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Abstract. Recently, a convergence proof of stochastic search algorithms
toward finite size Pareto set approximations of continuous multi-objective
optimization problems has been given. The focus was on obtaining a fi-
nite approximation that captures the entire solution set in some suitable
sense, which was defined by the concept of ǫ-dominance. Though bounds
on the quality of the limit approximation—which are entirely determined
by the archiving strategy and the value of ǫ—have been obtained, the
strategies do not guarantee to obtain a gap free approximation of the
Pareto front. That is, such approximations A can reveal gaps in the
sense that points f in the Pareto front can exist such that the distance
of f to any image point f(a), a ∈ A, is ‘large’. Since such gap free approx-
imations are desirable in certain applications, and the related archiving
strategies can be advantageous when memetic strategies are included
into the search process, we are aiming in this work for such methods. We
present two novel strategies that accomplish this task in the probabilistic
sense and under mild assumptions on the stochastic search algorithm. In
addition to the convergence proofs we give some numerical results to visu-
alize the behavior of the different archiving strategies. Finally, we demon-
strate the potential for a possible hybridization of a given stochastic
search algorithm with a particular local search strategy—multi-objective
continuation methods—by showing that the concept of ǫ-dominance can
be integrated into this approach in a suitable way.

1 Introduction

In a variety of engineering and economic problems several objectives have to
be optimized concurrently. One widely accepted class of algorithms for the ap-
proximation of the solution set (Pareto set) of such multi-objective optimization
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problems (MOPs) is given by evolutionary strategies. A typical evolutionary
multi-objective (EMO) algorithm consists, roughly speaking, of a process to
generate new candidate solutions (the generator) and a strategy to store and
update a ‘suitable’ subset of the obtained data according to the given task (the
archiver). Under mild assumptions about the generator, the limit approximation
set is determined almost entirely by the archiving strategy. By limit behavior
we mean the behavior of the sequence of archives Al, l ∈ N, which is generated
by the stochastic search algorithm in the course of the computation for iteration
step l → ∞. The task of this work is to develop archivers which aim for finite
size and gap free approximations of the solution set, which we motivate in the
following.
One interesting application of multi-objective optimization and its related tools
is the online-optimization of mechatronical systems. One approach to this prob-
lem is as follows: first, all relevant (conflicting) objectives of the underlying
system are collected and used to formulate a multi-objective optimization prob-
lem. This problem is then solved numerically by approximating the Pareto set
(denote the approximation by P) offline. This set serves further on as the ba-
sis for the online control by providing a repository of reference operating points:
the ‘optimal’ point (or optimal compromise) p(λ) ∈ P is determined online—i.e.,
while running the system—according to the current situation or demand λ of
the system and is used as the actual operating point. Since λ = λ(t) varies with
the time, this ‘optimal’ point has to be updated over and over again, according
to the sensitivity of the system. See [17, 36] for an operating point assignment
strategy of a linear drive, and [10] for an online-adjustment of an active suspen-
sion system. Crucial for the stability of the system is that the switch from one
point or system setting p(λ1) to the next one p(λ2) can not be done arbitrarily,
but has to be carried out as smoothly as possible. That is, large and abrupt
qualitative changes—(amongst others) in terms of the changes in the influential
objective values—have to be avoided. Thus, it is required in these applications—
and certainly in others as well—to obtain a gap free (and preferably uniformly
spread) Pareto front approximation.1

There exist on the other hand certainly also scenarios where a smooth changeover
of the parameter values over time is of particular interest. The algorithms we con-
sider here are, hovewer, not totally suited—but also not designed—for such cases,
since these algorithms are entirely based on the dominance and ǫ-dominance re-
lations, which are defined in objective space: consider a point f ∈ F (P) of the
image of the Pareto set (the Pareto front), where F : Rn → Rk is the function of
given objectives and consider that f has several preimages xi ∈ P , i = 1, . . . , s.
Then the archives of the subsequent archiving strategies will probably contain
(and retain) one approximate solution of one preimage xi, i ∈ {1, . . . , s}, af-
ter sufficiently many iterations, but (i) the index i depends on the order of
the incoming solutions and is thus not controllable, and (ii) further preimages

1 In case the Pareto front falls into different connected components, further techniques
(e.g., interpolation strategies among ‘neighboring’ system settings) have in addition
to be considered, but such cases are not part of this work.
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xj ∈ {1, . . . , s}\{i} (or points near by) will not be accepted further on. For this
we refer to archiving strategies which aim for the approximation of the entire
Pareto set or a superset of it (e.g., [22, 27, 28]).

Here we extend the work of [30] and present new archiving strategies for the
storage of the ‘essential’ solutions found by a stochastic search algorithm. The
strategy used in [30] is entirely based on the concept of ǫ-dominance, which does
not consider the distances between solutions in the archive. This can lead to
gaps in the approximation set, in particular when some portion of the front is
flat or contains a dent (see Figure 1). Though we agree that these phenomena
do not occur too often in practice, it is desirable, from a theoretical viewpoint,
to have a search algorithm—including a suitable archiving strategy—which can
exclude these unwanted gaps in the approximation.

Another important aspect is that the sole usage of the concept of ǫ-dominance in
the archiving strategy can cause inefficiencies for the resulting search algorithm,
in particular when hybridized with a local search procedure. For instance, when
using multi-objective continuation methods (see [25] for a combination of this
technique with evolutionary strategies), where the underlying idea is to move
along the efficient set, an unsuited archiving strategy as the one proposed in [30]
could lead to difficulties, although these methods are (in principle) very effective
locally. For this, consider a Pareto front such as the one displayed in Figure 1
(left) and assume that the archive is given by A = {a1}. If the continuation
method is started with {a1} and merely the concept of ǫ-dominance is used
for the archiving strategy this could lead to the fact that no points p on the
front with f1(p) > f1(a1) are kept by the archiver. The reason is that there is a
relatively large portion of the front near F (a1), where all points are ǫ-dominated
by a1—a ‘barrier’ which is hard or impossible to overcome by this (or any other)
local search strategy. Figure 1 (right) shows a situation which is more extreme.

In this work we propose two different archiving strategies and prove convergence
with probability one to gap free (and thus ‘tight’) Pareto front approximations.
The limit set of the first strategy is a tight ǫ-approximate Pareto set which pro-
vides a guaranteed uniformity level, while the limit set of the second strategy
forms a tight ǫ-Pareto set, which, however, lacks the uniformity. A previous study
of the current work can be found in [31]. While in [31] mainly the limit behavior
of the archivers were studied, this work offers in addition more discussion and
results which are intended for a better understanding of the effect of the novel
strategies.

The remainder of this article is organized as follows: Section 2 states the back-
ground required for the understanding of the sequel. In Section 3, we propose
the sets of interest, and in Section 4 two algorithms which aim for their ap-
proximation. Section 5 deals with the integration of the archivers into particu-
lar stochastic search algorithms, namely multi-objective evolutionary algorithms
(MOEAs). In Section 6, we present some numerical results. Then, we demon-
strate the potential for a possible hybridization with continuation methods in
Section 7. Finally, we present our conclusions in Section 8.
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Fig. 1. Examples of two ǫ approximate Pareto sets. Dents or ’flat’ regions in the Pareto
front can lead to (possibly unwanted) gaps in the approximation. In the left figure there
is a gap in the approximation between F (a1) and F (a2) both in f1- as in f2-direction.

2 Background and Related Work

In the following we consider continuous unconstrained multi-objective optimiza-
tion problems

min
x∈Rn

{F (x)}, (MOP)

where the function F is defined as the vector of the objective functions

F : Rn → Rk, F (x) = (f1(x), . . . , fk(x)),

and where each fi : Rn → R is continuous. Later we will restrict the search to
a compact set Q ⊂ Rn, the reader may think of an n-dimensional box

Q = Bl,u := {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n}, (2.1)

where l, r ∈ Rn with li ≤ ui, i = 1, . . . , n. In the next definition we state the
classical concept of optimality for MOPs.

Definition 1. (a) Let v, w ∈ Rk. Then the vector v is less than w (v <p w),
if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analogously.

