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Chapter 18 

A multi-objective teaching-learning algorithm for 
power losses reduction in power systems 

Juan M. Ramirez, Miguel A. Medina, Carlos A. Coello Coello 

Abstract The reactive power dispatch is one of the most complex problems of power systems and may 
include the simultaneous optimization of several objective functions, possibly in conflict among them. 
Hence, the optimal reactive power dispatch problem becomes a multi-objective optimization problem. 
Such kind of optimization problem has a set of possible solutions, which represent the best commitment 
among the objective functions. 
Novel methods based on meta-heuristics have become a popular choice for solving complex real world 
multi-objective optimization problems due to their flexibility, generality and ease of use. The advantages 
of evolutionary algorithms in terms of the modeling capability and excellent global search characteristics 
have encouraged their application to the reactive power dispatch problem in power systems. 
The Teaching Learning-Based Optimization (TLBO) is a population-based optimization algorithm 
suitable for solving complex problems. TLBO imitates the interaction between a teacher and her/his 
students. The global solution search process of this approach consists of two phases: the Teacher- and the 
Learner-Phase. This chapter proposes a multi-objective teaching learning algorithm based on 
decomposition (MOTLA/D) for solving a reactive power handling problem. 
In order to assess the effectiveness of the proposed approaches to solve the multi objective reactive power 
dispatch problem, the algorithms are tested in three power systems of different complexity: IEEE 14 bus, 
30 bus and 118 bus system. Several studies have been carried out among the algorithms involving fuel 
cost minimization, power losses reduction and voltage stability enhancement as objective functions. 
Furthermore, the proposed method is applied to a simplified Mexican power grid. 
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Nomenclature 

ABC   Artificial Bee Colony Algorithm 

DE   Differential Evolution 

GA   Genetic Algorithm 

HS   Harmony Search 

MOEA/D  Multi-Objective Evolutionary Algorithm based on Decomposition 

MOP   Multi Objective Problem 

MOTLA/D  Multi-Objective Teaching Learning Algorithm based on Decomposition 

NSGA-II  Non-dominated Sorting Genetic Algorithm II 

OPF   Optimal Power Flow 

ORPD   Optimal Reactive Power Dispatch 

PSO   Particle Swarm Optimization 

TLBO    Teaching Learning-Based Optimization 

Ω   feasible region 

 

18.1 Introduction 

Over the past half-century, optimal power flow (OPF) has become one of the most important and widely studied 
problems in power system operation, analysis and planning. The OPF was proposed in the early 1960s based on the 
economic dispatch problem. In general, the OPF problem is a large-scale, highly constrained, non-linear, non-
convex optimization problem which may contain both continuous and discrete control variables. The main purpose 
of the optimal power flow is to optimize a selected objective function, such as cost, planning, or reliability by 
controlling power flow within an electrical network without violating network power flow constraints or system and 
equipment operating limits. Many different classes of the OPF problem have been developed to address specific 
instances of the problem, using varying assumptions and selecting different objective functions to be optimized, 
different sets of control variables and different system constraints. The resulting optimization problems have 
different names depending on the particular objective function being addressed and the constraints under 
consideration. The optimal reactive power dispatch (ORPD) is a special case of the optimal power flow problem and 
is one of the major issues in terms of secure and economic operation. Generally, the control variables of the ORPD 
consist of voltage magnitudes of generator buses, output of static reactive power compensators, transformer tap-
settings, and shunt capacitors/reactors. The aim of the reactive power dispatch problem is to minimize real power 
transmission losses of the network, while maintaining the system voltage profile in an acceptable range by 
regulating generator bus voltages, transformer tap-settings and reactive power generation of reactive power sources. 
Furthermore, physical and operation constraints must be maintained within the allowable limits. Since output shunt 
capacitors/reactors and tap-settings of transformers are discrete variables, but some other variables are continuous, 
the reactive power dispatch problem can be modelled as a large-scale, mixed-integer, non-differentiable and non-
linear problem. Additionally, the difficulty of solving the ORPD problem significantly increases with the increment 
of network’s size and complexity. 

