JOURNAL

Linux on Linksys Wi-Fi Routers

By James Ewing
Created 2004-08-01 01:00

Hacking this reliable, inexpensive platform can be your first step to a successful
wireless project. Chain access points together to cover a wide area, crank up the
power level, get more working space in Flash memory and more.

Wireless networking has become a mass-market technology, and the price of 802.11
or Wi-Fi gear has fallen to commodity levels. Several thousand competitors with
virtually identical products now are vying for your Wi-Fi dollars. In this kind of
competitive space it is natural for manufacturers to seek the lowest cost alternatives.
Their choice? Linux, of course.

Linux has become the premium OS for inexpensive, feature-packed wireless
networking. Linksys, one of the major wireless players, turned to Linux for its
802.11g next-generation Wi-Fi devices. When Cisco bought Linksys in early 2003, it
inherited both the Linux devices and an emerging feud over the unreleased GPL
source code. After several months of lobbying by open-source enthusiasts, Cisco
relented and released the source.

The Linksys WRT54G product (Figure 1) is especially interesting due to its low price
and internal hardware. The WRT54G contains a four-port Ethernet hub, an Ethernet
WAN port, support for the new high-speed 54MB/s 802.11g wireless protocol and
backward compatibility with older 802.11b devices.



-
Gl

Linkksys:

[1]

Figure 1. For under $100 US, the Linksys WRT54G is a capable Linux platform with
16MB of RAM, a 125MHz processor and support for 802.11b and g.

But what the WRT54G lacks is what makes it interesting. Under the hood the unit
sports a 125MHz MIPS processor with 16 MB of RAM. This is more than enough
horsepower to run some serious applications, so why not add some?

Setting Up the Development Environment

The latest source on the Linksys site is about 145MB in size and contains a complete
toolchain for MIPS cross development (see "The Linksys WRT54G Source Tree"
sidebar).

Follow the instructions for creating symlink and PATH additions in the README file in
the WRT54G/src subdirectory. Then cd to the router subdirectory and run make
menuconfig. Keep the standard options for your first build, and click through to create
your configuration files. ca up one level to the WRT54G/src directory and type make.
That's all there is to it. A file called code.bin is created in the WRT54G/image
directory containing a compressed cramfs filesystem and a Linux 2.4.20 kernel.

Now comes the scary part-how do you get this new firmware on to your Linksys?
There are two methods, by tftp or through the Web-based firmware upgrade
interface. I suggest you use the Web upgrade for your first try.

Surf to your Linksys box-the default address is 192.168.1.1-and log in. Select
Firmware Upgrade from the Administration menu and upload your code.bin file. The
router now restarts. Congratulations, you have just modded your Linksys box.



The Ping Hack

The existence of Linux on the WRT54G was discovered through a bug in the ping
utility in the Diagnostics menu. Firmware versions prior to 1.42.2 allowed arbitrary
code to be run from the ping window if surrounded by back-ticks. If you have a box
with the older firmware, try typing “1s -1 7~ in the ping window's IP address field.
Voila-a listing of the root directory magically appears.

The ping hack allows curious folks to explore their boxes without modifying the
source. But exploring by way of the ping window is slow and tedious. What we really
need is a shell on the box.

By expanding the ping hack in the source code, a custom firmware image can be
created with the full power of a Linux shell over the Web interface. See the on-line
Resources section URLs on how to create the command shell.

But why stop there? The default firmware's cramfs filesystem leaves 200K of Flash
memory free. There is room for many useful applications, such as telnet or Secure
Shell or perhaps even a VPN client or server.

The wl Command

One useful command supplied by Linksys in binary form only is wl. The wl command
contains several dozen internal commands that control wireless settings, including
the popular power adjustment setting. Typing w1 with no parameters produces a
complete list of its capabilities.

The default power setting on the WRT54G is 28 milliwatts, and this setting cannot be
changed externally. But by using the ping hack or a shell, you can change this with
wl, using the txpwr subcommand and a number between 1 and 84 milliwatts. This
number raises or lowers the default power setting until the next reboot.

Increasing the power setting or replacing the stock antennas may increase your radio
output and violate local laws. If you replace the stock antennas and lower the power
setting, your unit's range can be extended significantly while remaining within legal
radio power limits.