(b) A vector y ∈ Rn is dominated by a vector x ∈ Rn (in short: x ≺ y) with
respect to (MOP) if F (x) ≤p F (y) and F (x) 6= F (y) (i.e., there exists a
j ∈ {1, . . . , k} such that fj(x) < fj(y).

(c) A point x ∈ Rn is called Pareto optimal or a Pareto point if there is no
y ∈ Rn which dominates x.

Denote by PQ the set of Pareto points (or Pareto set) of F |Q, where Q ⊂ Rn is
the domain. The image F (PQ) of the Pareto set is called the Pareto front. Both
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sets consist typically—i.e., under mild regularity assumptions on the objectives—
not of finitely many points as for scalar optimization problems, but form (k−1)-
dimensional objects.
In order to guarantee convergence toward PQ, F (PQ) or other related objects,
one often has to assume that there are no weak Pareto points outside PQ (see
e.g., [6, 26] for discussions). Such points are defined as follows:

Definition 2. A point x ∈ Q is called a weak Pareto point if there exists no
point y ∈ Q such that F (y) <p F (x).

One important question for an archiving strategy is if it is capable to ‘capture’
the incoming data in a suitable way. This holds in particular for multi-objective
optimization problems due to the dimensionality of the solution set. An ‘ideal’
archiver in this sense is certainly one which stores in the current archive A for
every candidate solution x which has been found by the generation process an
element a ∈ A such that a is equal to x or dominates it. However, since this
leads at least for continuous models to a sequence of archives Ai with |Ai| → ∞
for i → ∞, this demand on an archiver is not adequate for practical use. In
the following we will define a weaker concept of dominance, so-called (absolute)
ǫ-dominance ([16]), as well as two approximation concepts which will be used for
our further studies since they allow for finite size representations of the solution
sets.

Definition 3. Let ǫ = (ǫ1, . . . , ǫk) ∈ Rk
+ and x, y ∈ Rn. x is said to ǫ-dominate

y (in short: x ≺ǫ y) with respect to (MOP) if

(i) fi(x) − ǫi ≤ fi(y) ∀i = 1, . . . , k, and
(ii) fj(x) − ǫj < fj(y) for at least one j ∈ {1, . . . , k}.

Denote by d(·, ·) any distance and by || · || any norm. Further, let Bδ(x0) := {x ∈Rn : ‖x − x0‖ < δ} be the open ball with center x0 ∈ Rn and radius δ ∈ R+.

Definition 4. [15]

(a) Let ǫ ∈ Rk
+. A set Aǫ ⊂ Rn is called an ǫ-approximate Pareto set of (MOP)

if every point x ∈ Rn is ǫ-dominated by at least one a ∈ Aǫ, i.e.

∀x ∈ Rn : ∃a ∈ Aǫ : a ≺ǫ x.

(b) A set A∗
ǫ ⊂ Rn is called an ǫ-Pareto set if A∗

ǫ is an ǫ-approximate Pareto
set and if every point a ∈ A∗

ǫ is a Pareto point of (MOP).

Definition 5. [24]

(a) Let ∆ > 0 and let D ⊂ Z be a discrete set. D is called a d∆-representation
of Z if for any z ∈ Z, there exists y ∈ D such that d(z, y) ≤ ∆.
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(b) Let Z ⊂ Rn be any set and let D be a d∆-representation of Z. Then D is
called a δ-uniform d∆-representation if

min
x,y∈D,x 6=y

d(x, y) ≥ δ.

δ is called the uniformity level.

Despite the existence of suitable approximation concepts, investigations on the
convergence of particular algorithms towards such approximation sets, that is,
their ability to obtain a suitable Pareto set approximation in the limit, have
remained rare. Several studies, such as [8, 21, 26], consider only the convergence
to the entire Pareto set, or to a certain subset without considering the approx-
imation quality. The only work which deals with the computation of gap free
representation of the Pareto front due to the authors’ knowledge is [7]. However,
since in that work scalarization methods on convex MOPs are investigated, the
approach is not applicable for our purpose.

Finally, the issue of stochastic convergence towards finite-size Pareto set ap-
proximations was raised in the area of evolutionary multi-objective optimiza-
tion, mostly under the assumption of finite search spaces. One option is to use
Markov chain results assuming the underlying search processes to be Markovian
([20]). Another option is to define an order homomorphism of the natural domi-
nance relation of approximation sets into a totally ordered set of quality values,
thus enforcing a monotonicity of the sequence of solution sets maintained by
an algorithm. As shown in [12, 13], this entails convergence to a subset of the
Pareto set as a local optimum of the quality indicator, but no approximation
guarantee could given. [13] also analyzed the adaptive grid archiving proposed in
[14] and proved that after finite time, even though the solution set itself might
permanently oscillate, it will always represent an ǫ-approximation whose ap-
proximation quality depends on the granularity of the adaptive grid and on the
number of allowed solutions. The results depend on the additional assumption
that the grid boundaries converge after finite time, which is fulfilled in certain
special cases.
In [15], two archiving algorithms were proposed that provably maintain a finite-
size approximation of all points ever generated during the search process. As
an immediate corollary, these archiving strategies were claimed to ensure con-
vergence to a Pareto set approximation of given quality for any iterative search
algorithm that fulfills certain mild assumptions about the process to generate
new search points. While this claim holds trivially in the case of discrete (or
discretized) search spaces, its extension to the continuous case is not straight-
forward, and was only recently given in [30]. A restriction to discretized models,
however, can lead to problems when, e.g., when memetic strategies are used
(metaheuristic search algorithms mixed with local search strategies which itself
use step size control).

Next we define some distances between points as well as between different sets.
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Definition 6. Let u, v ∈ Rn and A, B ⊂ Rn. The maximum norm distance
d∞, the semi-distance dist(·, ·) and the Hausdorff distance dH(·, ·) are defined as
follows:

(a) d∞(u, v) := max
i=1,...,n

|ui − vi|

(b) dist(u, A) := inf
v∈A

d∞(u, v)

(c) dist(B, A) := sup
u∈B

dist(u, A)

(d) dH(A, B) := max {dist(A, B), dist(B, A)}

Algorithm 1 gives a framework of a generic stochastic multi-objective optimiza-
tion algorithm, which will be considered in this work. Here, Q ⊂ Rn denotes
the domain of the MOP, Pj the candidate set (or population) of the generation
process at iteration step j, and Aj the corresponding archive. Algorithms 2 and
3 show two archiving strategies which aim for the computation of ǫ-approximate
Pareto sets and ǫ-Pareto sets, respectively. The difference between these two
archivers is the strategy to accept candidate solutions coming from the gen-
eration process (for details we refer to [30] or to the discussion below on the
difference of Algorithms 4 and 5 which is similar). Convergence results can be
found in Theorems 1 and 2, which are closely related to the according results in
the present work, however, Algorithms 2 and 3 can not guarantee that the limit
archives do not reveal gaps in the Pareto front.

Algorithm 1 Generic Stochastic Search Algorithm

1: P0 ⊂ Q drawn at random
2: A0 = ArchiveUpdate(P0, ∅)
3: for j = 0, 1, 2, . . . do

4: Pj+1 = Generate(Pj)
5: Aj+1 = ArchiveUpdate(Pj+1, Aj)
6: end for

Theorem 1. [26] Let an MOP F : Rn → Rk be given, where F is continuous,
let Q ⊂ Rn be a compact set and ǫ ∈ Rk

+. Further let

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ N : Pl ∩ Bδ(x) ∩ Q 6= ∅) = 1 (2.2)

Then an application of Algorithm 1, where ArchiveUpdateEps1 is used to update
the archive, leads to a sequence of archives Al, l ∈ N, such that there exists with
probability one an l0 ∈ N such that Al is an ǫ-approximate Pareto set for all
l ≥ l0.



