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Abstract

In this chapter, we describe the basics of evolutionary algorithms
and their use in optimization. First, some generalities about evolu-
tionary algorithms are provided, including a brief description of the
components of the four main types of algorithms considered for the
purposes of this chapter: (1) genetic algorithms, (2) evolution strate-
gies, (3) evolutionary programming and (4) differential evolution. For
the sake of brevity, this chapter only focuses on the use of evolutionary
algorithms in numerical optimization. The discussion includes the use
of evolutionary algorithms in both single-objective and multi-objective
optimization and includes aspects such as their variation operators,
selection mechanism and some of their applications.

Keywords: optimization, evolutionary algorithms, genetic algorithms,
differential evolution, evolution strategies, evolutionary programming.

1 Introduction

Evolutionary algorithms (EAs) are stochastic search techniques inspired on
the “survival of the fittest” principle from Darwin’s evolutionary theory [1].
EAs are considered metaheuristics, because they operate as top-level general
strategies which guide other lower-level heuristics. A heuristic is a rule or
set of rules that are used to search in a more efficient way for (sub-)optimal
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solutions to a (normally complex) problem. EAs are stochastic, because
they rely on the use of random numbers to decide the direction in which
they will move in the search space.

Although the idea of using evolution as an inspiration for solving pro-
blems can be traced as long back as the 1930s [2], it was until the 1960s
when the three main techniques based on this notion were developed: the
genetic algorithm (GA) [3], evolution strategies (ES) [4] and evolutionary
programming (EP) [5]. The development of each of these techniques had
a different motivation. GAs were meant to be used for machine learning
and EP targeted the solution of prediction problems. In fact, only the de-
velopment of ESs was motivated by the solution of complex optimization
problems. However, over the years, both GAs and EP were also adopted
as optimizers. Today, GAs are, with no doubt, the most popular EA used
for optimization. GAs can be used for both combinatorial and continuous
optimization problems, but their use is mainly recommended for problems
having mixed variables (e.g., problems in which some decision variables are
expressed as real numbers and others are expressed as integers or binary
numbers) because in that domain they present important advantages with
respect to most of the other existing optimizers currently available.

In 1995, Kenneth Price introduced another type of EA which has a
stronger resemblance with a mathematical programming technique: differ-
ential evolution (DE) [6]. DE has become a very popular optimizer, but in
its original version it was intended only for continuous domains (when all
the decision variables are expressed with real numbers) [7].

In this chapter, we will briefly discuss the use of the 4 types of EAs pre-
viously indicated (GAs, ESs, EP and DE) in numerical single-objective op-
timization (see Section 2) and multi-objective optimization (see Section 3).
Because of space constraints, combinatorial optimization is not discussed in
this chapter, in spite of the fact that EAs have been used in that domain
as well [8]. It is also worth noticing that many other types of bio-inspired
metaheuristics exist today (see for example [9]). However, such approaches
are either not EAs (e.g., artificial immune systems [10]) or they are not
mainly used for optimization (e.g., genetic programming [11], which is a GA
variant in which a tree encoding is used instead of a binary or real-numbers
encoding).

2 Single-objective Optimization

A single-objective optimization problem can be formally defined as follows:

minimize
x∈Rn

f(~x) (1)

subject to:
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gi(~x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(~x) = 0 i = 1, 2, . . . , p (3)

where gi, hj : Rn → R, i = 1, ...,m, j = 1, ..., p are the constraint func-
tions of the problem and ~x = [x1, x2, . . . , xn]T is the vector of decision vari-
ables. gi(~x) are called inequality constraints and hi(~x) are called equality
constraints. It is also posible to have an unconstrained optimization prob-
lem. In such case, no constraints are imposed on the minimization of f(~x).

Although a wide variety of mathematical programming techniques are
currently available for dealing with different classes of optimization problems
(e.g., linear, quadratic, etc.), the general nonlinear optimization problem re-
mains open, since there is no single approach that can guarantee reaching
the global optimum of any type of nonlinear problem [12]. This has mo-
tivated the use of alternative techniques, such as evolutionary algorithms
(EAs).

2.1 Evolutionary Algorithms for Single-Objective Optimiza-
tion

In general, an Evolutionary Algorithm (EA) operates as follows: First, we
generate a set of randomly generated solutions to the problem that we aim
to solve. This set of solutions is called population, and each element in the
set is called an individual. Each individual is evaluated in terms of its fit-
ness value (a measure that will tell us how good is an individual with respect
to the rest of the population) such that the fittest individuals are selected
as parents. Such parents are then recombined (in pairs) using an operator
called crossover to give rise to a new set of individuals (their offspring). This
new population is subject to another operator called mutation, which pro-
duces small (random) changes in each individual. After applying mutation,
the cycle is repeated, since we have to determine again the fitness values
of this new (mutated) population. This process is repeated until reaching a
certain pre-defined stopping criterion (e.g., a maximum number of iterations
(or generations)).

The main components of an EA are the following [13]:

Representation: It refers to the way in which we encode the decision vari-
ables of the problem that we aim to solve. All the decision variables
are concatenated to form an individual, which will be evolved with the
aim of obtaining an optimal (or at least sub-optimal) solution to the
problem at hand.
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Fitness function: It is used to guide the search and it normally corre-
sponds to the original objective function of the problem to be solved
(perhaps in normalized form).

Parent selection: This is a mechanism that allows us to select the pairs
of parents that will be recombined (the fittest are normally selected).
Two parents normally produce two offspring which are meant to be
better (in terms of fitness) than their parents.

Variation operators: It refers to two main operators: crossover and mu-
tation. Crossover combines segments of two parents to produce off-
spring. Mutation changes a few positions in an individual to ensure a
greater diversity and to avoid getting trapped in local optima.

Survivor selection mechanism: It refers to the mechanism adopted to
ensure that good (or fitter) individuals survive into future generations.

Next, we will briefly describe each of these components for the four
EAs indicated in the introduction: genetic algorithms, evolution strategies,
evolutionary programming and differential evolution.

2.2 Genetic Algorithms

The basic Genetic Algorithm (GA) adopts binary encoding, since this is
a universal representation that can encode any type of decision variables
[14]. However, other encodings are also possible (e.g., real-numbers, integer,
matrix, etc. [15]). Using binary encoding, the set of bits corresponding to a
single decision variable is called gene and each bit within a gene is called an
allele. The concatenation of all the decision variables is called chromosome.
Traditionally, each individual in the population of a GA contains a single
chromosome. However, it is also possible to use multiple chromosomes per
individual [14].

In a GA, the crossover operator leads the search process and, therefore,
has the main role within the algorithm. As any other EA, a GA starts with
a randomly generated set of individuals in which each allele is generated in
such a way that both 0 and 1 have a 50% probability of appearing. Then,
fitness is computed for each of the individuals in the population and pairs
of individuals are selected for recombination (based on their fitness values).
The selected individuals (i.e., the parents) are recombined in pairs using a
certain probability (this is a parameter defined by the user) which is nor-
mally high (between 60% and 100%). Each pair of individuals generates
two offspring upon the use of a crossover operator. The offspring produced
by the crossover operator are later mutated. The mutation operator is a
secondary operator, which means that it is applied with a lower probability
(normally between 1% and 10%) than crossover. The offspring replace their
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1 Begin
2 G=0
3 Create a randomly generated initial population C(G)
4 For G=1 to GMAX (maximum number of generations) Do
5 Evaluate fitness of all the individuals in C(G)
6 Select best-fit individuals (parents) from C(G) for reproduction
7 Perform crossover and mutation to create an offspring population C ′(G)
8 The offspring population becomes the new population C(G)
9 G = G+ 1
10 End For
11 End

Figure 1: Simple Genetic Algorithm

parents and the whole process is repeated for a certain number of iterations
(called generations). The selection process in a GA is normally based on the
fitness contribution of each individual to the total fitness of the population.
This is called probabilistic selection and aims to give a fair treatment to indi-
viduals having low fitness values, so that their probability of being selected,
although low, is greater than zero. The full pseudo-code of a simple genetic
algorithm is shown in Figure 1.