The WRT54G supports two external antennas and automatically balances between

them depending on which received the last active packet. When adding a more
powerful external antenna, this is not the setup that you want. You need to force the

unit to choose the high power antenna every time. This is done with w1 txant for
receiving and w1 antdiv for sending. A 0 parameter forces the left antenna coupling
and a 1 forces the right, as you face the front panel.

Adding Secure Shell (SSH)

One enterprising individual ported the entire OpenSSH toolchain to the Linksys box.



Unfortunately, the size of the OpenSSH binary means that many standard Linksys
functions must be removed to make room. Plus, the resulting RAM requirements are
at the limits of available memory. What is needed is an SSH server with a small
memory footprint, and the Dropbear server fits the bill nicely. Matt Johnson designed
the Dropbear SSH daeemon specifically to run in memory-constrained systems such as
the Linksys.

The standard Linksys Linux implementation lacks many of the normal files needed for
multiuser Linux systems. Two of these-passwd and groups in the /etc directory-are
required by the vast majority of Linux applications. In order to run the Dropbear
server, we need to add these files to the Flash build.

By creating a passwd file with a root entry and no password and a matching groups
file, we can make Dropbear almost happy enough to run. These files are copied to
the /etc directory of the Flash image and are read-only on the Linksys.

When running, Dropbear also needs to access a private key that is used for SSH
handshaking and authentication, as well as a known_hosts file containing the public
keys of approved client machines. Generating the private key with the dropbearkey
program is a snap, but storing it on the Linksys is a bit trickier.

The WRT54G contains a hash map of key name and value pairs located in nonvolatile
storage called nvram. The bundled nvram utility and API allows us to read and write
to this memory area. The Dropbear private key and our public key ID from
id_rsa.pub in our home .ssh directory are stored in nvram and copied to /var in the
RAM disk on system start.

We compile Dropbear with support for key-file authorization and now have a secure
way to log in to the Linksys. If you need password login, the Dropbear code can be
patched to read the system password from nvram and to add the ability for password
logins as well.

Increasing Flash Memory Compression

After adding such utilities as SSH and telnetd, you soon find your Linksys firmware
image bumping the limits of the Flash storage space on the device. What you need is
a filesystem with better compression than cramfs offers, one that is compatible with
the Linksys Linux kernel.

The default cramfs filesystem compresses data in 4K blocks, but compressing on 4K
boundaries limits the compression ratios that can be achieved. If we could find a
filesystem that compressed larger blocks of data but mapped correctly to the page
size in the OS, we would be able to put far more data and applications in the
firmware.

Phillip Lougher's squashfs filesystem compresses in 32K blocks and is compatible with
the 2.4 and 2.6 kernels. If we could move the Linksys firmware from cramfs to
squashfs, we might have enough room for a VPN client and server in the system.



The Linksys kernel is a customized 2.4.20 source tree modified by Broadcom.
Broadcom is a leading 802.11g chip maker and is responsible for the CPU and radio
chips in the WRT54G. The squashfs tar file contains patches for the 2.4.20 through
2.4.22 kernels. Unfortunately, none of these applies cleanly to the Broadcom kernel
tree, so a bit of hand editing is necessary. The patch with the fewest errors is the
2.4.22 version, which misses only one hunk when applied. By reading the patch file
and finding the missing hunk, you can patch the missing code manually. You also
can find a WRT54G-specific squashfs patch on the Sveasoft Web site.

The Linksys WRT54G Source Tree

When you unpack the GPL source from Linksys, a directory structure is created below
the main WRT54G subdirectory. Here is an explanation of the important parts.

The main tarball directory is /WRT54G. The main Makefile lives in /release/src. After
unpacking the source, read the README file here for instructions on how to compile
it.

All of the applications packaged with the Linksys unit are built from
/release/src/router. If you want to add applications, do it here and modify the
Makefile in this directory. This Linux kernel source tree has been modified by
Broadcom, the manufacturer of the wireless chips and CPU in the WRT54G. Add your
kernel modifications or patches here, /release/src/linux/linux.

You need to create a symlink from /opt to the brcm directory here, /tools/brcm. Two
of the subdirectories under brcm must be added to your PATH. See the README file
above for more information.