8

Algorithm 2 A := ArchiveUpdateEps1 (P, A0)

1: A := A0

2: for all p ∈ P do

3: if ∃a ∈ A : a ≺Θǫ p then

4: CONTINUE ⊲ do not execute lines 6 – 11
5: end if

6: for all a ∈ A do

7: if p ≺ a then

8: A := A\{a}
9: end if

10: end for

11: A := A ∪ {p}
12: end for

Algorithm 3 A := ArchiveUpdateEps2 (P, A0)

1: A := A0

2: for all p ∈ P do

3: if 6 ∃a ∈ A : a ≺Θǫ p then

4: A := A ∪ {p}
5: end if

6: for all a ∈ A do

7: if p ≺ a then

8: A := A ∪ {p}\{a}
9: end if

10: end for

11: end for
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Theorem 2. [26] Let (MOP) be given and Q ⊂ Rn be compact, and let there
be no weak Pareto points in Q\PQ. Further, let F be injective and

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ N : Pl ∩ Bδ(x) ∩ Q 6= ∅) = 1 (2.3)

Then an application of Algorithm 1, where ArchiveUpdateEps2 is used to update
the archive, leads to a sequence of archives Al, l ∈ N, where the following holds:

(a) There exists with probability one an l0 ∈ N such that Al is an ǫ-approximate
Pareto set for all l ≥ l0.

(b)
lim

l→∞
dist(Al, PQ) = 0, with probability one.

3 The Sets of Interest

Motivated by the need for gap free Pareto front approximations and inspired by
Definitions 4 and 5 we introduce here several objects.
First we define ∆M -tight ǫ-(approximate) Pareto sets. A set Aǫ ⊂ Rn is such a
set if (i) it is an ǫ-(approximate) Pareto set and if (ii) the maximal distance of
a point in the Pareto front to the image of an archive element is not larger than
a threshold ∆M . Condition (i) refers to the approximation quality of Aǫ in the
sense of ǫ-dominance (i.e., measured in image space), and condition (ii) refers to
the ‘tightness’ of the representation.

Definition 7. Let ǫ ∈ Rk
+.

(a) A set Aǫ ⊂ Rn is called a ∆M -tight ǫ-approximate Pareto set of (MOP) if
Aǫ is an ǫ-approximate Pareto set of (MOP) and

dist(F (PQ), F (Aǫ)) ≤ ∆M . (3.1)

(b) A set A∗
ǫ ⊂ Rn is called a ∆M -tight ǫ-Pareto set if F ∗

ǫ is an ǫ-Pareto set of
(MOP) and dH(F (PQ), F (A∗

ǫ )) ≤ ∆M .

A more descriptive way to express condition (3.1) is as follows: it is
dist(F (PQ), F (Aǫ)) ≤ ∆M if for every y ∈ F (PQ) there exists an element a ∈ Aǫ

such that d∞(y, F (a)) ≤ ∆M . In other words, F (PQ) has to be contained in the
‘box collection’ CAǫ,∆M

, where

CA,∆ :=
⋃

a∈A

B∞
∆ (F (a)), (3.2)

and B∞
∆ (x) := {y ∈ Rk : d∞(x, y) < ∆}.

Since we are further interested in uniform approximations of the sets of interest,
we add the uniformity level ∆m to the objects in Definition 7.

Definition 8. Let ǫ ∈ Rk
+.
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(a) A set Aǫ ⊂ Rn with |Aǫ| ≥ 2 is called a (∆M , ∆m)-tight ǫ-approximate
Pareto set if A∗

ǫ is an ∆M -tight ǫ-approximate Pareto set of (MOP) and

dist(F (a), F (A\{a})) ≥ ∆m, ∀a ∈ A.

(b) A (∆M , ∆m)-tight ǫ-Pareto set is defined analogously.

To get an impression about these objects, we consider the following MOP:

F : Q ⊂ R2 → R2

F (x) = x
(3.3)

where
Q = [0, 4]2 ∩ {(x1, x2) ∈ R2|x1 ≥ 4 − x2}. (3.4)

The Pareto set is given by PQ = {(x, 4 − x)|x ∈ [0, 4]}. Let

A1 = {a1 = (0, 4), a2 = (1, 3), a3 = (2, 2), a4 = (3, 1), a5 = (4, 0)} (3.5)

Since all elements ai ∈ PQ and by distribution of the a′
is the set A1 forms a

(1/2, 1/2)-Pareto set (see also Figure 2). Since further

dist(F (PQ), F (A1)) = max
p∈PQ

min
a∈A1

‖p− a‖∞ = 1/2, and

dist(F (a), F (A1\{a})) ≥ 1, ∀a ∈ A1,
(3.6)

A1 can be viewed as a (1/2, 1)-tight (1/2, 1/2)-Pareto set. Let A2 := A1 ∪ {a6 =
(2.6, 1.6)} (see Figure 2), then the uniformity level changes to δ = ‖a6−a3‖∞ =
0.6, and since a6 6∈ PQ, A2 forms a (1/2, 0.6)-tight (1/2, 1/2)-approximate Pareto
set.
Note that not for every value of ∆m, ∆M , and ǫ the objects defined above exist
for a given MOP, depending on the shape of the Pareto front. For instance, the
domain Q of MOP (3.3) is included in [0, 4]2. Hence, if ∆m > 4 is chosen only
one solution will be kept in the archive, and thus, no (∆M , ∆m)-tight ǫ-Pareto
set can be obtained for ‖ǫ‖∞ < 2 since in this case at least two elements have
to be kept. Similarly, no (∆M , ∆m)-tight ǫ-Pareto set exists for ∆M < ∆m/2,
independently of the value of ǫ.
Despite these potential problems, however, the values of ǫ, ∆M and ∆m have to
be adjusted a priori. ǫ represents the (maximal) tolerable loss of a solution com-
pared to an ‘optimal’ one, and is thus relatively easy to identify in a real world
application (e.g., [23, 35, 32]). ∆M determines the maximal distance between two
solutions and is thus depending on the search algorithm (e.g., on the step size
of the local search procedure) and/or on the preference of the decision maker.
In any case, ∆M ≥ maxi=1,...,k ǫi can be chosen since two solutions which are
closer together can, from a practical point of view, be regarded as equal. Finally,
the value of the uniformity level ∆m has to be chosen to be less or equal than
mini=1,...,k ǫi, since otherwise it cannot be guaranteed that the limit archive set
forms an ǫ-(approximate) Pareto set.
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Fig. 2. The set A1 := {a1, . . . , a5} forms a (1/2, 1)-tight (1/2, 1/2)-Pareto set of MOP
(3.3), and the set A2 := A1 ∪{a6} a (1/2, 0.6)-tight (1/2, 1/2)-approximate Pareto set.

4 The Algorithms

In the following we propose two different strategies for archiving the solutions
found by the algorithm and investigate some of their properties. The main
focus is on the limit behaviors of the sequence of archives which result by
the use of these strategies under certain additional conditions on the genera-
tion process. It will be shown that the archives obtained by the first archiver
ArchiveUpdateT ight1 form with probability one after finitely many steps and
under certain assumptions a (∆, Θǫm)-tight ǫ-approximate Pareto set of a given
MOP, where ∆, ǫ and Θ are given and ǫm = mini=1,...,k ǫi. In order to main-
tain the uniformity level Θǫm a certain discretization in image space has to be
done, which prevents the elements of the archives to converge toward the Pareto
set. The second archiver, ArchiveUpdateT ight2, allows for such a convergent
behavior, but, in turn, the uniformity of the archive gets lost.