GAs tend to have a poor performance in problems in which there is a
very high interaction among the decision variables (this is called epistasis),
and offer great advantages in optimization problems having mixed variables
(e.g., when some decision variables are real numbers, others are integers and
so on).

Next, we will briefly discuss the main variation operators (crossover and
mutation) available for binary and real-numbers encoding, as well as some of
the most popular parent selection and survival selection schemes available for
GAs. Additionally, we will provide a short discussion on constraint-handling
techniques available for GAs as well as some of their applications.

2.2.1 Variation Operators

Several crossover operators exist for each type of encoding. If binary encod-
ing is adopted, the most popular crossover operators are the following:

One-point crossover: In this case, a single point is randomly chosen along
a chromosome. The first offspring is generated by copying the bits from
the first parent to the crossover point and the bits from the crossover
point to the end of the chromosome from the second parent. The
second offspring is generated in an analogous way. This is illustrated
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in Figure 2. This crossover has a strong bias against holding together
genes that are located at opposite ends of the representation

1   0   1    1    1    1    1

1   0    0     1    1   0   1

1   0     1    1    1   0   1

1   0    0    1    1    1    1

OffspringParents

Figure 2: One point crossover.

Two-points crossover: In this case, two crossover points are randomly
produced. The first offspring is produced by using the extremes of
parent 1 and the middle part from parent 2. The second offspring is
generated in an analogous way.

Two points crossover is illustrated in Figure 3. This crossover tends
to maintain together genes that are located close to each other in the
cromosome.

1   0    0    1    1   1    1

1   0   1    1    1     0    1

1   0    0     1    0   1   1

1   0     1    1   0    0   1

OffspringParents

Figure 3: Two points crossover.

Uniform crossover: Introduced in [16], each bit of each offspring is se-
lected with a certain probability from each of its two parents. For
example, if a crossover rate of 50% is adopted, half of the bits of each
offspring will come from each parent. Uniform crossover is illustrated
in Figure 4. This crossover does not allow to transmit a large number
of coadapted genes from parents to the offspring.

This kind of crossover operators have the disadvantage that only muta-
tion can insert new values into the population, since these recombinations
only create new combinations of existing values.
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Parent 2

1   0     1    1    1   0   1

1   0    0    1    1    1    1

1   0    0     1    1   0   1

Parent 1

Offspring

Figure 4: Uniform crossover.

The mutation operator adopted with binary encoding is very simple since
it consists in an inversion of a bit (e.g., a zero becomes one and viceversa).
Mutation is normally applied with a low probability to each allele of each
offspring in the population.

In spite of the fact that binary encoding can be used to encode any sort
of decision variable, in practice, some problems are solved in an more effi-
cient manner with different types of encodings. For example, if the solution
to the optimization problem is a permutation of integers, the use of an in-
teger encoding may be more efficient and effective than the use of a binary
encoding. However, the use of integer encoding requires different variation
operators.

In evolutionary optimization, it is very common to use real-numbers en-
coding (i.e., to have chromosomes that consist of a vector of real numbers).
This sort of encoding can be very effective for solving numerical optimization
problems, but a different type of crossover operator is evidently required.
Some possible crossover operators for real-numbers encoding are the follow-
ing:

Arithmetic crossover: This operator [15] is a multi-parent recombination
technique which uses a weighted average approach from n parents to
create offspring. New solutions are created using

y =

n∑
j=1

ϕjxj , where

n∑
j=1

ϕj = 1 (4)

With this kind of operator, recombination is capable of creating new
gene material, however, it has the disadvantage that as an averaging
process is adopted for the computation of the new genes, the range of
the allele values in the population for each gene is reduced.

Blend crossover: The blend crossover operator (BLX-α) [17] is an arith-
metic crossover operator which creates new solutions using the follow-
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ing expression

y = (1− β)x1 + βx2, with β = (1 + 2α)u− α (5)

Where u is a random number sampled uniformly from [0, 1]. An
α = 0.5 value is usually adopted. BLX-α creates new solutions whose
location depends on the distance that the parents are away from one
another. That is to say, when the distance between parents is small,
so is the distance between the new solution and its parents. This
crossover has the characteristic of creating new material without re-
stricting the range of the solutions.

Simulated binary crossover: This operator (abbreviated as SBX) [18]
creates new solutions which are symmetric to their parents by simu-
lating the way one-point crossover works on a binary encoding. SBX
generates offspring using:

y1j = 0.5[(1 + γj)x1j + (1− γj)x2j ] (6)

y2j = 0.5[(1− γj)x1j + (1 + γj)x2j ] (7)

where

γj =

{
(2rj)

1
µ+1 if rj ≤ 0.5

( 1
2(1−rj))

1
µ+1 otherwise

(8)

where rj is a random number in the range [0, 1] generated from a uni-
form distribution and µ is a distribution index controlling the closeness
that the offspring have from their parents. Normally, µ = 1.

This kind of crossover prevents bias towards any of the parents. µ
value controls the closeness of the new solutions to their parents: the
smaller the value of µ, the farther away the offspring will be from their
parents.

The use of real-numbers encoding also requires specialized mutation ope-
rators. For example:

Non-Uniform Mutation: It was proposed in [15] and it operates as fol-
lows: Given:

~P = [v1, ..., vm] the mutated individual will be: ~P ′ = [v1, ..., v
′
k, ..., vm]

where: v′k =

{
vk + ∆(t, UB − vk) if R > 0.5
vk −∆(t, vk − LB) if R <= 0.5
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and the decision variable vk is in the range [LB,UB]1. R is random
number in the range [0,1]. ∆(t, y) returns a value in the range [0, y]
such that the probability that ∆(t, y) is close to zero is increased as t
(current generation) increases. Michalewicz suggests using: ∆(t, y) =

y ∗ (1 − r(1−
t
T
)b) where: r is a randomly generated real number in

the range [0, 1], T is the maximum number of generations and b is a
parameter that describes the non-uniformity degree adopted by the
mutation operator (Michalewicz [15] suggests using b = 5).

This operator explores in a more global manner the search space at
the beginning (when t is small) and in a more local (focalized) way
towards the end of the search process.

Uniform Mutation: Given: ~P = [v1, ..., v
′
k, ..., vm] the mutated individual

will be: ~P ′ = [v1, ..., v
′
k, ..., vm] where: v′k = rnd(LB,UB). In this

case, a uniform distribution is adopted and [LB, UB] define the lower
and upper bounds of the decision variable v′k.

This mutation operator is usually adopted with a positionwise muta-
tion probability and its purpose is to introduce new values into the
population.

Parameter-Based Mutation: Proposed by Deb [18]. Assuming that the
parent y is bounded (y ∈ [yl, yu]), the operator procedure is the fol-
lowing:

1. Generate a random number u in the range [0,1].

2. Compute:

δq =

{ [
2u+ (1− 2u)(1− δ)ηm+1

] 1
ηm+1 − 1 if u ≤ 0.5

1−
[
2(1− u) + 2(u− 0.5)(1− δ)ηm+1

] 1
ηm+1 otherwise

(9)

where δ = min [(y − yl), (yu − y)]/(yu − yl).

The parameter ηm is the distribution index for the mutation op-
erator and it takes any non-negative value. Deb suggests using:

ηm = 100 + t (t = current generation)

3. The value of the mutated position is determined by using:

y′ = y + δq∆max

where ∆max is the maximum allowable perturbation:

1[LB,UB] define the lower and upper bounds of the decision variable Vk.
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∆max = yu − yl

considering that:
y ∈ [yl, yu]

The aim of this operator is to generate a solution c in the neighborhood
of a parent solution y.

2.2.2 Parent Selection Mechanism

As indicated before, an usual way of implementing parent selection in a
GA is by adopting a fitness proportionate selection scheme (FPS). This
operator choses an individual fi for recombination with a probability of
fi/
∑n

j=1 fj , where n is the number of individuals in the population. There-
fore, the probability of a solution to be selected depends on the absolute
fitness value of the current individual compared to the absolute fitness val-
ues of the entire population.

