In my opinion, these advantages outweigh the disadvantage of being complex. See



the FreeS/WAN and OpenS/WAN Web sites for more information on configuring and
using these packages.

OpenSSH
It's tempting to think of OpenSSH purely as a remote shell tool. But the SSH protocol
supports the secure tunneling of any single-TCP-port service, not only shells, by
using the -L and -R options.

For example, suppose I have a secure shell server in a firewalled but publicly
accessible DMZ network and a Microsoft SQL server in my internal network. If I
create a firewall rule allowing MS-SQL transactions from the SSH server to the MS-
SQL server and if my SSH server allows port forwarding, I could create an SSH
tunnel between some remote host and my SSH server that allows remote database
clients to send queries to the remote host that are tunneled to the SSH server and
forwarded to the MS-SQL server. The SSH command on my remote host would look
like this:

bash-#> ssh -L 11433:ms-sql.server.name:1433 myaccount@remote.ssh-server.name

where ms-sql.server.name is the name or IP address of the MS-SQL server, and
remote.ssh-server.name is the name or IP address of the DMZed SSH server.

It's even possible to tunnel PPP over SSH, which technically achieves the same thing
as IPSec-that is, the ability to tunnel all traffic between two networks. However, this
is one of the least efficient means of doing so; it involves much more administrative
overhead than the other tools and methods described in this article.

In summary, OpenSSH is a good tool for tunneling traffic from specific applications
running on specific hosts; it can be used in this way in both remote-access and
point-to-point VPN scenarios. It is less useful, however, for tunneling all traffic
between remote networks or users.

See the ssh(1) and sshd_config(5) man pages for more information on using
OpenSSH for port forwarding.

Stunnel
Conceptually, Stunnel, an SSL wrapper, provides functionality equivalent to SSH port
forwarding. Stunnel is a standard package on most Linux distributions nowadays.

The main difference between Stunnel and SSH is that Stunnel is much more limited;
all it does is encrypted port forwarding. Also, because Stunnel really is a sort of front
end for OpenSSL, Stunnel requires you to configure and install digital certificates,
which perhaps offsets some of its simplicity. Otherwise, Stunnel shares OpenSSH's



limitations as a VPN tool.

See the stunnel(8) man page, the Stunnel Web site and my article "Rehabilitating
Cleartext Network Applications with Stunnel" (LJ, September 2004) for information
on configuring and using Stunnel.

OpenVPN
OpenVPN is an SSL/TLS-based user-space VPN tool that encapsulates all traffic
between VPN endpoints inside ordinary UDP or TCP packets (ordinary in the sense
that they don't require any modifications to your kernel's IP stack). OpenVPN was
created because in the opinion of its author, James Yonan, the world needed a less
complex alternative to IPSec.

Because no special kernel modules or modifications are necessary, OpenVPN runs
purely in user space, making it much easier to port across operating systems than
IPSec implementations. And, by virtue of using the standard OpenSSL libraries,
OpenVPN, like Stunnel, does a minimum of wheel re-invention. Unlike homegrown
cryptosystems, such as those used in the CIPE and tinc VPN packages (see below),
all of OpenVPN's critical operations are handled by OpenSSL. OpenSSL itself certainly
isn't flawless, but it's under constant scrutiny for security flaws and is maintained by
some of the Open Source community's finest crypto programmers.

OpenVPN is a good match for point-to-point VPNs, but until version 2.0 (still in beta
as of this writing, November 2004), OpenVPN had the limitation of being able to
accommodate only a single tunnel on a given listening port. If you wanted to use
OpenVPN to provide remote-access VPN tunnels to ten different users, you needed to
run ten different OpenVPN listeners, each using its own UDP port, such as UDP
10201, UDP 10202 and UDP 10203 and seven more. Therefore, if you want to use
OpenVPN for remote-access VPNs, you'll be much happier with OpenVPN 2.0 (even in
its beta state), unless you have only a handful of users.

OpenVPN is included with SuSE Linux 9.1 and probably other distributions as well.
See the OpenVPN Web site for configuration information and for the latest OpenVPN
software.

PoPToP and the Linux PPTP Client
IPSec isn't the only low-level VPN protocol used on the Internet. Microsoft's Point-to-
Point Tunneling Protocol (PPTP) also has its adherents, mainly because it has been a
standard component of Microsoft's server operating systems since Windows NT 4.0
and because, unlike IPSec, which can only tunnel IP packets, PPTP can be used to
tunnel not only IP but also other protocols, such as NETBEUI and IPX/SPX.

Linux support for PPTP comes in two flavors, PoPToP on the server side and Linux
PPTP Client on the client side.

As handy as it is to tunnel non-IP protocols and as ubiquitous as Windows servers



are, PPTP has one big problem. When Bruce Schneier and Dr Mudge analyzed the
Windows NT 4.0 implementation of PPTP in 1998, they found serious security flaws
that were only partially mitigated by the release of MSCHAPv2 shortly afterward.
MSCHAP is an authentication protocol PPTP depends on; it was the source of the
worst vulnerabilities Schneier and Mudge found. Schneier has a Web page devoted to
their analysis (see Resources).