4.1 Archiver ArchiveUpdateT ight1

First we consider the strategy ArchiveUpdateT ight1, which is presented in Al-
gorithm 4. Given ǫ ∈ Rk

+ and ∆ ∈ R+, the archiver accepts a new candidate
solution p ∈ Q if (i) there exists no element a of the current archive A such that
a Θǫ-dominates p or (ii) there exists no a ∈ A which dominates p and the the
distance of F (a) to F (p) for all elements a ∈ A is larger than a threshold ∆̃
(see line 3 of Algorithm 4 or (4.4)). If either (i) or (ii) is true, p is added to the
archive (line 11 of Algorithm 4) and all elements a ∈ A\{p} which are dominated
by p are discarded from the archive (lines 7 to 10). Thus, only nondominated
solutions are stored. The auxiliary variables 0 < Θ < 1 and 0 < ∆̃ < ∆ are
required to guarantee convergence of the sequence of archives in the limit (see
Theorem 4), but in practice they can be set to Θ = 1 and ∆̃ = ∆.
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Algorithm 4 A := ArchiveUpdateT ight1ǫ,∆̃ (P, A0)

1: A := A0

2: for all p ∈ P do

3: if (∃a ∈ A : a ≺ p) or (∃a1 ∈ A : a1 ≺Θǫ p and ∃a2 ∈ A : d∞(F (a2), F (p)) ≤
∆̃) then

4: CONTINUE ⊲ do not execute lines 6 – 11
5: end if

6: for all a ∈ A do

7: if p ≺ a then

8: A := A\{a}
9: end if

10: end for

11: A := A ∪ {p}
12: end for

To prevent that the archives are unbounded (see discussion in Section 2), Algo-
rithm 4 uses an ‘exclusion strategy’ which is based on ǫ-dominance: new candi-
date solutions x can only be added to the archive A if there does not already
exist a solution a ∈ A such that a ≺Θǫ x (second term in line 3 of Algorithm 4).
This strategy allows on one hand to bound the number of entries of the archive
(see Section 4.3) but by this it follows on the other hand that candidates x can
be discarded even if they dominate elements a ∈ A.
This suboptimality in the selection mechanism of the archiver, however, is re-
stricted to the value of ǫ which can be considered to be ‘small’. The following
result (Theorem 3) shows that the distance of the elements of the archive to-
ward the observed Pareto front (i.e., the set of non-dominated solutions found
by the generator so far) does not sum up. To be more precise, it will be shown
that entries of the resulting archive form a Θǫ-approximate Pareto set of the
set of points which have been discovered during the run of the algorithm. Thus,
monotonicity of the sequence of archives is ensured and cycling or deterioration
[8] cannot occur.

Lemma 1. Let A0, P ⊂ Rn be finite sets, ǫ ∈ Rk
+, 0 < Θ < 1, 0 < ∆̃ < ∆, and

A := ArchiveUpdateTight1 (P, A0). Then the following holds:

∀x ∈ P ∪ A0 : ∃a ∈ A : a ≺Θǫ x.

Proof. Let P = {p1, p2, . . . , pl}, l ∈ N. Without loss of generality we assume
that all points pi are considered in this ordering (i.e., in the for-loop in line 2 of
Algorithm 4). Denote by Ai the resulting archive after pi has been considered,
and thus, A = An.
Let x ∈ P ∪ A0. There are two cases we have to distinguish.
Case A: x ∈ A0. In that case the statement follows since points a are only
discarded from the archive if in turn another point p with p ≺ a is inserted (see
lines 7, 8 and 11 of Algorithm 4), and by the transitivity of ≺.
Case B: x ∈ P , i.e., there exists j ≤ l such that x = pj, and thus, x is considered
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in the j-th step of the algorithm. In case x is added to Aj , the statement follows
analogously to Case A since A = ArchiveUpdateTight1 ({pj+1, . . . , pl}, Aj), and
x ∈ Aj . If x is not added to Aj there are two possibilities (see line 3 of Algorithm
4): (i) there exists an a ∈ Aj such that a ≺ x, or (ii) there exists an a1 ∈ Aj with
a1 ≺Θǫ x. In both cases x gets Θǫ-dominated by a point ã ∈ Aj . Thus, again
analogue to Case A, a point a∗ ∈ A exists which is equal to ã or dominating it,
and thus Θǫ-dominating x. ⊓⊔

Theorem 3. Let l ∈ N, ǫ ∈ Rk
+, 0 < Θ < 1, and 0 < ∆̃ < ∆. Further, let

Ai, Pi, i = 0, . . . , l, be as defined in Algorithm 1, where ArchiveUpdateT ight1ǫ,∆̃

is used to update the archive. Then

∀x ∈
l⋃

i=1

Pi : ∃a ∈ Al : a ≺Θǫ x. (4.1)

Proof. The proof is done via induction over l. For l = 1 we have

A1 = ArchiveUpdateT ight1ǫ,∆̃(P0, A0),

and the claim follows by Lemma 1. For the induction hypothesis, suppose the
claim (4.11) is right for l − 1 > 1. Let x ∈ ⋃l

i=1 Pi. If x ∈ ⋃l−1
i=1 Pi there

exists by induction hypothesis an element a ∈ Al−1 such that a ≺Θǫ x. Thus,
a is also a member of the subsequent archive Al or is replaced by an element
p ∈ Pl with p ≺ a. In both cases there exists an element in Al which Θǫ-
dominates x. In case x ∈ Pl the claim follows again by Lemma 1 since Al =
ArchiveUpdateT ight1ǫ,∆̃(Pl, Al−1), and the proof is complete. ⊓⊔

Next, we are interested in the limit behavior of the sequence Ai of archives
within the use of a stochastic search procedure. To guarantee convergence, we
have to make several (mild) assumptions on the model as well as on the process
to generate new candidate solutions. Since we primarily address continuous op-
timization, we assume that F is continuous and that the domain Q is compact
(e.g., an n-dimensional box defined by box constraints). By this it follows that
the image F (Q) is bounded which allows for a finite size Pareto set approxima-
tion in the sense of Definitions 4, 7 and 8 for every value of ǫ ∈ Rk

+. Note that
this property is always true for discrete MOPs (i.e., |Q| < ∞). Further, we have
to make the following assumption on the generation process (see also [25, 30]):

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ N : Pl ∩ Bδ(x) ∩ Q 6= ∅) = 1, (4.2)

where P (A) denotes the probability for event A. Assumption (4.2) says that
every neighborhood U ∩ Q of every point gets ‘visited’ by Generate() after
finitely many steps with probability one. The following consideration shows that
we cannot assume less: if (4.2) does not hold, there exists with probability one a
point x ∈ Q and a neighborhood Ũ = U ∩Q of x such that no candidate solution
p ∈ Pl lies in Ũ for all l ∈ n. Thus, no convergence can be guaranteed since a
part of the Pareto set can be contained in Ũ which is never ‘visited’.
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We point out that our results also hold for discrete models. In case the MOP is
discrete, assumption (4.2) reads as

∀x ∈ Q : P (∃l ∈ N : x ∈ Pl) = 1, (4.3)

which is e.g. fulfilled if Generate() is a homogeneous finite Markov chain with
irreducible transition matrix ([20, 21]).
The next theorem shows that under these assumptions a generic stochastic search
algorithm (Algorithm 1) coupled with the archiver in Algorithm 4 generates a
sequence of archives which forms with probability one after finitely many steps
a (∆, Θǫm)-tight ǫ-approximate Pareto set.

Theorem 4. Let an MOP F : Rn → Rk be given, where F is continuous,
let Q ⊂ Rn be a compact set and ǫ ∈ Rk

+. Let ǫm := mini=1,...,k ǫi, ǫM :=

maxi=1,...,k ǫi, further let ∆, ∆̃ ∈ R+ be given such that ǫM < ∆̃ < ∆, let 0 <
Θ < 1, and let assumption (4.2) be fulfilled. Then an application of Algorithm 1,
where ArchiveUpdateT ight1ǫ,∆̃ is used to update the archive, leads to a sequence
of archives, such that there exists with probability one an l1 ∈ N such that Al is
a (∆, Θǫm)-tight ǫ-approximate Pareto set for all l ≥ l1.

