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Abstract

In this chapter, we provide a general overview of evolution-
ary multi-objective optimization, with a particular emphasis
on the algorithms in current use. Several applications of these
algorithms in chemical engineering are also discussed and an-
alyzed. We also provide some additional information about
public-domain resources available for those interested in pur-
suing research in this area. In the final part of the chapter,
some potential areas for future research in this area are briefly
described.
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1.1 Introduction

The solution of problems having two or more (normally conflicting) objec-

tives has become very common in the last few years, within a wide variety of

disciplines. Such problems are called “multi-objective”, and can be solved

using either mathematical programming techniques (Miettinen, 1999) or

using metaheuristics (Coello Coello et al., 2002). In either case, normally
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the concept of Pareto optimality is adopted. When using this concept, we

aim to obtain the best possible trade-offs among all the objectives.

From the many metaheuristics available, evolutionary algorithms (EAs)

have become very popular because of their ease of implementation and high

effectiveness. EAs are based on an emulation of the natural selection mech-

anism (Goldberg, 1989). EAs are particularly suitable for solving multi-

objective problems because of their ability to handle a set of solutions in a

simultaneous manner, and their capability to deal with problems of differ-

ent types, without requiring any specific problem-domain information (e.g.,

derivatives) (Deb, 2001).

The first multi-objective evolutionary algorithms (MOEAs) were intro-

duced in the 1980s (Schaffer, 1985), but they only became popular until

the mid-1990s. Nowadays, the use of MOEAs in all disciplines has be-

come widespread (see for example (Coello Coello and Lamont, 2004)), and

chemical engineering is, by no means, an exception.

This chapter provides a short introduction to MOEAs, which is pre-

sented from a historical perspective. It also reviews some of the most rep-

resentative work regarding their use in chemical engineering applications.

Finally, it provides a short description of some of the main Internet re-

sources currently available for those interested in pursuing research in this

area.

The rest of this chapter is organized as follows. Section 1.2 presents

some basic concepts related to multi-objective optimization (MOO), which

aim to make this chapter self-contained. In Section 1.3, we describe the

early MOEAs developed from the mid-1980s up to the late 1990s. Sec-

tion 1.4 describes the major modern MOEAs in current use. Section 1.5

provides a short introduction regarding the use of MOEAs in chemical

engineering. Then, in Section 1.6, some of the most significant MOEAs

that were originated in the chemical engineering literature are described.

Section 1.7 focuses on chemical engineering applications that rely on well-

known MOEAs. Section 1.8 presents some of our final remarks regarding

the application of MOEAs in chemical engineering applications, based on

the papers reviewed in this chapter. Some additional resources available

for those interested in this area are briefly discussed in Section 1.9. In Sec-

tion 1.10, we present some potential paths for future research in this area.

Finally, our conclusions are provided in Section 1.11.
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1.2 Basic Concepts

We are interested in the solution of MOO problems (MOOPs) of the form:

minimize [f1(~x), f2(~x), . . . , fk(~x)] (1.1)

subject to the m inequality constraints:

gi(~x) ≤ 0 i = 1, 2, . . . , m (1.2)

and the p equality constraints:

hi(~x) = 0 i = 1, 2, . . . , p (1.3)

where k is the number of objective functions fi : R
n → R. We call ~x =

[x1, x2, . . . , xn]
T

the vector of decision variables. We wish to determine from

among the set F of all vectors which satisfy (1.2) and (1.3) the particular set

of values x∗1, x
∗

2, . . . , x
∗

n which yield the optimum values of all the objective

functions.

1.2.1 Pareto optimality

The most commonly notion of optimality adopted in multiobjetive opti-

mization is the so-called Pareto optimality (Pareto, 1896).

We say that a vector of decision variables ~x∗ ∈ F is Pareto optimal

if there does not exist another ~x ∈ F such that fi(~x) ≤ fi(~x
∗) for all

i = 1, . . . , k and fj(~x) < fj(~x
∗) for at least one j.

In words, this definition says that ~x∗ is Pareto optimal if there exists

no feasible vector of decision variables ~x ∈ F which would decrease some

criterion without causing a simultaneous increase in at least one other crite-

rion. Unfortunately, this concept almost always gives not a single solution,

but rather a set of solutions called the Pareto optimal set. The vectors ~x∗

correspoding to the solutions included in the Pareto optimal set are called

nondominated. The image of the Pareto optimal set under the objective

functions is called Pareto front.

1.3 The Early Days

Apparently, Rosenberg’s PhD thesis (Rosenberg, 1967) contains the first

reference regarding the possible use of an evolutionary algorithm in a
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MOOP. Rosenberg suggests the use of multiple properties (nearness to some

specified chemical composition) in his simulation of the genetics and chem-

istry of a population of single-celled organisms. This is then, a MOOP.

However, Rosenberg’s actual implementation contained a single property.

Thus, no actual multi-objective evolutionary algorithm (MOEA) is devel-

oped in his thesis.

Despite the existence of an early paper by Ito et al. (1983), the first

actual implementation of a MOEA is normally attributed to David Schaffer,

who developed the Vector Evaluated Genetic Algorithm (VEGA) in the

mid-1980s (Schaffer, 1985). VEGA was designed to solve machine learning

problems.

During the period from the mid-1980s up to the first half of the 1990s,

few other MOEAs were developed. Most of these approaches had a clear in-

fluence of the mathematical programming techniques developed within the

operations research community and their implementations were straight-

forward, since they required very few (and simple) changes in the original

structure of their underlying EAs.

In his famous book on genetic algorithms, Goldberg (1989), analyzes

VEGA, and indicates its main limitations. Goldberg also proposes a rank-

ing scheme based on Pareto optimality. Such mechanism, which was called

Pareto ranking would soon become standard within modern MOEAs. The

basic idea of Pareto ranking is to find the set of individuals in the population

that are Pareto nondominated with respect to the rest of the population.