Patches and updated source code can be downloaded from Sveasoft. See Resources
for more information.

The next step is to edit the Broadcom kernel startup code and add a check for
squashfs. The do_mount.c file contains nearly identical code and can be used as a
guide when patching the startup.c file in the arch/mips/brcm-boards/bcm947xx
subdirectory.

After patching the kernel, the router Makefile must be patched to generate a
squashfs image and the Linux kernel configuration must be set to include squashfs
support.

This is well worth the effort, however. On recompile you should find some 500K free
bytes, compared to the stock cramfs filesystem.

The Wireless Distribution System

The standard WRT54G is a wireless access point (AP). This means that it can talk to
wireless clients but not to other wireless access points. The ability to link it to other
access points using the Wireless Distribution System (WDS) or to act as a wireless



client is available using the wl command.

The Wireless Distribution System is an IEEE specification that allows wireless access
points to be chained together in a wide area network. Although there is some
performance penalty for doing this, the end result is an extended wireless network
with a much greater range than is available using single APs.

In order to link two APs together using WDS, their respective MAC addresses must
be known. Log in to each box and run the command w1 wds [Mac Addr ], using the MAC
address of the opposite machine's wireless interface. A new device called wds0.2
then appears on each box and can be assigned an IP address. Once the IP addresses
are assigned and routing is set up between the two boxes, you are able to ping one
from the other.

Each WDS link results in data traffic doubling within the network. Because 802.11qg is
half duplex, this halves the network throughput. If the APs are operating at 54MB/s,
this is not much of a performance hit if you keep the links to three or fewer.

Client Mode Bridging

A simpler form of bridging is to set up one box as a client and have it link to an
access point. This is known as an Ethernet bridge, and several products exist
specifically for this purpose.

Client mode must be selected in the Linux kernel build menu and compiled in the
kernel. Once done, the kernel is built with a Broadcom binary-only module that
includes support for both AP and client modes. The command w1 ap o sets the box to
client mode, and w1 join [SSIDj] links it to an access point. If you set routing in the
client using the access point's IP address as the default gateway, the client
automatically routes to the access point and your bridge becomes active. Multiple AP
and client pairs can be set up as an alternative to the WDS method described above.

The Power of Open Source

Linux has worked its way into everything from supercomputers to embedded
systems, including the Linksys. The move to Linux is the result of a highest
performance vs. lowest cost equation in a highly competitive market. Many similar
wireless routers, such as the Belkin F5D7230-4, the Buffalotech WBR-G54 and the
ASUS WL-300g and WL-500g, all use Linux in their firmware, and the list expands
daily. Unfortunately, none of these companies has complied with GPL requirements
and released the source code. Legal issues aside, these products will lag far behind
the Linksys open-source products in capabilities and features for some time to come.

Linksys firmware builds containing amazing new features and capabilities appear
daily. At the time of this writing, firmware builds for the Linksys WRT54G with
support for VPNs, power adjustment, antenna select, client and WDS mode,
bandwidth management and a whole lot more are available from multiple sources.
The Internet combined with open-source code can change a small SOHO wireless



router into a powerful multifunctional device.

One word of caution: using experimental firmware could kill your box and probably
violates the Linksys warranty. If you are a casual user and need home or small office
access to a wireless network, this definitely is not for you. Use the official Linksys
firmware builds instead.

If, however, you are willing to risk your box and experiment with its potential, you
may find it is capable of much more than the specifications listed on the product
packaging-thanks to the power of Linux and open-source development.

Resources for this article: www.linuxjournal.com/article/7609 [2].

James Ewing (james.ewing@sveasoft.com [3]) has been an entrepreneur and
software developer for more than 20 years. Originally from California, he moved to

Sweden a decade ago and now balances his time between a wife and two children
and practicing his authentic rendition of the Swedish chef on the Muppet show.
7322aa.jpg

Links

[1] http://www.linuxjournal.com//articles/lj/0124/7322/7322f1.png
[2] http://www.linuxjournal.com//article/7609

[3] http://www.linuxjournal.com/mailto:james.ewing@sveasoft.com

Source URL: http://www.linuxjournal.com/article/7322