An alternative parent selection mechanism is Ranking selection [19].
The main motivation of this operator is to preserve a constant selection
pressure during the search process. For this sake, ranking selection sorts the
current population of parents based on their fitness values (in decreasing
order). Then, it allocates a selection probability to each individual based
on their rank instead of using their current fitness value. The mapping from
this rank to a selection probability can be performed in several ways (e.g.,
in a linearly or exponentially decreasing way).

One of the most popular methods for parent selection is Tournament
selection. This method uses an ordering relation to compare individuals
(normally in pairs, using the so-called binary tournament selection scheme).
Each group of individuals “compete” in a tournament in which the only win-
ner is the one with the highest fitness value from the group. It is required to
perform a sufficient number of tournaments to produce a number of parents
that is equal to the population size.

2.2.3 Survivor Selection Mechanism

In traditional GAs the population of parents is totally replaced by the po-
pulation of offspring. It is worth noting, however, that due to theoretical
reasons, GAs normally adopt an additional operator called elitism [20], by
which the best individual at each generation is retained intact in the next
generation.

Other survival selection schemes are evidently possible, such as the plus
selection scheme by which the best m individuals (m is the population size)
are selected from the union of parents and offspring (this union will normally
be of size 2×m). This scheme is implicitly elitist, because the best individual
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from the union of both populations will always survive. There is evidence
indicating that the use of plus selection favors the performance of GAs that
use real-numbers encoding for solving numerical optimization problems [21].

2.2.4 Constraint-Handling Techniques

As optimizers, GAs are unconstrained search techniques. However, it is clear
that most real-world applications have constraints. Therefore, a constraint-
handling mechanism is required to allow GAs to properly solve constrained
optimization problems. Several types of constraints are possible. For ex-
ample, decision variables may allow only a certain range of values (e.g.,
−5 ≤ x1 ≤ 200). These are called bound constraints, and can be handled
directly when encoding the decision variables. However, equality and in-
equality constraints imposed on the definition of the optimization problem
require a specific mechanism that must be added to the GA.

In the early days of EAs, penalty functions [22] were the most popu-
lar constraint-handling technique. When using a penalty function, a con-
strained problem is transformed into an unconstrained one in which the
fitness value is “punished” (or penalized) when a solution is infeasible (i.e.,
when it violates one or more constraints from the problem). The higher
the violation of the constraints, the higher the penalty that is applied. Al-
though relatively simple, penalty functions have several disadvantages. The
main one is that they rely on a penalty factor that is used to balance the
influence that the constraint violations will have in the computation of the
(penalized) fitness value. In general, it is not possible to know, for an arbi-
trary problem, the most appropriate value of the penalty factor, and such
value has a serious impact on the performance of the evolutionary optimizer.
Although several types of schemes have been proposed to define a penalty
factor whose value is defined (e.g., adapted based on certain measures) dur-
ing the evolutionary process, in general, it is very difficult to define a good
penalty factor [23]. Motivated by this disadvantage, several other (more
elaborate) constraint-handling techniques for GAs have been proposed over
the years [24].

2.2.5 Recent developments

Some of the most relevant research on GAs developed on the last few years
has focused on automated parameter tuning, using either mechanisms such
as self-adaptation [25] (in which the parameters are incorporated as addi-
tional decision variables in the chromosome so that the GA evolves them)
or the so-called automatic algorithm configuration approaches [26]. Other
relevant topics have been multi-objective optimization [27], large scale op-
timization [28] and techniques to preserve diversity [29] with the aim of
avoiding premature convergence.
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2.2.6 Applications

GAs have been applied to a wide variety of optimization problems, includ-
ing structural optimization [30], architectural design [31], chemical engineer-
ing [32], aeronautical engineering [33] and electrical engineering [34] among
many others.

2.3 Evolution Strategies

Evolution strategies [35] are based on the idea that evolution can be able
to optimize itself. The first evolution strategy, known as (1 + 1)-ES, works
in the following manner: First, a single individual, consisting of a vector of
real numbers is “mutated” (i.e., a single decision variable in this individual
is replaced by another one which is at a randomly generated distance from
such individual). The new individual (the offspring) is compared with re-
spect to its parent (i.e., the unmutated individual) in terms of fitness value.
The individual with a better fitness value is the one that survives. A new
individual is generated using:

~xt+1 = ~xt +N(0, σ) (10)

where t is the current generation and N is a randomly generated number
according to a Normal distribution that has a zero mean and a standard
deviation σ. The most interesting part of the (1 + 1)-ES is that it is able
to self-adapt its mutation rate by using the so-called 1

5 success rule. What
the rule says is that the ratio between successful mutations and the total
number of mutations performed by the algorithm must be exactly 1

5 . If
this ratio is higher than 1

5 , then, the standard deviation must be increased.
Otherwise, it must be decreased. A mutation is considered successful when
the offspring that it generates has a better fitness than its parent.

So, the 1
5 success rule is expressed as:

σ(t) =


σ(t− n)/c if ps > 1/5
σ(t− n) ∗ c if ps < 1/5
σ(t− n) if ps = 1/5

where n is the number of decision variables of the problem t is the current
generation, ps is the relative frequency of successful mutations measured over
a certain time interval (e.g., after mutating 10×n individuals) and c = 0.817
(this value was theoretically derived by Schwefel [36]). σ(t) is adjusted after
performing n mutations. Algorithm 5 describes a (1 + 1)-ES.

2.3.1 Variation Operators

In an Evolution Strategy, mutation is the main variation operator, and sev-
eral forms of mutation are possible. For example, when using the Uncorre-
lated Mutation with One Step Size, the same distribution is adopted
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1 Begin
2 t=0
3 Create a random initial population P (t)← ~x
4 Evaluate f(~x)
5 Initialize archive A of successful mutations
6 For t=1 to MAX GEN Do
7 ~x′ = ~x+N(0, σ(t))
8 If f(~x′) < f(~x) Then
9 ~x← ~x′

10 store success in A
11 Else
12 store failure in A
13 End If
14 P (t+ 1)← ~x
15 If mod n = 0 Then
16 get num successes and num failures from A
17 ps = num successes

num successes+num failures

18 σ(t) =


σ(t− n)/c if ps > 1/5
σ(t− n) ∗ c if ps < 1/5
σ(t− n) if ps = 1/5

19 End If
20 t = t+ 1
21 End For
22 End

Figure 5: (1 + 1)-ES algorithm. Here, n is the number of decision variables
of the problem, t is the current generation and c = 0.817. “MAX GEN”’ is
a user-defined parameter representing the maximum number of generations
(iterations) to be used.
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to mutate the decision variables, so only one strategy parameter σ is used
for all the decision variables. It is also possible to use the Uncorrelated
Mutation with n Step Sizes, in which each set of n decision variables is
extended with n step sizes, one for each decision variable.

Crossover can also be applied in evolution strategies, but this is a sec-
ondary operator, because it is normally applied with a lower probability.

The most common crossover operator involves the use of two or more
parents to produce a single offspring. Evolution strategies adopt two main
crossover operators: discrete recombination and intermediate recom-
bination.

When using discrete recombination, each element of the offspring is ran-
domly taken from one of the parents. When using intermediate recombina-
tion, each element of the offspring is computed as the average of the values
of its parents.

Crossover operators in evolution strategies also differ depending on the
number of parents which are recombined to produce a new solution. Two
main approaches are commonly adopted. In the first scheme, which is called
local crossover, two individuals are randomly selected from the population
to act as parents. In the second scheme, known as global crossover, more
than two individuals are randomly selected to breed. It is worth noting that
evolution strategies adopt a randomly-based parent selection strategy, and
not one based on fitness as done in the genetic algorithm.

2.3.2 Survivor Selection Mechanism

Rechenberg [35] introduced the use of populations in evolution strategies,
with the so-called ((µ+1)-ES, in which µ parents generate a single offspring,
which will replace to the worst parent from the population.