These individuals are then assigned the highest rank and eliminated from

further contention. Another set of individuals which are nondominated with

respect to the remainder of the population is then determined and these

individuals are assigned the next highest rank. This process continues until

the population is suitably ranked. Goldberg also suggested the use of some

kind of diversification technique to keep the EA from converging to a sin-

gle Pareto optimal solution. A niching mechanism such as fitness sharing

(Goldberg and Richardson, 1987) was suggested for this sake. Three major

MOEAs would soon be developed based on these ideas. Each of them is

briefly described next.

Fonseca and Fleming (1993) proposed the Multi-Objective Genetic

Algorithm (MOGA), which soon became a very popular MOEA, because

of its effectiveness and ease of use. In MOGA, the rank of an individual

corresponds to the number of chromosomes in the current population by

which it is dominated. Consider, for example, an individual xi at generation

t, which is dominated by p
(t)
i individuals in the current generation.
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The rank of an individual is given by (Fonseca and Fleming, 1993):

rank(xi, t) = 1 + p
(t)
i (1.4)

All nondominated individuals are assigned rank 1, while dominated ones

are penalized according to the population density of the corresponding re-

gion to which they belong. An interesting aspect of MOGA, is that the

ranking of the entire population is done in one pass, instead of having

to reclassify the same individuals several times (as suggested by Goldberg

(1989)).

Srinivas and Deb (1994) proposed the Nondominated Sorting Ge-

netic Algorithm (NSGA) which is based on several layers of classifica-

tions of the individuals as suggested by Goldberg (1989). Before selection

is performed, the population is ranked on the basis of nondomination: all

nondominated individuals are classified into one category (with a dummy

fitness value, which is proportional to the population size, to provide an

equal reproductive potential for these individuals). To maintain the di-

versity of the population, fitness sharing is applied to these classified in-

dividuals using their dummy fitness values. Then this group of classified

individuals is ignored and another layer of nondominated individuals is con-

sidered. The process continues until all individuals in the population are

classified. Stochastic remainder proportional selection is adopted for this

technique. Since individuals in the first front have the maximum fitness

value, they always get more copies than the rest of the population.

Horn et al. (1994) proposed the Niched-Pareto Genetic Algorithm

(NPGA), which uses a tournament selection scheme based on Pareto domi-

nance. The basic idea of the algorithm is the following: Two individuals are

randomly chosen and compared against a subset from the entire population

(typically, around 10% of the population). There are only two possible out-

comes: (1) one of them is dominated (by the individuals randomly chosen

from the population) and the other is not; in this case, the nondominated

individual wins. The second possible outcome is that the two competi-

tors are either dominated or nondominated (i.e., there is a tie); in that

case, the result of the tournament is decided through fitness sharing (Gold-

berg and Richardson, 1987). Since the NPGA does not rank the entire

population, but only a sample of it, it is more efficient (algorithmically)

than MOGA and the NSGA. The few comparative studies among these 3

MOEAs (MOGA, NPGA, and NSGA) performed during the mid and late

1990s, indicated that MOGA was the most effective and efficient approach,
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followed by the NPGA and by the NSGA (in a distant third place) (Van

Veldhuizen, 1999). MOGA was also the most popular MOEA of its time,

mainly within the automatic control community.

1.4 Modern MOEAs

During the mid-1990s, several researchers considered a notion of elitism in

their MOEAs (Husbands, 1994). Elitism in a single-objective EA consists

on retaining the best individual from the current generation, and passing it

intact (i.e., without being affected by crossover or mutation) to the following

generation. In MOO, elitism is not straightforward, since all the Pareto

optimal solutions are equally good and, in theory, all of them should be

retained.

Elitism was not emphasized (or even considered) in the early MOEAs

described in the previous section. It was until the late 1990s, when elitism

in the context of MOO was taken seriously. This was due to two main

factors: the first was the proof of convergence of a MOEA developed

by Rudolph (1998), which requires elitism. The second was the publica-

tion of the Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler

and Thiele, 1999) in the IEEE Transactions on Evolutionary Computation,

which became a landmark in the field.

SPEA was conceived as a way of integrating different MOEAs. It incor-

porates elitism through the usage of an archive containing nondominated

solutions previously found (the so-called external nondominated set). At

each generation, nondominated individuals are copied to the external non-

dominated set. For each individual in this external set, a strength value is

computed. This strength is similar to the ranking value of MOGA (Fonseca

and Fleming, 1993), since it is proportional to the number of solutions to

which a certain individual dominates. In SPEA, the fitness of each mem-

ber of the current population is computed according to the strengths of all

external nondominated solutions that dominate it. The fitness assignment

process of SPEA considers both closeness to the true Pareto front and even

distribution of solutions at the same time. Thus, instead of using niches

based on distance, Pareto dominance is used to ensure that the solutions

are properly distributed along the Pareto front. Although this approach

does not require a niche radius, its effectiveness relies on the size of the

external nondominated set. In fact, since the external nondominated set

participates in the selection process of SPEA, if its size grows too large, it
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might reduce the selection pressure, thus slowing down the search. Because

of this, the authors decided to adopt a clustering technique that prunes the

contents of the external nondominated set so that its size remains below a

certain threshold.

After the publication of SPEA’s paper, most researchers in the field

started to incorporate external populations in their MOEAs, as their eli-

tist mechanism. In 2001, a revised version of SPEA (called SPEA2) was

introduced. SPEA2 has three main differences with respect to its prede-

cessor (Zitzler et al., 2001): (1) it incorporates a fine-grained fitness as-

signment strategy which takes into account for each individual the number

of individuals that dominate it and the number of individuals by which it

is dominated; (2) it uses a nearest neighbor density estimation technique

which guides the search more efficiently, and (3) it has an enhanced archive

truncation method that guarantees the preservation of boundary solutions.