Proof. First, we turn our attention to the question of which elements are added
to the archive. The crucial expression E (line 3 of Algorithm 4) reads as follows:

(∃a ∈ A : a ≺ p)
︸ ︷︷ ︸

A

or (∃a1 ∈ A : a1 ≺Θǫ p
︸ ︷︷ ︸

B1

and ∃a2 ∈ A : d∞(F (a2), F (p)) ≤ ∆̃
︸ ︷︷ ︸

B2

)

Since ¬E = (¬A and¬B1) or (¬A and¬B2) and since ¬B1 implies ¬A it follows
that points p ∈ Rn are added to a given archive A if (and only if) one of the
two following expressions is true

(E1) 6 ∃a ∈ A : a ≺Θǫ p, or

(E2) 6 ∃a ∈ A : a ≺ p and ∀a ∈ A : d∞(F (a), F (p)) > ∆̃.
(4.4)

Now we are in the position to prove the theorem. By E1 it follows that all
points, which are added by ArchiveUpdateEps1 to the archive are also added
by ArchiveUpdateT ight1. Thus, by Theorem 1 it follows that there exists with
probability one a l0 ∈ N such that Al is an ǫ-approximate Pareto set w.r.t. F

∣
∣
Q

for all l ≥ l0, since points a ∈ Al are only removed from the archive if in turn
another point ã is added which dominates a (if x ≺ y and y ≺ǫ z it follows that
x ≺ǫ z).
It remains to show the ‘tightness’ of the limit archive. The uniformity level ǫm

follows directly by an inductive argument and using the ‘exclusion strategy’
(4.4). This and the fact that F (Q) is bounded is the reason that the size of the
archive is bounded above for a given MOP by a number n0 = n0(ǫ, F (Q)), which
will be needed for further consideration (see Section 4.3 for more details).
As mentioned in Section 2 (see (3.2) and related discussion) the claim is right
for an archive Al if

F (PQ) ⊂ CAl,∆. (4.5)
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Assume that Al is an ǫ-approximate Pareto set for all l ≥ l0 and let l ≥ l0.
By construction of ArchiveUpdateT ight1 it follows that if F (PQ) ⊂ CAl1

,∆ this
inclusion holds for all l ≥ l1 since in this case no further point will be added
to the archive (since the expressions E1 and E2 in (4.4) will be false for all fur-
ther candidates). That is, it is sufficient to show the existence of such a number
l1. In the following we will do this by contradiction: first we show that by us-
ing ArchiveUpdateT ight1 and under the assumptions made above only finitely
many replacements can be done during the run of the algorithm. Then—under
the assumption that there exists no number l1 with the above property—we
construct a contradiction by showing that infinitely many replacements have to
be done during the run of the algorithm with the given setting.

Let a finite archive A0 be given. If a point p ∈ Rn replaces a point a ∈ A0 (see
lines 8 and 11 of Algorithm 4) it follows by construction of ArchiveUpdateT ight1
(see also (4.4)) that

∃i ∈ 1, . . . , k : fi(p) < fi(a) − Θǫi. (4.6)

Since the relation ‘≺’ is transitive, there exists for every a ∈ A a ‘history’ of
replaced points ai ∈ Ali where Equation (4.6) holds for ai and ai−1. Since F (Q)
is bounded there exist li, ui ∈ R, i = 1, . . . , k, such that F (Q) ⊂ [l1, u1] × . . . ×
[lk, uk]. After r replacements there exists at least one a ∈ Al(r) such that the
length h of the history of a is at least h ≥ ⌈r/n0⌉, where n0 is the maximal
number of entries in the archive (see above). Denote by a0 ∈ A0 the root of the
history. For a, a0 it follows that

∃i ∈ 1, . . . , k : fi(a) < fi(a0) − sΘǫi,

where s ≥ ⌈h/k⌉. For s̃ > dmax := Θ−1 maxi=1,...,k
ui−li

ǫi
(which is given for

r̃ > n0kdmax + n0 + 1) we obtain a contradiction since in that case fi(a) < li
and thus F (a) 6∈ F (Q). Hence it follows that there can be done only finitely
many such replacements during the run of an algorithm.

Assume that such an l1 as claimed above does not exist, that is, that F (PQ) 6⊂
CAl,∆ for all l ∈ N. Hence there exists a sequence of image points

yi ∈ F (PQ)\CAi,∆ ∀i ∈ N. (4.7)

Since F (Q) is compact there exists an accumulation point y∗ ∈ F (PQ), that is,
there exists a subsequence {ij}j∈N with

yij
→ y∗ for j → ∞. (4.8)

Since y∗ ∈ F (PQ) there exists a neighborhood U1 of y∗ such that the following
holds

∀(y, ỹ) ∈ F (Q) × U1 : y ≤p ỹ ⇒ d∞(y, ỹ) ≤ ∆̃ (4.9)
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Let Ũ1 := U1 ∩ B∞
(∆−∆̃)/2

(y∗). By (4.2) it follows that there exists with proba-

bility one an l1 ∈ N and an x̃1 ∈ Pl0+l1 with ỹ1 = F (x̃1) ∈ Ũ1. By construc-
tion of ArchiveUpdateT ight1 there exists an element a1 ∈ Al0+l1 such that
d∞(F (a1), ỹ1) < ∆̃ (due to (4.4) there are three possibilities: E2 is false and thus
there already exists an a1 ∈ Al0+l1 which (a) dominates x̃—in this case the claim
follows with (4.9)—or (b) where d∞(F (a1), ỹ1) ≤ ∆̃, or E2 is true and thus (c)
a1 = x̃1 is added to the archive). Thus we have

d∞(F (a1), ỹ) ≤ d∞(F (a1), ỹ1) + d∞(ỹ1, ỹ) < ∆̃ + 2
∆ − ∆̃

2
= ∆ ∀ỹ ∈ Ũ1.

(4.10)
By (4.7) and (4.8) there exist j1, l̃1 ∈ N with

yij1
∈ Ũ1\Cl0+l1+l̃1,∆.

Since by (4.10) it holds that d∞(yij1
, F (a1)) < ∆ it follows that a1 6∈ Al0+l1+l̃1

,
which is only possible via a replacement in Algorithm 4 (lines 8 and 11).
In an analogous way a sequence {ai}i∈N of elements can be constructed which
have to be replaced by other elements. Since this leads to a sequence of infinitely
many replacements this is a contradiction to the assumption, and the proof is
complete. ⊓⊔

Note that the ‘exclusion strategy’ (4.4) prevents convergence of the elements of
the archives toward the Pareto set. This is due to the fact that for points x ∈ Q
which are ‘nearly’ optimal, the set of points in Q which (i) dominate x and (ii)
are not ǫ-dominated by x can be empty. Such nearly optimal archive entries will
hence never be replaced by another better solutions, and thus, the elements in
the archive stop improving when using Algorithm 4 at a certain stage, depending
on the value of ǫ. This leads directly to the next archiver.

4.2 Archiver ArchiveUpdateT ight2

The second archiving strategy we consider here, ArchiveUpdateT ight2 which is
shown in Algorithm 5, overcomes the problem stated above by changing the cri-
terion to accept a candidate solution (which is in fact the only difference between
Algorithms 4 and 5). In turn, by using Algorithm 5 the uniformity of the archive
solutions can not be guaranteed any more and the (theoretical and pessimistic)
upper bounds on such archives increases by one order of magnitude compared to
the first archiving strategy (see Section 4.3). The difference of the two archivers
ArchiveUpdateT ight1 and ArchiveUpdateT ight2 is the strategy to accept a
candidate solution p ∈ P . Given an archive A0 ArchiveUpdateT ight2 accepts p
if (i) either term E1 or E2 of (4.4) is true (line 3 of Algorithm 5) or (ii) if there
exists an element a ∈ A0 which is dominated by p (line 8 of Algorithm 5). In
case (i) also ArchiveUpdateT ight1 accepts the candidate solution, the difference
of both archivers is case (ii), which is not considered in ArchiveUpdateT ight1.



17

Under the same assumptions as made above for Algorithm 4 the following theo-
rems show that the same monotonicity result on the approximation quality can
be obtained, and that the distance dist(Al, PQ) of the archives Al to the Pareto
set PQ vanishes for l → ∞ (the elements of the archive ‘converge’ to the Pareto
set). Thus, if the limit archive exists (the sequence |Al| of the magnitudes of
the archives is not necessarily converging), this set forms a ∆-tight ǫ-Pareto set.
Though we have to assume in Theorem 6 that F has to be injective to guarantee
the convergence, this property is in fact not relevant in practice (see e.g., Section
6.2).

Algorithm 5 A := ArchiveUpdateT ight2ǫ,∆̃ (P, A0)

1: A := A0

2: for all p ∈ P do

3: if E1 is true or E2 is true then ⊲ see (4.4)
4: A := A ∪ {p}
5: end if

6: for all a ∈ A do

7: if p ≺ a then

8: A := A ∪ {p}\{a}
9: end if

10: end for

11: end for

Theorem 5. Let l ∈ N, ǫ ∈ Rk
+, 0 < Θ < 1, and 0 < ∆̃ < ∆. Further, let

Ai, Pi, i = 0, . . . , l, be as defined in Algorithm 1, where ArchiveUpdateT ight2ǫ,∆̃

is used to update the archive. Then

∀x ∈
l⋃

i=1

Pi : ∃a ∈ Al : a ≺Θǫ x. (4.11)

Proof. Analogue to proof of Theorem 3. ⊓⊔
Theorem 6. Let (MOP) be given and Q ⊂ Rn be compact, and let there be no
weak Pareto points in Q\PQ. Further, let F be injective and let assumption (4.2)
be fulfilled. Then an application of Algorithm 1, where ArchiveUpdateT ight2ǫ,∆̃

is used to update the archive, leads to a sequence of archives Al, l ∈ N, where
the following holds:

(a) There exists with probability one a l1 ∈ N such that Al is a ∆-tight ǫ-
approximate Pareto set w.r.t. F

∣
∣
Q

for all l ≥ l1.