Schwefel [36] proposed the use of multiple offspring in the so-called
(µ+λ)-ES and (µ,λ)-ES. In the first case ((µ+λ)-ES), the µ best individuals
obtained from the union of parents and offspring are the ones who survive.
In the second case ((µ,λ)-ES), the µ best offspring survive (i.e., there is a to-
tal replacement of the parents population, as done in the traditional genetic
algorithm).

2.3.3 Constraint-Handling Techniques

The first versions of the evolution strategy used an approach called death
penalty. In this approach, an infeasible solution is discarded and a new
one is randomly generated. This approach, although simple, only works
when the size of the feasible region is fairly large with respect to the size of
the entire search space. Over the years, more elaborate constraint-handling
techniques were introduced (see for example [37]). Additionally, constraint-
handling techniques used with other evolutionary algorithms can also be
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adopted with evolution strategies (see for example [38]).

2.3.4 Recent developments

One of the most successful versions of Evolution Strategies is the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), first proposed in [39]. In
CMA-ES, the adaptation of a covariance matrix is used to learn a second
order model of the objective function, analogous to the use of the approxi-
mation of the inverse Hessian matrix in Quasi-Newton methods. However, in
this case neither derivatives nor even the function values themselves are re-
quired by the method, since only the ranking between candidate solutions is
used for learning the sample distribution. This mechanism allows CMA-ES
to ensure invariance to any kind of rotation of the fitness function. Ad-
ditionally, CMA-ES is capable of dealing efficiently with high-dimensional
non-separable ill-conditioned objective functions.

2.3.5 Applications

Evolution strategies have been mainly used for numerical optimization in a
wide variety of domains, including medicine [40], transport engineering [41],
biotechnology [42] and structural optimization [43] among many others.

2.4 Evolutionary Programming

The development of Evolutionary Programming (EP) [5] was inspired on the
adaptive behavior present in evolution, with the idea that evolution can be
seen as a learning process that gives rise to artificial intelligence. EP models
the evolutionary process at the species level and not at an individual level
(as done by GAs and ESs). Therefore, EP does not consider recombination
(different species cannot be recombined).

EP requires no encoding of solutions (same as ESs), so if we aim to solve
an optimization problem in which de decision variables are real numbers,
EP will use a vector of real numbers to represent each individual in the
population. Originally, EP was used to evolve finite state machines that
aimed to produce a set of outputs defined in a transition table. In this
case, fitness was based on the behavioral error of individuals for the given
environment.

In general, EP starts with a set of solutions that are randomly generated.
Then, fitness is computed for each of these individuals. Parents are selected
based of their fitness value, but normally through the use of deterministic
tournaments (i.e., the best individual always wins). Selected individuals are
mutated (several types of mutation operators are available) to produce the
offspring that constitute the next generation. This process is repeated until
reaching a certain stopping criterion. The basic EP algorithm is presented
in Figure 6.
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1 Begin
2 G=0
3 Create a random initial population C(G)← ~xi,G ∀i, i = 1, . . . , NP
4 Evaluate f(~xi,G) ∀i, i = 1, . . . , NP
5 For G=1 to MAX GEN Do
6 For i=1 to NP Do
7 Create an offspring ~x′i,G by applying the mutation operator

8 Evaluate the fitness f(~x′i,G)

9 Add ~x′ to the set offspring set C ′(G)
10 End For
11 Select the new population C(G+ 1) from C(G)

⋃
C’(G)

12 G = G+ 1
13 End For
14 End

Figure 6: Basic EP Algorithm. “NP” and “MAX GEN”’ are user-defined
parameters.

2.4.1 Variation Operators

In evolutionary programming, each parent is used to produce one or more
offspring from it through the use of mutation. Mutation operators can be
tailored for the problem at hand, but in general, a new individual is gener-
ated using:

x′i = xi + φ(σi)ηi (11)

where φ is a function that calibrates the noise ηi. Based on the features
of the scaling function, there are three main variants of EP. The first is the
so-called non-adaptive version, where the deviation step sizes are static
throughout the whole evolutionary process. The second is the so-called
dynamic version, where the changes in step sizes occur over time using φ
as the fitness values of the individuals. The third one is the self-adaptive
version, in which step sizes change dynamically and the best values are learnt
from the decision variables of the problem.

2.4.2 Survivor Selection Mechanism

The most commonly adopted way to select individuals to survive is to select
the best individuals among parents and offspring. To define what solutions
are better, a relative fitness measure is adopted. This measure indicates how
well an individual performs against other solutions selected from the parents
and offspring, through pairwise tournament competitions, performed in a
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round-robin fashion. At the end, the solutions with the greatest number of
victories are chosen to pass to the next generation.

2.4.3 Constraint-Handling Techniques

There are some specific constraint-handling mechanisms that have been de-
veloped for EP. For example, the so-called two-phase evolutionary program-
ming [44]. As its name indicates, this approach operates in two phases. In
the first phase, a penalty function is applied. Thereafter, the best individual
from phase one is used to generate the offspring for phase two, which opti-
mize the dual Lagrangian problem. Evidently, the same constraint-handling
techniques proposed for other EAs can also be used with EP (see for example
[38]).

2.4.4 Recent developments

Recent work on EP have been focused on the development of new mutation
operators. For example, in [45], the authors study the development of an
automatic process to design a mutation operator for EP.

2.4.5 Applications

EP is the least frequently used EA, but it has been applied in several do-
mains, including networking [46], operating systems [47] and electronics [48],
among others.

2.5 Differential Evolution

Differential Evolution (DE) [6] is an EA that was originally designed for
solving continuous optimization problems and which has been found to be
very effective in a wide variety of problems [7]. The original version of DE
adopts real-numbers encoding, since it is assumed that in the optimization
problem to be solved, all the decision variables are real numbers. DE per-
forms mutation based on the distribution of the solutions in the current
population. Thus, the search directions and the possible step sizes to be
used by the algorithm depend on the location of the individuals selected to
calculate the mutation values.

The original proposal used a certain nomenclature to refer to the different
DE variants proposed by the authors of this algorithm [6]. The most popular
DE variant is known as “DE/rand/1/bin”, where “DE” means Differential
Evolution, “rand” indicates that the individuals selected for computing the
mutation values are randomly chosen, “1” is the number of pairs of solutions
that are selected and “bin” indicates that a binomial recombination is used.
The corresponding algorithm of this variant is presented in Figure 7.
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1 Begin
2 G=0
3 Create a random initial population ~xi,G ∀i, i = 1, . . . , NP
4 Evaluate f(~xi,G) ∀i, i = 1, . . . , NP
5 For G=1 to MAX GEN Do
6 For i=1 to NP Do
7 ⇒ Select randomly r1 6= r2 6= r3 :
8 ⇒ jrand = randint(1, D)
9 ⇒ For j=1 to D Do
10 ⇒ If (randj [0, 1) < CR or j = jrand) Then
11 ⇒ ui,j,G+1 = xr3,j,G + F (xr1,j,G − xr2,j,G)
12 ⇒ Else
13 ⇒ ui,j,G+1 = xi,j,G
14 ⇒ End If
15 ⇒ End For
16 If (f(~ui,G+1) ≤ f(~xi,G)) Then
17 ~xi,G+1 = ~ui,G+1

18 Else
19 ~xi,G+1 = ~xi,G
20 End If
21 End For
22 G = G+ 1
23 End For
24 End

Figure 7: “DE/rand/1/bin” algorithm. randint(min,max) is a function that
returns an integer number between min and max. rand[0, 1) is a function
that returns a real number between 0 and 1. Both are based on a uni-
form probability distribution. “NP”, “MAX GEN”, “CR” and “F” are user-
defined parameters. “D” is the number of decision variables of the problem.
Steps marked with arrows change depending on the DE version adopted.
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The “CR” parameter controls the influence of the parent in the genera-
tion of its offspring. Higher values imply less influence of the parent. The
“F” parameter scales the influence of the set of pairs of solutions selected
to calculate the mutation value (one pair in the case of the algorithm in
Figure 7).