The Pareto Archived Evolution Strategy (PAES) is another major

MOEA that was introduced at about the same time that SPEA (Knowles

and Corne, 2000). PAES consists of a (1+1) evolution strategy (i.e., a single

parent that generates a single offspring) in combination with a historical

archive that records the nondominated solutions previously found. This

archive is used as a reference set against which each mutated individual is

being compared. Such a historical archive is the elitist mechanism adopted

in PAES. However, an interesting aspect of this algorithm is the procedure

used to maintain diversity which consists of a crowding procedure that

divides objective space in a recursive manner. Each solution is placed in

a certain grid location based on the values of its objectives (which are

used as its “coordinates” or “geographical location”). A map of such grid

is maintained, indicating the number of solutions that reside in each grid

location. Since the procedure is adaptive, no extra parameters are required

(except for the number of divisions of the objective space).

The Nondominated Sorting Genetic Algorithm II (NSGA-II) was

introduced as an upgrade of the NSGA (Srinivas and Deb, 1994), although

it is easier to identify their differences than their similarities (Deb et al.,

2002). In the NSGA-II, for each solution one has to determine how many

solutions dominate it and the set of solutions to which it dominates. The

NSGA-II estimates the density of solutions surrounding a particular solu-

tion in the population by computing the average distance of two points

on either side of this point along each of the objectives of the problem.

This value is the so-called crowding distance. During selection, the NSGA-

II uses a crowded-comparison operator which takes into consideration both
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the nondomination rank of an individual in the population and its crowding

distance (i.e., nondominated solutions are preferred over dominated solu-

tions, but between two solutions with the same nondomination rank, the

one that resides in the less crowded region is preferred). The NSGA-II does

not implement an elitist mechanism based on an external archive. Instead,

the elitist mechanism of the NSGA-II consists of combining the best parents

with the best offspring obtained. Due to its clever mechanisms, the NSGA-

II is much more efficient (computationally speaking) than its predecessor,

and its performance is so good, that it has gained a lot of popularity in the

last few years, becoming a landmark against which other MOEAs are often

compared.

Many other MOEAs exist (see for example (Coello Coello et al., 2002)),

but they will not be discussed due to obvious space limitations. In any

case, the MOEAs previously discussed are among the most popular within

the current literature.

1.5 MOEAs in Chemical Engineering

A wide variety of techniques have been used to solve MOOPs in chemical

engineering, including mathematical programming techniques (e.g., goal

programming and the ε-constraint method) and MOEAs. This chapter

only focuses on MOEAs, but readers interested in the first type of methods

should refer to Bhaskar et al. (2000) for a review. It is worth noting,

however, that since the late 1990s, MOEAs seem to be the preferred choice

of practitioners to tackle MOO chemical engineering applications.

After reviewing the relevant literature, we found two types of papers:

(1) Those focusing on novel MOEAs or MOEA components.

(2) Those focusing on novel applications using an existing MOEA.

Section 1.6 briefly describes the most significant MOEAs that originated

in the chemical engineering literature. For each algorithm, we mention

some of their known applications and their advantages and disadvantages.

Section 1.7, on the other hand, presents a selection of some representative

MOO applications in chemical engineering that make use of well-known

MOEAs. This selection is not meant to be exhaustive but attempt to

delineate the current research trends in the area.
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1.6 MOEAs Originated in Chemical Engineering

As indicated before, this section is devoted to review works whose main goal

is to propose a new MOEA (or an important component of it). Among these

novel contributions we can find, for instance, an evolutionary operator, a

constraint-handling technique and a proposal to extend a single objective

technique in order to deal with multiple objectives. It is important to

emphasize that all of the MOEAs discussed in this section originated in

the chemical engineering community and have been mainly used to solve

chemical engineering problems, although most of them are applicable to

other domains.

1.6.1 Neighborhood and Archived Genetic Algorithm

Sheng-jing et al. (2003) proposed the Neighborhood and Archived Genetic

Algorithm (NAGA), whose main goals are to provide (i) a new method

to check for nondominance and (ii) a new technique to keep diversity in

the Pareto front produced by the algorithm. In order to fulfill these goals,

NAGA carries out neighborhood comparisons. The procedure to check for

nondominance in the current population is divided in two stages. First,

each new solution is locally compared to its neighbors. If the solution is

locally dominated, then it is discarded since it will be globally dominated

as well. On the other hand, if it is locally nondominated, then the solution

is retained for the second stage. At this stage, only the locally nondom-

inated solutions are compared with the current approximation set stored

in a historical archive, using Pareto dominance again. After checking for

nondominance, the new nondominated solutions are compared again using

a crowding neighborhood process aimed to keep diversity. The implemen-

tation described by Sheng-jing et al. (2003) only considers one neighbor for

each solution x, namely the point resulting from a small perturbation in

only one variable of x.

Regarding the crowding neighborhood process, if a new nondominated

solution, x, is in the neighborhood of some solution xP in the archive, i.e.,

if xi ∈ [x
(j)
i − ε, x

(j)
i + ε], for each variable i and each archive solution j,

then the solution is discarded; otherwise, it is added to the archive. The

parameter ε is defined by ε = d × (xU
i − xL

i ), where d is a user-defined

parameter, and xU
i and xL

i are the upper and lower bounds of the i-th

variable, respectively. Although, on average, the time required to identify

the nondominated solutions is reduced in comparison with the standard



August 15, 2007 22:32 World Scientific Book - 9in x 6in chapter-jaimes-final

10Multi-Objective Optimization: Techniques and Applications in Chemical Engineering

Pareto ranking approach, the neighborhood comparisons introduce an extra

evaluation of the objective functions per each individual. That is to say,

the number of evaluations per generation is doubled with respect to the

standard Pareto ranking approach. This is an important drawback of this

approach, particularly in chemical engineering applications where the time

required to evaluate the objective functions is usually high. This is, with no

doubt, an important issue that must be taken into account before deciding

to adopt NAGA in an application.