Schneier and Mudge analyzed Windows NT 4.0; what about a Linux PoPToP server?
According to the PoPToP Web site (in "PoPToP Questions and Answers"): "PoPToP
suffers the same security vulnerabilities as the NT sever (this is because it operates
with Windows clients)."

I do not recommend using PPTP unless you can configure your PPTP server and all
PPTP clients to use MSCHAPv2 (not all Windows versions support MSCHAPv2) and
you're trying to do something that simply can't be done with IPSec. IPSec is much
better designed and is provably more secure. Furthermore, non-IP network protocols
aren't as important as they once were; both Windows and Novell Netware can do
everything over IP.

I'll stop short of saying something like "you can't use PPTP, because it's lame." As I
argued last month, security is about risk management, not about seeking some sort
of utopian state of pure security. After you read up on the Schneier and Mudge
controversy, Microsoft's response and MSCHAPv2, and after you carefully examine
your particular organization's needs and capabilities, you conceivably could decide
that for you, PPTP represents a justifiable compromise between security and
functionality-just don't tell anyone I said you should use it!

Other Linux VPN Packages
Three other Linux VPN tools are worth mentioning here, because you'll occasionally
see references to them. Two of them I recommend against using, and the third I'm
not sure about.

CIPE and vtun conceptually are similar to OpenVPN. They encapsulate traffic into
encrypted UDP or TCP packets. Unlike OpenVPN, however, they use homegrown
cryptosystems rather than OpenSSL. That is, they do use standard cryptographic
algorithms such as Blowfish and MD5, but in custom implementations (session-key
generation, user authentication and so on). Because implementation is one of the
hardest parts of cryptographic programming, this is a dangerous thing to do, and
sure enough, the cryptographer Peter Gutmann has found serious flaws in both CIPE
and vtun.

In neither case have the flaws Gutmann identified been fixed, as far as I can tell.
And neither CIPE nor vtun appears to be in active development anymore (CIPE for
sure is not), which is reason enough to avoid any security application, except when
that application is part of a Linux distribution whose packagers provide patches
themselves. I do not, therefore, recommend using either CIPE or vtun.



tinc, like CIPE and vtun, uses a custom cryptographic implementation to encapsulate
VPN traffic in encrypted UDP packets. And like those packages, Gutmann found flaws
in tinc, in the same analysis I referred to earlier. Unlike CIPE and vtun, however,
tinc's developers have responded to Gutmann's findings in a credible manner; at
least from my perspective (IANAC-that is, "I am not a cryptographer"), they appear
to have some clue as to what they're doing.

I leave it to you to check out the tinc Web site, read Gutmann's page (which stops
well short of being a serious research report), do a few Google searches for the
aftermath of Gutmann's statements and decide for yourself whether tinc looks like
just the thing you've been looking for or more like an unjustifiable risk given the
availability and quality of OpenS/WAN and OpenVPN.

SSL-VPN
Finally, a word about a popular new approach supported in many commercial VPN
products, SSL-VPN. SSL-VPN works in practically the same way as Stunnel and SSH
port forwarding. It tunnels network transactions on a per-service, per-server basis
rather than at the circuit level. Unlike those other approaches, however, SSL-VPN
products present end users with a centralized Web interface in which all available
servers/services hosted by the VPN server are listed as hyperlinks. When the user
clicks on a link, typically a Java applet is downloaded that serves as the application
client software.

The SSL-VPN server products I've seen are all proprietary, but because the client
side is usually cross-platform, in Java, Linux systems can act as SSL-VPN clients.

Conclusions
FreeS/WAN and OpenS/WAN (preferably the latter) and IPSec are probably the most
secure and powerful VPN tools in the Linux toolbox. OpenVPN appears to be a
simpler, albeit less-scrutinized, alternative. OpenSSH and Stunnel provide handy
point solutions when encapsulating more than a few specific applications is overkill.
Still other Linux VPN tools are available, but some are provably dangerous, and on
the others the jury is still out. Which VPN tool is the best fit for you? Obviously, I
can't tell you that without knowing your particular needs and resources. But, I hope
this little overview has at least given you a useful starting point.

Resources for this article: www.linuxjournal.com/article/7923 [3].

Mick Bauer, CISSP, is Linux Journal's security editor and an IS security consultant in
Minneapolis, Minnesota. He's the author of Building Secure Servers With Linux
(O'Reilly & Associates, 2002).

Links



[1] http://www.linuxjournal.com//articles/lj/0130/7881/7881f1.png
[2] http://www.linuxjournal.com//articles/lj/0130/7881/7881f2.png
[3] http://www.linuxjournal.com//article/7923

Source URL: http://www.linuxjournal.com/article/7881