It is worth noticing that an increase on either the population size or
the number of pairs of solutions used to compute the mutation values, will
also increase the diversity of possible movements, thus promoting a better
exploration of the search space. However, this will also considerably decrease
the probability of finding the correct search direction. Therefore, the balance
between the population size and the number of differences determines the
efficiency of the DE algorithm [49]. Besides this balance, another important
factor when using this algorithm is the type of variant that is adopted. Each
DE variant provides a different mechanism to compute the mutation values
as well as different types of recombination operators.

Next, we will briefly describe eight DE variants taken from [50]. The
main differences among these variants lie on the recombination operator
adopted (see steps 9 to 15 in Figure 7) and also in the way individuals
are selected to compute the mutation vector (see step 7 in Figure 7). The
variants are the following:

• Four DE variants whose recombination operator is discrete, always us-
ing two individuals: the original parent and the DE mutation vector
(step 11 in Figure 7). Two discrete recombination operators: bino-
mial and exponential. The main difference between them is that for
binomial recombination, each variable of the offspring is taken from
one of the two parents each time, based on the “CR” parameter value.
On the other hand, in the exponential recombination, each variable
of the offspring is taken from the first parent until a random num-
ber exceeds the “CR” value. From that moment on, all the offspring
variable values will be taken from the second parent. These vari-
ants are called: “DE/rand/1/bin”, “DE/rand/1/exp”, “DE/best/1/-
bin” and “DE/best/1/exp” [51]. The “rand” variants select all the
individuals to compute mutation at random and the “best” variants
use the best solution in the population besides the random ones.

• Two DE variants with arithmetic recombination, which, unlike dis-
crete recombination, is rotation invariant. These are “DE/current-to-
rand/1” and variant “DE/current-to-best/1” [51]. The only difference
between them is that the first selects the individuals for mutation at
random and the second one uses the best solution in the population
besides random solutions.

• “DE/rand/2/dir” [49], which incorporates objective function informa-
tion to the mutation and recombination operators. The aim of this ap-

19



proach is to guide the search to promising areas faster than traditional
DE. Their authors argue that the best results are obtained when the
number of pairs of solutions is two [49].

• Finally, a DE variant with a combined discrete-arithmetic recombina-
tion, which is called “DE/current-to-rand/1/bin” [51].

2.5.1 Constraint-Handling Techniques

There have been some proposals of constraint-handling mechanisms for DE.
For example, in the approach proposed in [52], an infeasible solution is
assisted so that it can quickly move towards the feasible region by making a
consensus among the currently violated constraints. However, it should be
clear that the same constraint-handling techniques proposed for other EAs
can also be used with DE (see for example [38]).

2.5.2 Recent developments

Recent research on DE has focused on topics such as self-adaptation (see for
example [53], where a history-based adaptation of the control parameters F
and CR is proposed) and on the effects of different recombination operators
(see for example [54]).

2.5.3 Applications

DE has been widely used in continuous optimization. Some of the domains
in which it has been applied include thermal engineering [55], geophysics
[56] and image processing [57], among many others.

2.6 Parameters settings

To create an EA instance requires choosing values for its respective param-
eters. Such values determine the performance of an EA and, therefore, the
quality of the obtained solutions. The common practice is to define parame-
ter values before the execution of the algorithm and to maintain them fixed
during the run. Although some rules-of-thumb are normally adopted for
setting the parameters of an EA, this sort of approach is fully empirical and
based on some limited experimentation with a handful of values. The limi-
tations of this sort of approach should be very evident, since it is very time
consuming to try all different combinations of parameter values (for example,
testing five different values for five parameters would take 55 = 3125 setups).
Besides, there exist theoretical arguments which state that for each specific
problem, EAs may require specific parameters settings and that generally it
is not possible to know a priori such settings [13]. For this reason, recent
approaches to parameter tuning consider the development of tuning meth-
ods based on search algorithms (tuning methods), which aim to optimize
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two main aspects: obtained solution quality and algorithm speed [58, 59].
This is achieved by modeling the problem of parameter tuning as an opti-
mization problem which consists on finding the parameter vectors with the
maximum utility. So in general, the solution of a tuning problem depends
on the problem to be solved, the adopted EA and the utility function (which
defines the way in which the algorithm’s quality is measured).

Figure 8 shows the most widely adopted taxonomy for parameters set-
tings in EAs [60], according to the way in which the parameter tuning is
done and the time in which parameters are defined.

Parameter control

Adaptive Self−adaptive

Parameter tuning

Deterministic

Before the execution During the execution

Parameter setting

Figure 8: Taxonomy of parameters settings approaches used with EAs

For the case of parameter control, the different available methods are
the following:

Deterministic parameter control: Consists on a definition of parame-
ters given by certain rules adopted by the user, without taking into
account any feedback from the search process. Rules are activated at
specified intervals during the execution.

Adaptive parameter control: This method uses feedback from the search
process to determine the change of the parameters. However, the
mechanism is not part of the usual evolutionary process but an ex-
ternal mechanism which provides control parameters. Usually, such
mechanism is based on the quality of solutions obtained by the differ-
ent parameters, so that the mechanism can distinguish between the
merits of each of the parameters settings.

Self-adaptive parameter control: This parameter control mechanism en-
codes parameters into the individuals, so that mutation and recombi-
nation operators can act over them. In this way, better parameter
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values lead to better individuals, which in turn have more chances to
survive, then produce offspring and therefore propagate these better
parameter values to further stages of the optimization process.

Nowadays, parameter tuning has become an important research area
which has been extended to full automatic algorithm configuration approaches
[59, 13, 61, 26].

3 Multi-Objective Optimization

Many real-world problems have two or more (often conflicting) objectives
that we aim to optimize at the same time. These are the so-called multi-
objective optimization problems (MOPs) and they rarely have a single solu-
tion that simultaneously optimizes all the objectives. Instead, when solving
a MOP we aim to find the best possible trade-offs among all the objectives
(i.e., solutions in which it is not possible improving one objective without
worsening another).

Formally, a MOP is defined by a decision space X ⊂ IRn, an objec-
tive space Z ⊂ IRk, and k objective functions f1, f2, . . . , fk to be minimi-
zed. Each decision vector x ∈ X is related to an objective vector f =
(f1(x), . . . , fk(x)) ∈ Z, where X is usually restricted by bounds on the deci-
sion variables xi ∈ [xli, x

u
i ] for i = 1, 2, . . . , n, inequality constraints gi(x) ≤ 0

for i = 1, 2, . . . ,m, and equality constraints hj(x) = 0 for j = 1, 2, . . . , p.
When dealing with MOPs, it is not possible to compare directly two

solutions x,y ∈ X as in single-objective optimization. Instead, the Pareto
dominance relation is normally used: it is said that x dominates y (x ≺ y) if
x is at least as good as y in all objectives (∀i ∈ {1, . . . , k} fi(x) ≤ fi(y)) and
better in at least one objective (∃j ∈ {1, . . . , k}, fj(x) < fj(y)). Thus, three
scenarios may occur, either x ≺ y, y ≺ x or neither of both, i.e., they are
non-dominated to each other. This binary relation induces a strict partial
order on X . Thus, the solution to a MOP consists of finding the optimal set
of non-dominated decision vectors {x∗ ∈ X : @x ∈ X ,x ≺ x∗}, which cannot
be improved in any objective without worsening at least another. Such set is
known as the Pareto optimal set and its corresponding image in Z is called
the Pareto optimal front.

Multi-objective evolutionary algorithms (MOEAs) differ from single-
objective EAs in the way both the parent and the survival selection processes
are performed. In MOEAs, we aim the following:

1. Convergence to the Pareto optimal front,

2. A uniform distribution of solutions along the Pareto front and

3. A good spread of solutions, such that all of the Pareto front is covered.
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The last two goals are closely related, and they are related to the diversity
of the population. On the other hand, the variation operators of single-
objective EAs might be directly implemented on MOEAs.

MOEAs offer several advantages with respect to mathematical program-
ming techniques. The main ones are that MOEAs require little specific
domain information, they are less susceptible to the shape and continuity
of the Pareto front of the problem to be solved, and they can generate sev-
eral elements of the Pareto optimal set in a single execution. In contrast,
mathematical programming techniques normally require that the objective
functions and the constraints of a MOP are differentiable, some of them are
very susceptible to the shape of the Pareto front (e.g., some of them do not
properly work when dealing with disconnected Pareto fronts) and most of
them generate a single element of the Pareto optimal set per execution [62].