Applications

NAGA was used by Sheng-jing et al. (2004) to optimize the operation of

a purified terephthalic acid oxidation process. Here, they consider two

objectives: minimization of the concentration of 4-carboxy-benzaldehyde

(4-CBA) in the crude terephthalic acid and maximization of the feed flow

rate of the reactor vector. They consider four optimization problems ac-

cording to the number of decision variables used (1, 2, 4 and 6 variables).

The problem has 2 constraints. The plot of the Pareto front obtained pre-

sented a convex and continuous curve.

Recently, Weifeng et al. (2007) used NAGA to maximize the aromatic

yield and minimize the yield of heavy aromatics in an industrial naph-

tha continuous catalytic reforming process (that aims to obtain aromatic

products). The authors considered six decision variables: four reactor inlet

temperatures, the reactor pressure and the hydrogen-to-oil molar ratio. As

in the previous problem, they obtained a Pareto front which is convex and

continuous.

1.6.2 Criterion Selection MOEAs

Dedieu et al. (2003) proposed an algorithm that can be considered as a

criterion selection technique (Coello Coello et al., 2002). That is to say,

an algorithm where the solutions are selected based on separate objective

performance. The main idea is to optimize separately each objective us-

ing a single objective genetic algorithm (SOGA). At the end of the single

optimizations, the populations are merged to obtain the nondominated in-

dividuals. The authors proposed a variant where all populations generated

through all generations of the SOGAs are merged. It is interesting to note

that the proposed optimization algorithm was coupled with a discrete event

simulator (DES), which was used to evaluate the different objectives and
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the technical feasibility of the proposed solutions. A detailed description

of the DES used can be found in (Bernal-Haro et al., 2002). Since in this

case, the objective functions are not defined explicitly, this makes this kind

of application an excellent candidate to be solved by an evolutionary algo-

rithm which, in contrast to gradient-based techniques, only needs objective

function evaluations. As pointed out by Dietz et al. (2006), a drawback of

this approach is that it is not able to produce a good distribution of solu-

tions along the Pareto front, since it focuses on finding only a few solutions

around the optima of each objective considered separately.

In a further paper, Dietz et al. (2006) proposed an approach similar

to VEGA (Schaffer, 1985) in order to overcome the disadvantages of the

previous proposal. In this new algorithm, k subpopulations of the whole

population are ranked and selected according to a different objective (as-

suming k objective functions). After shuffling the subpopulations together,

the crossover and mutation operators are applied in the usual way. This

procedure is repeated until the stopping criterion is reached. At the end of

the search, a procedure to check dominance is applied to obtain the Pareto

set approximation. This algorithm showed a generated Pareto front with

better distribution than that of its predecessor.

Applications

The first algorithm (i.e., the one proposed in (Dedieu et al., 2003)) was

applied to optimize the design of a multi-objective batch plant for manu-

facturing four products by using three types of equipment. The problem

considers two objectives: minimization of both the investment cost of the

plant and the number of sizes for each unit operation. The second algo-

rithm (i.e., the one proposed in (Dietz et al., 2006)) was used to optimize

the design of a multi-product batch plant for the production of proteins (hu-

man insulin, vaccine for Hepatitis B, chymosine and cryophilic protease).

This combinatorial problem presents three objectives, the investment cost

and two objectives concerning the environmental impact (total biomass

quantity released and volume of polyethylene glycol used), and 44 decision

variables: 16 continuous variables (operating conditions) and 28 integer

variables (batch plant configuration). The cost objective involves invest-

ment cost for both equipment and storage vessels, whereas the evaluation

of environmental impact combines three methodologies, namely, the life

cycle assessment, the pollution balance principle and the pollution vector

methodology. The study considers one problem using the three objectives
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mentioned above and two bicriteria problems (alternating the environmen-

tal objective).

1.6.3 The Jumping Gene Operator

Kasat and Gupta (2003) proposed two new binary mutation operators

whose main goal is to accelerate the convergence of the search in terms

of the number of generations. These operators, called jumping genes (JG),

are the following: (i) replacement operator, where a randomly selected l-

length substring of the chromosome is replaced by a new string with length

l generated at random; and (ii) reversion operator, where a randomly se-

lected substring is reversed. The JG operator is applied to a fraction Pjump

of the current population after the mutation phase. In order to evaluate

the performance of the JG operators, the authors used the NSGA-II (Deb

et al., 2002). According to their results, the reversion operator yields simi-

lar results than those obtained by NSGA-II without the proposed operator.

However, the results of NSGA-II with the replacement operator (NSGA-II-

JG) outperform those obtained by the standard NSGA-II. In the three test

problems considered and based on visual inspections, NSGA-II-JG showed

better convergence and distribution than NSGA-II.

Guria et al. (2005) proposed an adaptation of the JG operators aimed

to solve network problems like the design of froth flotation circuits (dis-

cussed below). In network or circuit optimization problems, usually the

optimal configuration includes variable values exactly at their lower or up-

per bounds. The modified jumping gene operator (mJG) takes this pe-

culiarity into account and does not select a substring at random, but a

substring associated to one of the variables (i.e., a gene). The gene se-

lected is then replaced by a new gene that contains all zeros or all ones in

accordance with a certain probability.

It is noteworthy that the JG operator has also been successfully in-

corporated into a Multi-objective Simulated Annealing technique. This

algorithm was employed in the optimization of an industrial fluized-bed

catalytic cracking unit and the performance assessment included three well-

known test problems commonly used in the evolutionary MOO field.

Applications

Kasat and Gupta (2003) used the JG operator in the optimization of an

industrial fluized-bed catalytic cracking unit. The objectives considered
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are the maximization of the yield of gasoline and the minimization of the

coked formed on the catalyst during the cracking of heavy compounds. The

decision variables included the feed preheat temperature, the air preheat

temperature, the catalyst flow rate, and the air flow rate. The CPU time

required for running the NSGA-II-JG for 50 generations on a Pentium IV,

1.7 MHz PC was 48 hours. In order to evaluate the performance of the algo-

rithm, the optimization problem was also solved using sequential quadratic

programming (SQP) with the ε-constraint method. According to the re-

sults obtained using six different values of ε, SQP failed to converge to the

correct solution.