(b)
lim

l→∞
dist(Al, PQ) = 0, with probability one.

Proof. All parts of the proof are analogue to parts in proofs of Theorem 2 and
Theorem 4. ⊓⊔



18

4.3 Bounds on the Limit Archive Sizes

Since we are aiming for finite size representations of the Pareto front, the bounds
of the magnitudes of the archives obtained by the new archiving strategies are
of particular interest which we address in this section.

Upper Bounds The upper bounds on the archive sizes which result by the novel
archiving strategies can be derived in analogy to the bounds for the archivers
presented in [30]:
The maximal archive size maintained by ArchiveUpdateT ight1 is the same as
for ArchiveUpdateEps1 and given by

|Al| ≤
k∑

i=1

k∏

j=1

j 6=i

⌈
Mj − mj

Θǫj

⌉

, (4.12)

where mi = minx∈Q fi(x), Mi = maxx∈Q fi(x), 1 ≤ i ≤ k, and |A0| = 1. Note
that the magnitude can only be influenced by the value of ǫ. The existence
of this bound is due to the ’exclusion strategy’ (4.4), which makes it possible
that the sequence of archives converges after finitely many steps. On the other
hand, exactly this feature prevents that we can guarantee dist(F (A), F (PQ))
and thus dH(F (A), F (PQ)) to be small (say ≤ ∆), as the following example
shows (compare to Figure 3): assume that the elements a3, a2, a1 are inserted
into the archive in this order. By construction of ArchiveUpdateT ight1, these
points will not be removed in the subsequent steps since there exists no point
p with F (p) ∈ F (A)\CA,∆ which dominates ai, i ∈ {1, 2, 3}. In such a manner
an example can be constructed with dist(F (A), F (PQ)) = maxi=1,..,k(Mi−mi).
However, this (bad) theoretical value has never been observed in computations.

Fig. 3. Possible example of a set which was generated by ArchiveUpdateT ight1 with
dist(F (A), F (PQ)) > ∆.
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The maximal archive size obtained by ArchiveUpdateT ight2 is equal to the one
obtained by ArchiveUpdateEps2:

|Al| ≤
k∏

i=1

⌈
Mi − mi

Θǫi

⌉

,

where mi, Mi are as defined above and |A0| = 1.

Lower Bounds The lower bound of |A∞| for both new archiving strategies is
obviously given by 1. For this, consider e.g. f1 = f2 = . . . = fk to be a convex
function which takes its (unique) minimum inside Q which leads to |PQ| = 1.
Though desired, it is hardly possible to provide meaningful lower bounds for
general MOPs since (a) the archive size is in practice mainly determined by the
value of ǫ, in particular when the entries of ǫ are much smaller than ∆, and since
(b) the Pareto front can fall into different connected components. However, if
this is not the case, one can obtain the following result in the bi-objective case,
which we state without the (obvious) proof.

Proposition 1. Let m̃i = minx∈PQ
fi(x) and M̃i = maxx∈PQ

fi(x), i = 1, 2,
and let F (PQ) be connected. Then, when using ArchiveUpdateT ight1ǫ,∆̃ or
ArchiveUpdateT ight2ǫ,∆̃, the archive size maintained in Algorithm 1 for the
limit archive is bounded by

|A∞| ≥ max
i=1,...,k

⌈

M̃i − m̃i

2∆

⌉

(4.13)

An analogous statement for k > 2—e.g., by estimating the Pareto front by a k-
Simplex in objective space where the vertices are the minima of the objectives—,
however, does not hold since the (k− 1)-dimensional volume of the Pareto front
can be arbitrarily small.

5 Integration into Iterative Search Methods

Since this work deals with the design of archiving strategies, the question that
naturally arises is how these methods can be integrated efficiently into an iter-
ative stochastic search process such as a MOEA, which we address here.
One obvious benefit of a MOEA which is equipped with an (external) archive
compared to a ’classical’ MOEA with fixed population size is certainly given by
the convergence properties of the archiver (see Thms. 4 and 6 of this paper, or
the results of the works discussed in Section 1). Another possible advantage is
that the globality of the search will be increased: in case the external archive
is considered for the mating pool, the number of ’well-converged’ and ’well-
distributed’ parent solutions is increased leading to a potentially more thorough
search around the Pareto set. In fact, in [5], where a MOEA with an external
archive has been studied, it has been observed that this algorithm is
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’successful in finding well-converged and well-distributed solutions with a much
smaller computational effort than a number of state-of-the-art MOEAs’.

This algorithm, ǫ-MOEA, can be viewed as a possible prototype for the integra-
tion of an archiving strategy into the evolutionary search process. The procedure
is as follows: the algorithm contains a population (Pl in iteration step l) and an
archive (Al in step l). A new offspring o is created by crossover of an archive so-
lution a0 ∈ Al and an individual p ∈ Pl. Both sets Al and Pl are then updated by
o (following different strategies). This process is repeated until a prescribed ter-
mination criterion is fulfilled. Apparently, any archiving strategy for the update
of the external archive Al can be used, including for instance the ones proposed
in this paper.
However, apart from this universally applicable prototype for the integration of
the archivers into a MOEA, there is a particular property of the two strate-
gies proposed above which needs special attention: variations of existing archive
entries which are too small will be discarded from the archiver for the subse-
quent archive. Due to the ‘exclusion strategy’ (4.4) used in Algorithms 4 and 5
there exists for every solution a from a given archive A a neighborhood Ua of a
such that every point u ∈ Ua will be rejected from the archive by a. Regarding
this, it has to be noted that not every crossover (as well as mutation) strategy
is suitable for a coupling with ArchiveUpdateT ight1 or ArchiveUpdateT ight2.
For instance, there is a potential conflict in terms of efficiency when using e.g.
the simulated binary crossover operator (SBX) and the polynomial mutation,
probably the most commonly used operators for crossover and mutation ([4]).
When a0 ∈ Al and p ∈ Pl are used e.g. for crossover2, the probability is relatively
high that the offspring o is contained in Ua0

(or in Up which leads to the same
problem) since the probability density has a peak at a0 (and a second peak at p).
As it has been demonstrated on numerous benchmark and real world problems,
SBX and polynomial mutation are highly valuable for the evolution of Pl. Thus,
the operators will also be beneficial for the evolution of Al, but probably only in
the long run. In order to obtain a greedy strategy for the evolution of Al, which
is desired for fast convergence, both SBX and polynomial mutation do not seem
to be well suited since in case fast convergence is sought a minimal distance of
the offspring o to a0 is required.
In case gradient information is available (which is for instance assumed in many
recent studies dealing with memetic strategies, e.g., [3, 2, 33, 9, 26]), the minimal
distance of a0 and o such that o 6∈ Ua0

—i.e., that o is possibly accepted by the
archiver—can be estimated as follows: since ∆̃ < ∆ we can assume that we are
(ideally) interested in a point o in the neighborhood of a0 such that

‖F (a0) − F (o)‖∞ = ∆, (5.1)

since such point will at least not be discarded due to the exclusion strategies
of the archers proposed above. In case F is Lipschitz continuous there exists an

2 An analogue statement holds for the polynomial mutation.
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L ≥ 0 such that

‖F (x) − F (y)‖∞ ≤ L‖x − y‖∞, ∀x, y ∈ Q. (5.2)

Since we are heading in this paper for gap free approximations we can assume
that ∆ is ’small’, and thus, that a0 and o are close to each other. Hence, it is
sufficient to estimate the Lipschitz constant L locally around a0, which can be
done by

La0
:= ‖DF (a0)‖∞ = max

i=1,...,k
‖∇fi(a0)‖1, (5.3)

in case the gradients are available, where DF (a0) ∈ Rm×n denotes the Jacobian
and ∇fi(a0) ∈ Rn, i = 1, . . . , m, the objectives’ gradients. An alternative way
to approximate La0

without using gradient information is e.g.