As in single-objective optimization, elitism is a very important opera-
tor in MOEAs due to theoretical reasons, since it is required to guarantee
convergence to the Pareto optimal set [63]. Elitism operates by retaining
a maximum number of non-dominated solutions during the evolutionary
process. Elitism is implemented either through the survival selection mech-
anism (µ+λ) or by using an external archive, which is a data structure that
resides in main memory and whose aim is to retain as many non-dominated
solutions as possible.

In what follows, a brief historical review of the most representative
MOEAs is presented. The techniques described next are classified into four
categories: (1) non-elitist non-Pareto-based, (b) non-elitist Pareto-based
methods, (3) elitist Pareto-based approaches and (4) elitist non-Pareto-
based algorithms. Each of these categories is briefly described next.

3.1 Non-Elitist Non-Pareto-based Methods

Within this group, we consider the oldest MOEAs reported in the literature.
These algorithms are non-elitist and do not adopt Pareto dominance in their
selection mechanism. Though they are straightforward and computationally
efficient, they have no explicit mechanism to maintain diversity.

3.1.1 Lexicographic ordering

This is a very old mathematical programming technique in which the objec-
tives are ranked based on their importance (this is defined by the user). At
each iteration, the most important objective in the sequence is minimized,
while the others are transformed into equality constraints. Each constraint
keeps an objective at a certain level of satisfaction, which corresponds to
its best value found so far. In the early days of MOEAs, some researchers
proposed to couple lexicographic ordering with evolutionary algorithms. For
example, in [64], this method was coupled to a GA. In this case, the parent
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selection is performed at random, and the survival selection mechanism is
based on binary tournaments adopting two approaches. In one, the com-
parison is deterministic using as a criterion the current objective, and when
there is a tie, the next objective in the ranking is chosen. In the second ap-
proach, at each comparison, a random objective is selected by a predefined
frequency.

The main disadvantage of this approach is that the performance depends
on the ordering/frequency imposed on the objectives, having the undesirable
consequence of making the population converge to a particular region of the
Pareto optimal front. Additionally, this sort of approach is not appropriate
for problems having more than two objectives.

3.1.2 Linear Aggregating Functions

This is the oldest mathematical programming used for solving MOPs, and it
has also been used many times with evolutionary algorithms. The basic idea
of this approach is to combine all the objectives into a single scalar value:∑k

i=1wifi(x). This scalar value is used as the fitness of an evolutionary
algorithm. It is worth noticing that when using this approach, the objectives
need to be properly scaled. Normally, it is assumed that

∑k
i=1wi = 1.

Several authors have used linear aggregating functions with GAs (see for
example [65]).

The main drawbacks of this method are related to the difficulties asso-
ciated with the definition of the weight values and to the fact that linear
aggregating functions are unable to generate non-convex portions of the
Pareto front [66].

3.1.3 VEGA

The Vector Evaluated Genetic Algorithm (VEGA), proposed by Schaffer [67],
is considered the first actual implementation of a MOEA. The parent selec-
tion in VEGA is performed as follows. First, the population is randomly
split into k subpopulations of equal size. Each subpopulation is associated
with a different objective, and the individuals belonging to this partition are
ranked according to their performance in such objective. Next, the mating
pool is created using proportionate selection [14]. Finally, the population is
combined to apply the variation operators. The main limitations of VEGA
are that it suffers from some bias towards extreme points. Also, when pro-
portionate selection is used, VEGA’s selection mechanism behaves similarly
to a linear aggregating function, which implies that it cannot generate non-
convex portions of the Pareto front. Another limitation of VEGA is that
its selection mechanism actually opposes the notion of Pareto optimality,
because a solution that represents a good trade-off among all the objectives,
but it is not the best in any of them won’t be favored by its selection mech-
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anism. Schaffer tried to overcome this issue by using some heuristic rules,
such as mating restrictions, which imposes rules on the individuals that may
recombine within the same subpopulation.

3.2 Non-Elitist Pareto-based Methods

Goldberg [14] proposed a sketch of the non-dominated sorting algorithm,
which ranks the population of a GA using Pareto dominance. In this case,
all non-dominated individuals should get the highest rank. Then, these so-
lutions are discarded so that a new ranking is determined. The process
continues until the whole population had been ranked. In order to maintain
diversity, Goldberg suggested the use of what is now called a density estima-
tor. This sort of approach blocks the selection bias of the GA, thus avoiding
convergence to a single solution, and it is necessary so that a MOEA can gen-
erate different elements of the Pareto optimal set in a single run. Goldberg
suggested to use fitness sharing [68] as a density estimator. This technique
penalizes an individual’s fitness by dividing it by a niche count, which es-
timates how crowded is the individual’s neighborhood. A neighborhood is
represented by a hypersphere of radius σshare surrounding the current po-
sition of an individual. So, as more individuals lie within this radius (i.e.,
within the same niche), the lower the fitness of an individual. Evidently,
σshare is a parameter to which the performance of fitness sharing is highly
sensitive, but some schemes to estimate it in multimodal optimization have
been available since the late 1980s [69].

It turns out that non-dominated sorting is not the only scheme possible
to rank solutions based on Pareto optimality. So, in this section we describe
MOEAs that adopt a Pareto-based selection mechanism, but that do not in-
corporate elitism. These early Pareto-based MOEAs are easy to implement,
but they are not very effective in problems having more than two or three
objectives.

3.2.1 MOGA

The Multi-Objective Genetic Algorithm (MOGA) proposed by Fonseca and
Fleming [70], ranks an individual according to the number of solutions that
dominate it. This information is then used to compute its fitness, which
is assumed to be maximized, ranging in the interval [0, 1]. Furthermore,
the authors of this MOEA provide a polynomial equation to estimate the
value of the niche radius, since MOGA uses fitness sharing as its density
estimator. Parent selection is restricted to individuals with similar fitness
values.

MOGA was a very popular MOEA in the mid-1990s, and was widely
used in automatic control [71].
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3.2.2 NSGA

The Non-dominated Sorting Genetic Algorithm (NSGA), proposed by Srini-
vas and Deb [72], closely follows Goldberg’s original proposal. However,
instead of ranking the population, a large dummy fitness value is assigned
to the first layer of non-dominated solutions (i.e., those which are non-
dominated with respect to the entire population). The first layer is then
removed, and a second set of non-dominated solutions is identified. Such so-
lutions receive dummy fitnes values which are lower than those from the first
layer. This process is repeated until the entire population had been classified.
Fitness values are shared among solutions lying in the same layer. Parents
are chosen using a stochastic remainder proportionate selection based on the
individuals’ fitness values. Unlike MOGA, fitness sharing is applied in this
case, in decision variable space.

NSGA has been criticized mainly for the need of specifying the parameter
σshare and for its high computational complexity of O(k|P |3), where |P | is
the population size and k is the number of objectives. The few comparative
studies of MOEAs performed in the late 1990s indicated that NSGA was
slower than MOGA and it produced solutions of inferior quality [73].

3.2.3 NPGA

The Niched-Pareto Genetic Algorithm (NPGA), introduced by Horn et al.
[74], can be seen as a variation of the non-dominated sorting algorithm.
In this approach, parent selection is performed through Pareto domination
tournaments, in which two candidates are picked at random and compared
against a (randomly selected) sample of the population. If one candidate is
dominated by this sample, and the other is not, the latter is selected. Other-
wise, the candidate with the smallest niche count in objective space becomes
the winner. The main disadvantage of this MOEA is that it introduces a
new parameter: the tournament size, which is critical to the performance
of the MOEA. A tournament size corresponding to the 10% of the total
population size is suggested by the authors of this MOEA.

NPGA is the fastest non-elitist Pareto-based MOEA. Nevertheless, it is
not as effective as MOGA [73].