The modified JG (mJG) operator was used by Guria et al. (2005) to

optimize the design of froth flotation circuits for mineral processing. In par-

ticular, they optimized a circuit with two flotation cells and two species.

This problem involves the maximization of the recovery (ratio of the flow

rates of the solid in the concentrate stream to that in the feed stream)

and maximization of the grade (the fraction of the valuable mineral in the

concentrate stream). The problem comprises 16 decision variables, namely,

14 cell linkage parameters and 2 mean residence times. The problem con-

tains 3 constraints related to the streams and 1 constraint related to the

total volume of the cells. Recently, Guria et al. (2006) applied the mJG

operator to optimize circuits with more than two cells and also consider-

ing problems with three and four objectives. A three-objective problem

(maximization of the overall recovery of the concentrate, maximization of

the number of non-linking streams and minimization of the total cell vol-

ume) is then solved. All the problems constrain the grade of the product

to lie at a fixed value. Finally, a complex and computationally intensive

four-objective optimization problem is solved.

1.6.4 Multi-Objective Differential Evolution

Differential evolution (DE) is a branch of evolutionary algorithms developed

by Storn and Price (1997) for optimization problems over continuous do-

mains. DE is characterized by representing the variables by real numbers

and by its three-parents crossover. At the selection stage, three parents

are chosen and they generate a single offspring by adding the weighted

difference vector between two parents to a third parent. The offspring is

compared with a parent to determine who passes to the following genera-

tion. DE has been very successful in the solution of a variety of continuous

single-objective optimization problems in which it has shown a great ro-
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bustness and a very fast convergence. Recently, there have been several

proposals to extend DE to MOO (Robič and Filipič, 2005). This section is

devoted to present one of these extensions which has been used mainly to

solve chemical engineering applications. The Multi-Objective Differential

Evolution algorithm (MODE) was proposed by Babu and Jehan (2003). Its

general framework is very similar to that of the standard DE. The main

differences are: (i) the F parameter is generated from a random generator

between 0 and 1; (ii) only the nondominated solutions are retained for re-

combination; (iii) the generated offspring is placed into the population if

it dominates the first selected parent; and (iv) the constraints are handled

using a penalty function approach.

Applications

MODE was used by Babu et al. (2005) to optimize the operation of an

adiabatic styrene reactor. This work concerns a comparative study between

the performance of MODE and the results of NSGA reported in a previous

paper (Yee et al., 2003). This application is described in Section 1.7.3. For

comparative purposes, this study adopts the same formulation used by Yee

et al. (2003). That is to say, the objectives are productivity, selectivity

and yield of styrene; the variables are ethyl benzene feed temperature,

pressure, steam over reactant ratio and initial ethyl benzene flow rate; and

two constraints are also considered.

On the one hand, the results obtained by MODE agreed with those

obtained by the NSGA, in particular the behavior of the variables in the

Pareto optimal set. On the other hand, based on visual inspections, it

was revealed that, in some cases, the Pareto fronts obtained by MODE

were better than those obtained by NSGA, while in other cases the Pareto

fronts seemed nearly identical (no performance indicators were adopted in

this case).

1.7 Some Applications Using Well-known MOEAs

The aim of this section is to present a selection of MOO chemical engineer-

ing applications that were solved using a well-known MOEA (e.g., MOGA

(Fonseca and Fleming, 1993) or NSGA-II (Deb et al., 2002)) with some

small adaptations suitable to the given application. We also found that

some authors developed their own approaches based on mechanisms of ex-

isting MOEAs (for example, the nondominated sorting mechanism of the
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NSGA-II (Deb et al., 2002)).

The applications treated in this section are divided in four types:

(1) TYPE I: Related to polymerization processes.

(2) TYPE II: Involve catalytic reactors.

(3) TYPE III: Related to catalytic processes.

(4) TYPE IV: General applications.

As we will see later on, in some cases, more than one work was found

to address the same application.

1.7.1 TYPE I: Optimization of an Industrial Nylon 6

Semibatch Reactor

Mitra et al. (1998) employed the NSGA (Srinivas and Deb, 1994) to op-

timize the operation of an industrial nylon 6 semibatch reactor. The two

objectives considered in this study were the minimization of the total reac-

tion time and minimization of the concentration of undesirable cyclic dimer

in the polymer produced. The problem involves two equality constraints:

one to ensure a desired degree of polymerization and the other to ensure

a desired value of monomer conversion. The former was handled using a

penalty function approach whereas the latter was used as a stopping crite-

rion of the integration of the model equations. The decision variables were

the vapor release rate history from the semibatch reactor and the jacket

fluid temperature. It is important to note that the former variable is a

function of time. Therefore to encode it properly as a sequence of variables,

the continuous rate history was discretized into several equally spaced time

points. The experimental study showed that NSGA solutions were superior

to the solutions obtained by the Pontryagin’s minimum principle.

1.7.2 TYPE I: Optimization of an Industrial Ethylene Re-

actor

Tarafder et al. (2005b) applied the NSGA-II (Deb et al., 2002) to study

an industrial ethylene reactor following a MOO approach. The authors

selected a free-radical mechanism to model the reactor. Three objectives

were considered in this study, namely ethane conversion, ethylene selectivity

and flow rate of ethylene. From these objectives four maximization prob-

lems were formulated. First, a bi-objective optimization problem including

ethane conversion and ethylene selectivity since these objectives had a con-
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flicting behavior. Further, the flow rate, which depends on conversion and

selectivity was included in two bi-objective problems: flow rate–conversion

and flow rate–selectivity. Finally a three-objective problem was formulated

including all three objectives. The problem involved 9 decision variables

(7 continuous and 2 discrete). In order to verify the quality of the ob-

tained Pareto front, an ε-constraint method was applied to generate some

solutions in the middle and in the extreme of the non-convex front. The

results showed these solutions lie on the pareto front obtained by NSGA-

II. Furthermore, the results obtained by NSGA-II were compared, in all

cases, with the industrial solution predicted. According to the results, the

industrial data solution was dominated by some NSGA-II solutions in all

the optimization problems.