L̃a0
:=

‖F (a0) − F (ã0)‖
‖a0 − ã0‖

, (5.4)

where ã0 is close to a0. Approximation (5.4) is certainly less accurate than (5.3),
but we think that accuracy does not play an important role in this context.
Using such a local approximation La0

(e.g., (5.3) or (5.4)), the distance of a0

and an offspring o which satisfies (5.1) can be estimated by

‖a0 − o‖∞ ≈ ∆

La0

(5.5)

Using this, a neighborhood search (or mutation) can e.g. be realized as follows:
assume that the difference of F (a0) and F (o) should be in the range [∆, λ∆],
where λ > 1, then it follows analogue to (5.5) that ‖a0 − o‖ ∈ [∆/La0

, λ∆/La0
],

and thus, the offspring can e.g. be taken uniformly at random from the pierced
sphere B∞

λ∆
La0

(a0)\B∞
∆

La0

(a0):

(1) compute La0

(2) choose d ∈ B1(a0) and h ∈ [∆/La0
, λ∆/La0

] uniformly at random
(3) set o := a0 + h d

‖d‖∞

We do, however, not investigate the efficiency of this mutation strategy here
since this would go beyond the scope of this paper. Instead, we give evidence
that the step size control (5.5) can be used in a particular local search strategy
leading to a possible efficient hybridization of this method with a MOEA which
is equipped with the archivers presented in Algorithms 4 and 5 (which was one
motivation for the need of gap-free approximations).
To be more precise, we want to demonstrate that in the underlying context a
hybridization with multi-objective continuation methods (e.g., [11], [29]) could
be advantageous since both the concept of ǫ-dominance as well as the tightness
can be directly integrated into it (see also [25] for a similar study).

The basic idea of multi-objective continuation methods is, roughly speaking, to
move along the set of (local) Pareto points. To be more precise, in the course of
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the algorithm one is faced with the following setting: given a (locally optimal)
solution x0 ∈ Q and a search direction v ∈ Rn with ‖v‖ = 1 (obtained via
linearization of the solution set at x0), the task is to find a ‘suitable’ step size
h0 ∈ R+ for the next guess y0 = x0 +h0v. Motivated by previous considerations
one can e.g. ask for a step size h0 such that

‖F (x0) − F (y0)‖∞ = ∆, (5.6)

where ∆ is the tightness value taken in Algorithms 4 and (alternatively, ∆ in (5.6)
can be replaced e.g., by ‖ǫ‖∞ for Algorithms 2 and 3). Following the discussion
made above and using a local approximation of Lx0

as (5.3) or (5.4), one can
use the following step size control:

h0 =
∆

Lx0

(5.7)

Note that this estimation only holds for small values of ∆ since the Lx0
is a

local approximation. If ∆ is too large, Lx0
can not serve as a suitable Lipschitz

estimation, and the value of h0 may not be suitable. The following two examples
show, however, that the control (5.7) can be beneficial for small values of ∆. Such
a step size control would be interesting for hybrids of continuation methods with
EMO strategies (e.g., [9, 26]) since in this case the archivers presented above
could efficiently be integrated into the entire algorithm as external archives,
which we want to demonstrate on the following two examples.

5.1 Example A

In order to understand the possible impact of the discussion made above on
the continuation methods, we first apply the step size control on an academic
example:

F : R2 → R2

F (x) =

(
(x1 − 1)4 + (x2 − 1)4

(x1 + 1)2 + (x2 + 1)2

)

(5.8)

The Pareto set of MOP (5.8) is given by

P =

{(
x
x

)

: x ∈ [−1, 1]

}

.

Figure 4 shows two different discretizations of P and F (P). In Figure 4 (a)
the Pareto set is approximated by points xi, i = 1, . . . , N , which are placed
equidistant in parameter space:

xi =

(
−1
−1

)

+
2i

N

(
1/

√
2

1/
√

2

)

.
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Next, the Pareto set was discretized using the adaptive step size control which
is proposed above:

x0 =

(
−1
−1

)

, xi+1 = xi + hi

(
1/

√
2

1/
√

2

)

,

where hi is taken from (5.7) and vi = (1/
√

2, 1/
√

2)T was chosen as the search
direction. Figure 4 (b) shows the discretization points xi for ǫ = (1, 1), ∆ = 1,
and Θ = 0.99 yielding a satisfying distribution of the solutions on the Pareto
front.
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Fig. 4. Discretizations of the Pareto set of MOP (5.8) with (a) fixed step size and (b)
adaptive step size control.
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5.2 Example B

Next we consider the following MOP:

f1, f2 : Rn → R
fi(x) =

n∑

j=1

j 6=i

(xj − ai
j)

2 + (xi − ai
i)

4, (5.9)

where
a1 = (1, 1, 1, 1, . . .) ∈ Rn

a2 = (−1,−1,−1,−1, . . .) ∈ Rn,

In Figures 5 and 6 some numerical results are presented, where we have used the
continuation method proposed in [29]. To be more precise, we have applied the
step size control on the distance between the current solution and the predictor,
since this point mainly determines the distance of two solutions.
Figure 5 shows the result for n = 3, ǫ = (2, 2), and ∆ = 2. In total, 23 solutions
were obtained. This fits quite well with the bound which is given in Section 4.3
when choosing Θ = 1 and when replacing Mi by the maximal value of fi on the
Pareto set, M̃i := maxx∈PQ

fi(x) = 24, i = 1, 2, and mi = 0. In that case we
obtain:

|Ai| ≤
⌈

24 − 0

2

⌉

+

⌈
24 − 0

2

⌉

= 24. (5.10)

This example shows the significant difference between the archivers
ArchiveUpdateEpsi, i = 1, 2 which are ‘merely’ based on ǫ-dominance and the
novel strategies which aim for a tightness of the approximation: if points with
images near to the middle of the Pareto front in Figure 5 (b) are inserted into
the archive, e.g. the points m1 with F (m1) = (5, 2) and m2 with F (m1) = (2, 5),
then no more points with images at the ends of the Pareto curve will be added
further on since these are all ǫ-dominated either by m1 or m2. The resulting
approximation would form an ǫ-approximate Pareto set, but would apparently
not ‘describe’ the Pareto set adequate graphically. This would change, however,
for one of the novel archiving strategies, which we investigate more in detail in
the next section.

6 Numerical Results

Here we make a comparative study on three test problems in order to illustrate
the effect of the different archiving strategies. For the subsequent comparisons
we have used the following archiving strategies:

(ND) ArchiveUpdateND,
(Eps1) ArchiveUpdateEps1,
(Tight1) ArchiveUpdateT ight1, and
(Tight2) ArchiveUpdateT ight2,
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where ArchiveUpdateND is the archiver which stores all nondominated solu-
tions, i.e.,

ArchiveUpdateND(P, A0) := {x ∈ P ∪ A0 : y 6≺ x ∀y ∈ P ∪ A0}.
For an investigation of the convergence properties of ArchiveUpdateND we refer
to [26].
To obtain a fair comparison of the different archivers we have decided to take a
random search operator for the generation process (the same sequence of points
for all settings). The computations have been done on an Intel Xeon 3.2 GHz
processor. An implementation of all the archiving strategies discussed in this
work including these examples can be found in [1].

6.1 Example 1

First, we compare the first three different archving strategies on MOP (5.9) from
the previous example. We have taken N = 200, 000 randomly chosen points in
Q = [−1.5, 1.5]3, and the values ǫ = (1, 1) and ∆ = 2. The set obtained by
ArchiveUpdateEps1 forms probably (or is near to) an ǫ-approximate Pareto
set, but reveals gaps, which is not the case in Figure 7 (c), where ArchiveUp-
dateT ight1 has been used, and where the solutions are much more regularly
distributed. The ‘tightest’ approximation in this case study is certainly obtained
when all nondominated points are kept in the archive (see Figure 7 (b)). How-
ever, in that case the time which had to be spent to update the archive3 was
huge compared to the two other strategies (see Table 1).