3.3 Elitist Pareto-based Methods

Within this group, we include the elitist methods that also implement Gold-
berg’s Pareto ranking idea, but the algorithms in this case are more effi-
cient and more effective than the non-elitist ones. The density estimators
adopted in this group are also more sophisticated and, in some cases, even
parameter-free. In fact, some of the MOEAs in this group are still in use
today. Their main limitation is that most of them are not effective when

26



dealing with problems having more than 3 objectives (the so-called many-
objective optimization problems). The main reason for this ineffectiveness
is related to their density estimators which, in most cases, were designed
for problems having only two objectives. Since Pareto ranking will quickly
become ineffective in the presence of many objectives (this is because most
of the population will quickly become non-dominated), the search in such
problems is solely guided by the density estimator [75].

3.3.1 SPEA and SPEA2

The Strength Pareto Evolutionary Algorithm (SPEA), proposed by Zit-
zler and Thiele [76], mixes different mechanisms from previous MOEAs.
SPEA incorporates elitism through the use of an external archive of the
non-dominated solutions discovered so far. This archive is bounded to a
maximum size using a clustering technique (the average linkage method).
Parent selection is accomplished by binary tournaments, where the union of
the main population and the external archive are considered. The fitness (or
strength) of an individual in the external archive is calculated as the number
of population members that it covers divided by the size of the population,
plus one. The fitness of a member of the main population corresponds to
the accumulated strengths of the external individuals that cover it, plus one.
Here, the cover relation relies on Pareto dominance, and it is defined as fol-
lows: given x,y ∈ X , it is said that x covers y iff x ≺ y or x = y. The aim
of this fitness assignment scheme is to maintain diversity in the population.
Ideally, the individuals of the external archive will cover the same number
of population members. However, this only works if the external archive is
uniformly distributed by the clustering method.

In 2001, an improved version of SPEA, called SPEA2, was proposed by
Zitzler et al. [77], who reported the following drawbacks of the original
version:

1. SPEA behaves like a random search algorithm when the population
members have identical fitness values.

2. The search is stuck when there are many non-dominated solutions.

3. The spread is negatively affected because the extreme points are lost.

4. The archive’s size may vary over time.

To tackle issue (1), the fitness assignment mechanism was changed and
unified for both the main population and the external archive. A fitness
value considers density information and both dominating and dominated
solutions. Issues (2) and (3) are resolved in the archive truncation mech-
anism. The clustering technique is replaced by a density estimator based
on the kth nearest neighbor method, which does not lose boundary points.
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Finally, to solve (4), if the number of non-dominated solutions from the po-
pulation and the external archive is less than a limit size, then the dominated
solutions with the best fitness values are copied to the external archive.

Comparative studies have indicated that SPEA2 is a very competitive
MOEA, normally matching the performance of NSGA-II, but providing a
better distribution of solutions, particularly when the number of objectives
is higher than two.

3.3.2 NSGA-II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II), proposed by
Deb et al. [78], alleviates the main drawbacks of the original NSGA, al-
though the new algorithm is really quite different. In this case, a more effi-
cient non-dominated sorting algorithm is implemented and fitness sharing is
replaced by a new density estimator called crowding distance, which operates
in objective space and can be seen as the perimeter of the cuboid formed by
the nearest neighbors surrounding a particular solution. The crowding dis-
tance is calculated as the average distance between the two points on either
side of a solution along each objective. For comparison purposes, instead
of fitness values, a preference relation is used, favoring those individuals
with 1) lower ranks and 2) higher crowding distances. This preference rela-
tion is used in both selection mechanisms. Moreover, for the mating pool,
stochastic remainder proportionate selection is replaced by binary tourna-
ments. Finally, the survival selection is now elitist since the best half from
the union of parents and offspring is retained.

The elegance, effectiveness and efficiency of NSGA-II made it a standard
in evolutionary multi-objective optimization for more than ten years.

3.3.3 PAES

The Pareto Archived Evolution Strategy (PAES), proposed by Knowles and
Corne in [79], is perhaps the most simple MOEA that one can possibly
design. It consists of a (1+1)-ES (i.e., a single parent is mutated to produce
an offspring). If the offspring dominates its parent, it is stored in an external
archive and it becomes the parent in the next iteration. The most interesting
aspect of this MOEA is its external archive, which adopts a density estimator
called adaptive grid. In this approach, objective space is partitioned into lk

hypercubes, where l is a parameter that indicates the number of subdivisions
of the space. The number of solutions in a hypercube is then used as an
approximate form of a niche count.

The main problem of the adaptive grid is that it was conceived only for
two objectives and its generalization to any number of objectives does not
seem possible. Also, the fact that PAES does not adopt a crossover operator,
limits its effectiveness in certain types of MOPs (e.g., when the Pareto front
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is disconnected).

3.3.4 Micro-Genetic Algorithm

The Micro-Genetic Algorithm (micro-GA) for multiobjective optimization
was proposed by Coello and Toscano [80]. This algorithm adopts three
forms of elitism and a slight variant of the adaptive grid of PAES. Its main
advantage is its efficiency. In their original experiments, its authors were able
to show that the micro-GA was up to one order of magnitude faster than
NSGA-II and it produced solutions of a similar quality. The main drawback
of this approach was that it required a high number of parameters (eight,
from which at least three played a fundamental role in its performance).

The Micro-Genetic Algorithm for Multi-Objective Optimization 2 (called
µGA2), introduced by Toscano and Coello [81], is an improved version of
its ancestor. This is the only fully self-adaptive MOEA that has been pro-
posed so far. The main motivation for the development of the µGA2 was
to eliminate the eight parameters required by the original algorithm. The
µGA2 uses on-line adaptation mechanisms that make unnecessary the fine-
tuning of any of its parameters. Additionally, it can decide when to stop
(no maximum number of generations has to be provided by the user). The
only parameter that it requires is the size of the external archive (although
there is a default value for this parameter).

3.4 Elitist Non-Pareto-based Methods

Within this group, we include the recent trends in the area, which involve
MOEAs that are elitist and do not necessarily rely on Pareto dominance.
These new approaches were motivated either by efficiency or by the need to
tackle many-objective optimization problems.

3.4.1 Decomposition-based Methods

These methods transform a MOP into several single-objective subproblems,
which are solved simultaneously, exploiting the population-based nature of
MOEAs. Each subproblem is associated with a different target direction or
weight vector. In order to obtain a wide variety of solutions, weight vec-
tors should be uniformly distributed in the [0, 1]k space. Though, this does
not necessarily imply that approximations to the Pareto optimal front will
exhibit a uniform distribution. A popular method for generating weight vec-
tors can be found in [82]. Moreover, decomposition is performed through an
aggregating function, which maps an objective vector to a scalar. Some ag-
gregating functions are compatible with a relaxed form of Pareto dominance,
such as the Chebyshev function [62].

The most typical method in this category is the Multi-Objective Evolu-
tionary Algorithm based on Decomposition (MOEA/D), proposed by Zhang
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and Li [83]. This approach is inspired on a mathematical programming tech-
nique called Normal Boundary Intersection (NBI) [82]. MOEA/D consists
of a framework of aggregating functions in which variation operators are ap-
plied locally. An individual is associated with a weight vector/subproblem.
Therefore, each member of the population keeps a neighborhood structure
of a certain size. The vicinity is imposed by the closeness of the weight
vectors. For a particular individual, two parents are randomly selected from
its neighborhood. These parents generate a new offspring by using variation
operators. The offspring is evaluated using the MOP and the aggregating
function. The new solution replaces the current individual or its neigh-
borhood if it minimizes their corresponding subproblems. In this way, the
population is composed of the best solutions found so far for each subprob-
lem.

MOEA/D is not only one of the most competitive MOEAs in current
use but it is also very efficient (computationally speaking).

3.4.2 Indicator-based Methods

Performance indicators [84] evaluate the quality of an approximation to
the Pareto optimal front, regarding convergence or diversity. Performance
indicators have been mainly used to compare the effectiveness of optimizers,
and recently, an important trend is their incorporation into the selection
mechanism of MOEAs.