1.7.3 TYPE II: Optimization of an Industrial Styrene Re-

actor

Yee et al. (2003) make use of the original NSGA (Srinivas and Deb, 1994) to

optimize both adiabatic and steam-injected styrene reactors. The reactor

model employed was a pseudo-homogeneous model. This study comprises

three objectives: maximization of the amount of styrene produced, max-

imization of selectivity of styrene and maximization of yield of styrene.

Two- and three-objective optimization problems are studied using combi-

nations from these objectives. The variables for the adiabatic configuration

are ethyl benzene feed temperature, inlet pressure, steam to ethyl benzene

molar ratio and initial ethyl benzene flow rate. The problem considers

three constraints related to temperatures which are handled using penalty

functions. According to the plot of the Pareto front obtained, in two of

the bi-objective cases the solutions obtained by NSGA are better than the

known industrial operation point. For the rest of the cases, the industrial

operation point seems to lie on the Pareto front. Concerning the adiabatic

configuration, one of the most interesting findings of this study is that in

all the bi-objective problems only one variable changes while the others

remain nearly constant. Additionally, the results confirm that the steam

injection is better than the adiabatic operation. In a further paper, Tarafder

et al. (2005a) carried out the optimization of the entire styrene manufac-

turing process, which besides the styrene monomer reactor, includes the

heat-exchangers and the separation units. Instead of adopting the original

NSGA, in this case the more recent NSGA-II is used (Deb et al., 2002).

In this study, three objectives are considered: the maximization of styrene
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production, maximization of selectivity of styrene and the minimization of

the total heat duty. This last objective reduces the emission of gases such as

COx, SOx and NOx to the environment. Apart from the four variables in-

cluded in the previous work, four more variables are added. Although three

different reactor designs are studied (single bed, double bed and stream in-

jection), only the double bed reactor was considered for the three-objective

optimization. The problem comprises six constraints which are handled

using the technique already incorporated in the NSGA-II. According to the

authors, this approach achieved better results than those obtained by the

penalty function approach.

1.7.4 TYPE II: Optimization of an Industrial Hydrocrack-

ing Unit

Bhutani et al. (2006) carried out the optimization of an industrial hydro-

cracking unit using the NSGA-II (Deb et al., 2002). Hydrocracking is a

catalytic cracking process for the conversion of feedstock into more valuable

lower boiling products. The optimization of a hydrocracking unit involves

many objectives and variables. In this study, the authors considered three

optimization problems depending, mainly, on the objectives chosen. The

first case comprises the maximization of kerosene and the minimization of

the makeup of hydrogen. The decision variables are the flow rate of feed, re-

cycle gas mass flow rate and temperature, recycle oil temperature, recycle

oil mass fraction and quench flow rates to the catalyst beds. The maxi-

mum allowable inlet and exit temperatures for the hydrocracking are taken

as the constraints. The second case considers the maximization of heavy

diesel and minimization of makeup of hydrogen. The third case involves

the maximization of high-value end products and minimization of low-value

end products. The hydrocracking unit was modeled using a discrete lumped

model approach, where the individual components in the reaction mixture

are divided into discrete pseudo-compounds (lumps). Interestingly, the

calibration of the model parameters was carried out employing a genetic

algorithm. The Pareto optimal set obtained by NSGA-II shows the conflict

between the objectives in the three cases studied. Also, the results show

that the current industrial solution is clearly dominated by the Pareto set

obtained by NSGA-II.
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1.7.5 TYPE III: Optimization of Semi-batch Reactive

Crystallization Process

Reactive crystallization is a production step for a wide range of chemi-

cal and pharmaceutical industries to produce solid particles with desirable

characteristics, such as large crystal size, narrow crystal-size distribution,

high-yield and so on. The feed flow rate of the reactants is key control

variable to improve the quality of the product crystals. Sarkar et al. (2007)

carried out the optimization of a semi-batch reactive crystallization pro-

cess using the NSGA-II (Deb et al., 2002). Since the quality of the product

crystals is usually defined by the weight mean size and coefficient variation,

the authors selected these parameters as the two objectives of the prob-

lem. The amount of reactants added at certain intervals was used as the

decision that defines the feed addition profile. In order to define a feed

profile in this way, the total time was divided into P equal-length intervals

and each of these intervals has associated an amount of reactant added.

Thus, the number of decision variables to define a feed profile is P . The

optimization problem presents three inequality constraints which are man-

aged with the constraint-handling mechanism embedded into the NSGA-II.

The particular instance of the problem studied involves the precipitation

of barium sulfate from aqueous feed stream of barium chloride and sodium

sulfate. The total batch time (180 seconds) was divided into ten intervals.

In order to verify the closeness of the obtained solutions to the true Pareto

front, some solutions are generated executing repeatedly a weighted sum

approach. Based on a visual comparison, the authors conclude that the

solutions obtained using the weighted sum approach lie near the Pareto

front obtained by the NSGA-II.

1.7.6 TYPE III: Optimization of Simulated Moving Bed

Process

Yu et al. (2003a) carried out the optimization in the design and opera-

tion of reactive simulated moving bed (RSMB) using the NSGA (Srinivas

and Deb, 1994) for the synthesis of methyl acetate (MeOAc). The model

adopted was defined by Yu et al. (2003b). The study considers three opti-

mization problems. The first problem concerns the maximization of purity

and yield of methyl acetate and has two constraints. The decision vari-

ables are the switching time and the eluent flow rate. The results showed

that the switching time plays a key role in determining the obtained Pareto
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front. The second problem is to minimize the absorbent requirement and

the eluent flow. The variables are the length of each column and the col-

umn configuration (i.e., the number of columns in each section). The last

problem involves the maximization of purity and yield of methyl acetate

and the minimization of eluent consumption.