Table 1. Comparison of the magnitudes of the final archive (|AN |, rounded) and the
corresponding update times (T , in seconds) for different archiving strategies and for
MOP (5.9). We have taken the average result of 100 test runs.

ND Eps1 Tight1

|AN | 267 27 34
T 36.46 0.29 0.36

6.2 Example 2

Next we consider the following parameter dependent MOP ([37]):

f1, f2 : R2 → R
f1(x, y) =

1

2
(
√

1 + (x + y)2 +
√

1 + (x − y)2 + x − y) + λ · e−(x−y)2

f2(x, y) =
1

2
(
√

1 + (x + y)2 +
√

1 + (x − y)2 − x + y) + λ · e−(x−y)2

(6.1)

3 The elements of the all archives were stored using a linear list.
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Figure 8 shows examples for resulting limit sets. Hereby we have taken N =
10, 000 randomly chosen points in Q = [−1.5, 1.5]2 and λ = 0.85 for the value
of the additional parameter, as well as the values ǫ = (0.1, 0.1), and ∆ = 0.1
for the archiving strategies (using ∆̃ = ∆ and Θ = 1). Also in this case the
result of ArchiveUpdateEps1 reveals gaps in the approximation, which does not
occur when using ArchiveUpdateT ight1 or ArchiveUpdateT ight2. Note that
the differences of the latter two solutions are subtle as expected: both approx-
imations are similar, but the final solutions obtained by ArchiveUpdateT ight2
have converged better. The difference in the magnitudes of the archive sizes in
this example (and in all other examples examined by the authors) do not differ
significantly, though the theoretical upper bounds for both strategies do. Also
in this example, ArchiveUpdateND delivers the ‘tightest’ approximation con-
taining by far the most elements which results in a longer running time for the
update process.
Since the Pareto set of this MOP is given analytically by

P =

{(
x

− x

)

: x ∈ [−1.5, 1.5]

}

(6.2)

this allows us to have a closer look at the approximation qualities of the obtained
solutions. Figure 8 shows the distances between the final archives and the Pareto
front. For the latter we have used the following discretization of (6.2):

AP :=

{(
xi

− xi

)

: xi = −1.5 + 3i/500, i = 0, . . . , 500

}

(6.3)

The Hausdorff distances of the two final archives of the novel archivers are close
to 0.1 which is the optimium in this case since this is the chosen value of ∆. The
main difference between the two solutions is the value of dist(F (Afinal), F (AP))
which means that the elements obtained by ArchiveUpdateT ight2 are nearer to
the Pareto front. The gaps which can be observed when using ArchiveUpdateEps1
(Figure 8 (a)) are reflected by its relatively large value of dist(F (Afinal), F (AP))
in Table 2. Best values are obtained by ArchiveUpdateND, but this has to be
‘paid’ by the much larger amount of elements in the archive. Further, it can be
argued that approximations with Hausdorff distances less than 0.1 (the values
of ∆ and ǫi, i = 1, 2) to the Pareto front are not needed.

6.3 Example 3

Finally we consider a 3-objective model. For this, we extend MOP (5.9) by
adding a third objective which is analogue to f1 and f2, and choose a3 =
(1,−1, 1,−1, . . .) ∈ Rn.
In order to demonstrate one possible benefit of ǫ-dominance based archivers
against the classical archiver ArchiveUpdateND, which stores all nondominated
solutions, we fix in this example the running time of the different algorithms (i.e.,
in our case the stochastic search algorithm coupled with the different archiver).
Figure 9 shows one comparative result for n = 10 and where the running time
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Table 2. Distances of the images of the final archives to the approximation F (AP ) of
the Pareto front of MOP (6.1) (averaged over 100 test runs). The Hausdorff distances of
the solutions obtained by ArchiveUpdateT ight1 and ArchiveUpdateT ight2 are nearly
to the optimum which is given here by ∆ = 0.1.

Eps11 Tight1 Tight2 ND

dist(F (Afinal), F (AP)) 0.1029 0.1029 0.0079 0.0135
dist(F (AP), F (Afinal)) 0.9209 0.1092 0.1042 0.0290
dH(F (Afinal), F (AP)) 0.9209 0.1092 0.1042 0.0290

was fixed to 5 minutes. Denote by A the final archive when ArchiveUpdateND
was used, and by B the resulting archive coming from ArchiveUpdateT ight1.
The magnitudes are |A| = 914 and |B| = 529. It can be observed that compared
to A the spread of the solutions of B is much better while a larger region of
the image space is ’covered’ though its magnitude is less. To measure the ap-
proximation quality we use the epsilon indicator [38], where Iǫ(A, B) gives the
smallest value of ǭ ∈ R such that A is an ǫ-approximate Pareto set of B where
ǫ = (ǭ, . . . , ǭ), i.e.,

Iǫ(A, B) := min{ǭ ∈ R | ∀b ∈ B ∃a ∈ A : a ≺ǫ b}. (6.4)

In our case, we obtain for A and B

Iǫ(A, B) = 0.9624 and Iǫ(B, A) = 0.85775, (6.5)

indicating that B is a (slightly) better approximation of the Pareto front than
A. If the relative ǫ-dominance

x ≺rel
ǫ y ⇔ F (x) ≤p (1 + ǫ)F (y) (6.6)

is used for the epsilon indicator, the difference of the approximation qualities
gets more significant:

Irel
ǫ (A, B) = 1.082 and Irel

ǫ (B, A) = 0.183. (6.7)

These values can be interpreted as follows: if the objective values of A are scaled
up to 20 percent, then A is entirely dominated by B. On the other hand, B has
to be scaled up by more than 100 percent (i.e., the values have to be doubled)
such that it gets dominated by A.
The main reason for the difference of the approximations is that an archiver
based on ǫ-dominance accepts in general less solutions than all nondominated
ones which makes the update process much faster, and thus, more points can
be evaluated by the generator within the given time budget. In this case the
algorithm using ArchiveUpdateND evaluated 6.6e5 different test points while
3.5e7 points where evaluated using ArchiveUpdateT ight1 within the same time.
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7 Conclusions and Future Work

We have proposed two archiving strategies for obtaining finite size and gap free
(or ’tight’) Pareto front approximations by stochastic search algorithms and
have proven the convergence of the resulting archives. The limit set using the
first archiver forms with probability one a (∆, Θǫm)-tight ǫ-approximate Pareto
set, that is, a gap free Pareto front approximation—measured by the value of
∆—which provides the guaranteed uniformity level Θǫm. The limit set of the
second strategy forms a ∆-tight ǫ-Pareto set, which offers a better approxima-
tion quality measured in the Hausdorff-sense, but in turn lacks the uniformity.
For future work, the development of an archiving strategy which produces a
sequence of archives leading to a (∆, ǫm)-tight ǫ-Pareto set would be of partic-
ular interest. It could also be interesting to integrate the archiving strategies
directly into the stochastic search process (as e.g. done in [5] for an evolutionary
algorithm) in order to obtain a fast and reliable multi-objective optimization al-
gorithm. Finally, the analysis of the archiving strategies could be advanced. The
main focus in this paper was on the limit behavior of the sequence of archives,
but there are also further interesting topics worth investigating. One question
which naturally arises is the speed of the convergence. Related works for single-
objective optimization problems (e.g., [34, 19, 18]) show that this not straight-
forward.
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Fig. 5. Result of the continuation method with step size control on MOP (5.9) for
n = 3 in parameter space and image space.
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Fig. 6. Result of the continuation method with step size control on MOP (5.9) for
n = 20 in image space: all solutions (a) and zoom (b).
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Fig. 7. Three limit achives for MOP (5.9) obtained by different archiving strategies.
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Fig. 8. Four limit achives for MOP (6.1) obtained by different archiving strategies. The
magnitudes are |Aeps1| = 13, |AND| = 511, |Atight1| = 37, |Atight2| = 41. See Table 2
for their approximation qualities.
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Fig. 9. Two different solution sets for the MOP in Example 3. We have chosen ǫ =
(1, 1, 1), Θ = 1, and ∆ = 5.