The hypervolume [85], also known as the Lebesgue measure or S metric,
is one of the most popular performance indicators. The hypervolume of a
set of solutions measures the size of the portion of objective space that is
dominated by such solutions collectively and bounded by a reference point.
A nice mathematical property of the hypervolume is that its maximization
is equivalent to reaching the Pareto optimal set [86]. This has been experi-
mentally validated [87, 88] and it has been observed that such solutions also
have a good distribution along the Pareto optimal front.

Nevertheless, the main drawback of using the hypervolume is its high
computational cost, which grows exponentially with the number of objec-
tives. Moreover, when this performance indicator is coupled to a MOEA
the selection of solutions is not straightforward. This indicator operates on
a set of solutions, and the selection operator considers only one solution at
a time. Therefore, when using the hypervolume to select solutions, a fitness
assignment strategy is required. The most common is the contribution to
the hypervolume: ∆S(a, A) := S(A) − S(A \ {a}), where A is the set, a is
a solution and S is the hypervolume indicator. In the following, we briefly
illustrate its use within a MOEA that is representative of this group.

The S Metric Selection Evolutionary Multi-objective Algorithm (SMS-
EMOA), proposed by Emmerich et al. [88], borrows ideas from NSGA-II and
the archiving strategies proposed by Knowles, Corne and Fleischer [87]. Par-
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ent selection is performed at random, whereas the survival selection mecha-
nism relies on a (µ+1) scheme. The core idea of this algorithm is to integrate
new solutions into the population if replacing a member of the population
increases the hypervolume covered by the entire population. SMS-EMOA
ranks the population according to NSGA-II, and the density estimator cor-
responds to the hypervolume contribution. At each iteration, the individual
belonging to the worst rank and having the lowest hypervolume contribution
is removed from the population. It is worth mentioning that the hypervo-
lume contribution is calculated only when there is more than one solution
having the worst rank. Additionally, an important feature of SMS-EMOA
is that it is independent of the choice of the reference point and the scaling
of the objectives. Also, it is guaranteed that the covered hypervolume of a
population cannot decrease through iterations. SMS-EMOA is considered
one of the most effective MOEAs for generating high-quality solutions.

3.4.3 Reference Point-based Methods

These methods guide the population towards a set of predefined reference
points, ensuring diversity. Therefore, they are usually coupled with other
strategies to achieve convergence, such as Pareto dominance. The reference
points can either be supplied by the user or predefined in a structured man-
ner by some method. A popular choice is the approach proposed by Das
and Dennis in [82] (note that this is the same method for generating the
weights in MOEA/D), in which the reference points are equally spaced on a
normalized hyper-plane. There are several representative algorithms of this
category (see for example [75]).

The most representative MOEA within this group is the Non-dominated
Sorting Genetic Algorithm III (NSGA-III). This algorithm was proposed by
Deb and Jain [89], and it is an extension of NSGA-II specifically designed
to deal with many-objective optimization problems. NSGA-III still uses the
non-dominated sorting algorithm for ranking the population. However, the
crowding distance is replaced by a niching strategy that requires a set of ref-
erence points, which are adaptively updated according to the extent of the
population. In NSGA-III, the population is normalized and associated with
the lines passing through the origin and the reference points. Those individ-
uals having the closest perpendicular distance to segregated lines are chosen
for the next generation. Unlike NSGA-II, the parent selection is conducted
by random sampling. Experimental results have shown that this approach
can be used for solving problems having up to 15 objectives, outperforming
MOEA/D.
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3.5 Applications

Today, there exists a very important volume of applications of MOEAs in a
wide variety of domains, including robotics [90], design and manufacture [91]
scheduling [92], chemistry [93] physics [94] and medicine [95] among many
others.

4 Conclusions

This chapter has provided the fundamentals on the use of evolutionary al-
gorithms in optimization (both for single-objective and for multi-objective
problems).

The chapter is divided in two parts. In the first part, a short description
of the four most important evolutionary algorithms and their use in single-
objective optimization is provided, together with their components and some
of their applications. In the second part, a short introduction to multi-
objective optimization and the most representative evolutionary algorithms
developed for solving such problems is provided. The discussion includes a
small taxonomy of approaches and some sample applications.

5 List of Further Reading

For more information on evolutionary optimization in general, see:

• Dan Simon, “Evolutionary Optimization Algorithms. Biologically In-
spired and Population-Based Approaches to Computer Intelligence”,
Wiley, New Jersey, USA, 2013, ISBN 978-0-470-93741-9.

• Patrick Siarry and Zbigniew Michalewicz (Editors), Advances in Meta-
heuristics for Hard Optimization, Springer, Berlin, Germany, 2007,
ISBN 978-3-540-72959-4.

For more information on multi-objective optimization using evolutionary
algorithms, see:

• Carlos A. Coello Coello, Gary B. Lamont and David A. Van Veld-
huizen, “Evolutionary Algorithms for Solving Multi-Objective Pro-
blems”, Second Edition, Springer-Verlag, New York, USA, September
2007, ISBN 978-0-387-33254-3.

• Slim Bechikh, Rituparna Datta and Abhishek Gupta (Editors), “Re-
cent Advances in Evolutionary Multi-objective Optimization”, Springer
International Publishing, Switzerland, 2017, ISBN 978-3-319-42977-9.
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Abbreviations

CMA-ES Covariance Matrix Adaptation Evolution Strategy

EA Evolutionary Algorithm

EP Evolutionary Programming

ES Evolution Streategies

GA Genetic Algorithm

MOEA Multi-objective Evolutionary Algorithm

MOEA/D Multi-Objective Evolutionary Algorithm based on Decomposi-
tion

MOGA Multi-Objective Genetic Algorithm

MOP Multi-objective Optimization Problem

NBI Normal Boundary Intersection

NPGA Niched-Pareto Genetic Algorithm

NSGA Non-dominated Sorting Genetic Algorithm

PAES Pareto Archived Evolution Strategy

SMS-EMOA S Metric Selection Evolutionary Multi-objective Algorithm

SPEA Strength Pareto Evolutionary Algorithm

VEGA Vector Evaluated Genetic Algorithm
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March 2005. Springer. Lecture Notes in Computer Science Vol. 3410.

[89] K. Deb and H. Jain. An Evolutionary Many-Objective Optimization
Algorithm Using Reference-Point-Based Nondominated Sorting Ap-
proach, Part I: Solving Problems With Box Constraints. IEEE Trans-
actions on Evolutionary Computation, 18(4):577–601, Aug 2014.

[90] Dan Zhang and Zhen Gao. Forward kinematics, performance analysis,
and multi-objective optimization of a bio-inspired parallel manipula-
tor. Robotics and Computer-Intregrated Manufacturing, 28(4):484–492,
August 2012.

[91] C. Senthilkumar, G. Ganesan, and R. Karthikeyan. Parametric op-
timization of electrochemical machining of Al/15% SiC(p) composites
using NSGA-II. Transactions of Nonferrous Metals Society of China,
21(10):2294–2300, October 2011.

42



[92] Arnaud Liefooghe, Matthieu Basseur, Jeremie Humeau, Laetitia Jour-
dan, and El-Ghazali Talbi. On optimizing a bi-objective flowshop
scheduling problem in an uncertain environment. Computers & Math-
ematics with Applications, 64(12):3747–3762, December 2012.

[93] Clare Levene, Elon Correa, Ewan W. Blanch, and Royston Goodacre.
Enhancing surface enhanced raman scattering (sers) detection of pro-
pranolol with multiobjective evolutionary optimization. Analytical
Chemistry, 84(18):7899–7905, September 18 2012.

[94] Vicent Romero-Garcia, Juan Vicente Sanchez-Perez, and Luis Miguel
Garcia-Raffi. Molding the Acoustic Attenuation in Quasi-Ordered
Structures: Experimental Realization. Applied Physics Express, 5(8),
August 2012. Article number 087301.

[95] Fernando Jimenez, Gracia Sanchez, and Jose M. Juarez. Multi-
Objective Evolutionary Algorithms for Fuzzy Classification in Survival
Prediction. Artificial Intelligence in Medicine, 60(3):197–219, March
2014.

43