In a previous work, Zhang et al. (2002) used a MOO approach to

compare the performance between the SMB process and a recently devel-

oped variant of SMB called the VARICOL process (Ludemann-Hombourger

et al., 2000). For comparison purposes, the authors use the same model for

the SMB and VARICOL processes developed by Ludemann-Hombourger

et al. (2000). Besides the single-optimization problem used for verification

purposes, the study considered two MOOPs. The first problem involves

the maximization of purity of both raffinate and extract streams (using

the feed flow rate and eluent compsumption as parameters). The variables

are then, the fluid flow rate in section one of the SMB system, the switch-

ing time and the column configuration. This case considers two inequality

constraints which are handled with penalty functions. The second case

involves the maximization of throughput and minimization of eluent con-

sumption. The decision variables are the same as in the last case adding

the feed flow rate and eluent consumption. This case considers two equality

constraints. The authors concluded that the performance of a VARICOL

process is superior to that of a SMB process in terms of treating more feed

using less eluent or producing better product quality for fixed productivity

and solvent consumption. Recently, Yu et al. (2005) carried out a study

that also compares the SMB and VARICOL process, but for the hydrolysis

of methyl acetate. In this study, the superiority of the VARICOL over the

SMB process is confirmed.

1.7.7 TYPE IV: Optimization of a Waste Incineration

Plant

Anderson et al. (2005) applied MOGA (Fonseca and Fleming, 1993) to

optimize the operation of a waste incineration plant. In order to guarantee

profitability and taking into account environmental concerns, the objectives

of this problem comprise, respectively, the maximization of waste feed rate

and minimization of unburnt carbon in the combustion ash. The decision

variables considered are the waste feed rate and the residence time of the

waste on the burning bed. The chamber’s temperature was chosen as a

constraint. The variant of MOGA used in this study allows the user to
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define goal values and priorities for the objectives in order to articulate

preferences (Fonseca and Fleming, 1998). This modification of MOGA

also incorporates a methodology to handle constraints-related information.

MOGA performed well in this application, since it converged (as expected)

to values of high residence time and a range of feed rate values.

1.7.8 TYPE IV: Chemical Process Systems Modelling

From the three evolutionary techniques, genetic algorithms are by far the

most commonly applied in chemical engineering. However, genetic pro-

gramming (GP) embodies a powerful technique that has a lot of potential

within chemical engineering (e.g., for modelling chemical process systems).

In this direction, Hinchliffe et al. (1998) proposed a multi-objective genetic

programming (MOGP) algorithm to model steady-state chemical process.

This technique is based on MOGA (Fonseca and Fleming, 1993) which

means that uses fitness sharing to keep diversity and the concept of prefer-

ability based on a given goal vector. This work includes two case studies:

an inferential estimator for bottom product composition in a vacuum dis-

tillation column and a model for the degree of starch gelatinization in an

industrial cooking extruder. The four objectives considered for both case

studies include: (i) root mean square error on the training data set; (ii)

residual variance, which aggregates a credit to models that produce accu-

rate approximations apart from a constant offset; (iii) correlation between

individuals and the process output; and (iv) model string length, which

helps to avoid a complex models leading to overfitting. The study com-

pares the performance of the MOGP with that of a single objective genetic

programming (SOGP) algorithm proposed in a previous work (Hinchliffe

et al., 1996). The comparison was based on the RMS error on the validation

data set and on the lengths of the models with lowest RMS error. The com-

parison involves the distribution of model prediction errors resulting from

multiple runs. In the case of the distillation column no significant differ-

ence between the distributions of SOGP and MOGP was observed neither

in RMS error nor in string length. This is due, according to the authors,

to the fact that modelling of the column data is not a particularly difficult

problem from a GP point of view. With regard to the cooking extruder,

the MOGP obtained the best minimum RMS error and the best mean

RMS value. However the distribution analysis did not reveal a significance

difference between the distributions.

In a more recent study, Hinchliffe and Willis (2003) model dynamic
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systems using genetic programming. The new approach is evaluated using

two case studies, a test system with a time delay and an industrial cooking

extruder. The objectives considered are the minimization of the root mean

square error and minimization of the correlation and autocorrelations be-

tween residuals. The residuals of a model represent the difference between

the predicted and actual values of the process output. In this work two

MOGPs are compared, one based on Pareto ranking but without prefer-

ences, and another one, also based on Pareto ranking but with goal and

priority information. From the results obtained in both case studies, the

authors conclude that the MOGP with preference information was able to

evolve a greater number of acceptable solutions than the algorithm that

used conventional Pareto ranking.

1.7.9 TYPE V: Biological and Bioinformatics Problems

Bioinformatics is the interdisciplinary field that encompasses the analysis of

large volumes of biological data to generate useful information and knowl-

edge. This knowledge can be used for applications such as drug discovery,

disease diagnosis and prognosis, and determination of the relationship be-

tween species.

Some bioinformatics problems can be formulated as MOOPs, for in-

stance the sequence alignment of DNA or protein sequences, protein struc-

ture prediction and design, and inference of gene regulatory networks, just

to mention a few. The interested reader is referred to the review of Handl

et al. (2007) that covers in detail more MOO applications in bioinformatics.

The next paragraphs describe some of the current applications in bioinfor-

matics of interest for the chemical engineering community.

Sequence and structure alignment. Malard et al. (2004) formulate

the de novo peptide identification as a constrained MOOP. The objectives

considered in the study were the maximization of the similarity between

portions of two peptides, and the maximization of the likelihood ratio be-

tween the null hypothesis and the alternative hypothesis. The algorithm

was implemented using the island parallel model, in which some subpopu-

lations evolve independently of each other although periodically individuals

migrate between neighboring islands.

Calonder et al. (2006) address the problem of identifying gene modules

on the basis of different types of biological data such as gene expression

and protein-protein interaction data. The module identifications refers to

the identification of groups of genes similar with respect to its function or
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regulation mechanism.

Protein and structure prediction. Chen et al. (2005) proposed a

method to solve the structure alignment problem for homologous proteins.

This problem can be formulated as a MOOP where the objectives are max-

imize the number of aligned atoms and minimize their distance.

Shin et al. (2005) use the controlled NSGA-II (Deb and Goel, 2001) to

generate a set of quality DNA sequences. In this study the quality of a se-

quence was achieved by minimizing four objectives: the similarity between

two sequences in the set, the possible hybridization between sequences in a

set, the continuous occurrence of the same base and the possible occurrence

of the complementary substring in a sequence.

Gene regulatory networks. Spieth et al. (2005) address the prob-

lem of finding gene regulatory networks using a evolutionary algorithm

combined with a local search method. The global optimizer is a genetic

algorithm whereas an evolutionary strategy plays the role of the local op-

timizer.

Recently, Keedwell and Narayanan (2005) combined a genetic algorithm

with a neural network to elucidate gene regulatory networks. The genetic

algorithm has the goal of evolving a population of genes, while the neural

network is used to evaluate how well the expression of the set of genes affect

the expression values of other genes.

1.8 Critical Remarks

Most of the works reviewed in Section 1.6 rely on visual inspections to

compare the generated Pareto fronts from different algorithms in order to

show which algorithm performs better. However, graphical plots have some

drawbacks for comparative purposes. One of the most serious drawbacks is

that given the stochastic nature of MOEAs, a unique graphical plot is not

enough to state that one algorithm outperforms another since in each run a

different Pareto fronts may be generated. Furthermore, even if we can state

that one algorithm is better than another using only visual inspections, it

is better to be able to determine, in a quantitative way, how much better

it is. MOEA researchers have developed a variety of performance measures

for this sake (see (Coello Coello et al., 2002; Zitzler et al., 2003) for further

information) and a more extended use of them is expected to occur in future

chemical engineering applications of MOEAs.

It is also worth indicating that the chemical engineering applications
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reviewed in this chapter tend to select a MOEA from a very reduced set

(MOGA (Fonseca and Fleming, 1993), NSGA (Srinivas and Deb, 1994) and

NSGA-II (Deb et al., 2002)). However there are many other MOEAs that

may be worth exploring: for example SPEA2 (Zitzler et al., 2001), PAES

(Knowles and Corne, 2000) and ε-MOEA (Deb et al., 2005), which have all

been successfully applied in other domains.

Finally, it is important to emphasize that comparative evaluations of

MOEAs for any application should be done based on results obtained by

the algorithms using the exact same process model, rather than based on

previously reported results (particularly when they may have been origi-

nated by different researchers). This is because of the potential (and un-

known) differences in the process models used by different researchers and

their effect on optimization results.

1.9 Additional Resources

Launched in 1998, the EMOO repository1 (Coello Coello, 2006) is one of

the main resources for those interested in pursuing research in evolutionary

MOO. The EMOO repository contains:

• Public-domain software.

• Test functions (either academic or real-world problems).

• URLs of events of interest for the EMOO community.

• Contact information of those who want to be added to the database of

EMOO researchers (name, affiliation, postal address, email, web page

and photo, if available).

As of June 2007, the EMOO repository contains:

• Over 2870 bibliographic references, which include 175 Ph.D. theses,

24 Masters theses, more than 750 journal papers and more than 1550

conference papers.

• Contact information of 66 EMOO researchers.

• Statistics of the EMOO repository.

• Public domain implementations of several MOEAs.

• Links to PISA (Bleuler et al., 2003) and ParadisEO-MOEO (Liefooghe

et al., 2007), which are modern platforms that facilitate the use and

development of MOEAs.

1The EMOO repository is located at: http://delta.cs.cinvestav.mx/~ccoello/EMOO
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1.10 Future Research

There are several potential areas of future research regarding the use of

MOEAs in chemical engineering applications. Some of them are the follow-

ing:

• Use of relaxed forms of dominance: Some researchers have pro-

posed the use of relaxed forms of Pareto dominance as a way of regulat-

ing convergence of a MOEA. Laumanns et al. (2002) proposed a relaxed

form of dominance for MOEAs called ε-dominance. This mechanism

acts as an archiving strategy to ensure both properties of convergence

towards the Pareto-optimal set and properties of diversity among the

solutions found. Several modern MOEAs have adopted the concept of

ε-dominance (see for example (Deb et al., 2005)), because of its several

advantages. Its use within chemical engineering, however, remains to

be explored.

• Incorporation of user’s preferences: Although many of the current

MOEA-related work assumes that the user is interested in generating

the entire Pareto front of a problem, in practice, normally only a small

portion (or even a few solutions) is required. The incorporation of

user’s preferences is a problem that has been long studied by operation

researchers (Figueira et al., 2005). However, relatively little work has

been done in this regard by MOEA researchers (Coello Coello, 2000;

Branke and Deb, 2005). Nevertheless, this is a topic that certainly

deserves attention from practitioners in chemical engineering.

1.11 Conclusions

This chapter has provided a brief introduction to MOEAs and their use

in chemical engineering. Both algorithms and applications have been de-

scribed and analyzed. From the review of the literature that was undertaken

to write this chapter, it became evident that chemical engineering practi-

tioners are already familiar with MOEAs, thus no attempt was made to

raise their interest any further.

Thus, this chapter has attempted to provide a critical review of the

current work done with MOEAs in chemical engineering, from a MOEA

researchers’ perspective. The intention, however, was not to minimize or

disregard the important work already done. Instead, the aim was to bring

practitioners close to the MOEA community so that both can interact and
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mutually benefit. If some of the ideas presented in this chapter are incor-

porated by chemical engineering practitioners in the years to come, we will

then know that the goals of this chapter have been fulfilled.
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