Thus, optimal reactive power (ORP) plays a significant role in the secure operation of power systems. One of the 
main tasks of a power system operator is to manage the system in such a way that its operation is safe and reliable. 
Its main aim is to determine the optimal operating capacity and the physical distribution of the compensation devices 
such as voltage rating of generators, reactive power injection of shunt capacitors/reactors, and tap ratios of the tap 
setting transformers, in order to ensure a satisfactory voltage profile, while minimizing the transmission losses. 
Active power line losses are small while reactive power line losses are large. Reducing the reactive power losses 



3 
 

enables more active power to be transferred over a single line. Due to the continuous growth in the demand for 
electricity with unmatched generation and transmission capacity expansion, voltage stability has emerged as a 
challenge to power system planning and operation. Therefore, a voltage stability index should also be considered as 
an objective of the ORP problem. 

It is important that each system and control area handles capacitive and inductive reactive resources at proper levels 
to maintain the voltages within established high and low limits. Reactive generation scheduling, transmission and 
switching, and load shedding, if necessary, should be implemented to maintain these levels. Likewise, each control 
area should provide its reactive power requirements, including appropriate reserves to protect the voltage levels for 
contingency conditions. 

The optimal reactive power problem is a nonlinear, non-convex, over-determined system, a large-scale optimization 
problem with both continuous and discrete variables; additionally, its high dimensionality represents a major 
difficulty. This problem is quite important for power system security. In this chapter, the basic objective is to 
estimate proper adjustments on the control variables, such as generator bus voltages and tap setting transformers that 
help to maintain an acceptable voltage profile and minimize the reactive power losses; one voltage stability metric 
(Lindex) is also used. Thus, an optimal formulation that contributes to attain these purposes becomes appropriate. In 
general, it may include several objective functions, possibly in conflict among them. 

Such kind of optimization problem has a set of possible solutions (named Pareto optimal set), which represents the 
best commitment (feasible) among the objectives [1]. Several optimization techniques have been proposed to solve 
such optimal reactive power problems. From them, two major approaches may be identified [2]: 

(1) The first approach is based on the use of evolutionary algorithms such as Differential Evolution (DE) [3], Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [4], Particle Swarm Optimization (PSO) [5], an Improved 
Hybrid Evolutionary Programming Technique [6], and Artificial Bee Colony Algorithm (ABC) [7]. 

(2)The second approach is based on conventional methods. They include Gradient-based Methods, Non-Linear 
Programming (NLP), Quadratic Programming (QP), Linear Programming (LP) and Interior Point Methods [8-
12], the Weighting Method [13], and the ε-Constraint Method [14]. 

These conventional methods are based on an estimation of the global minimum. However, due to difficulties of 
differentiability, non-linearity, and non-convexity, these methods do not guarantee reaching the global optimum 
[15]. Thus, these methods present limitations when dealing with certain types of problems. For instance, they cannot 
be used when the objective function is not available in an algebraic form. This has motivated the development of 
alternative methods, such as meta-heuristics. Over the years, meta-heuristics (from which evolutionary algorithms is 
a particular subclass) have become a popular choice for solving complex optimization problems, due to their 
flexibility, generality (they are less sensitive to the actual shape or continuity of the Pareto front than conventional 
methods) and ease of use. Additionally, most meta-heuristics require little or no specific domain knowledge. 

Multi-objective optimization is a design methodology that optimize a set of objective functions systematically and 
simultaneously. Such kind of optimization problem has a set of possible solutions (named Pareto Optimal Set), 
which represent the best commitment (or trade-off) among the objectives. In the open research, several methods 
have been suggested and successfully applied for solving multi-objective power systems optimization problems. 
These approaches are generally divided into two categories: classical mathematical optimization algorithms and 
Pareto-based optimization algorithms. 

The classical methods transform the multi objective optimization problem into a single objective optimization 
problem usually by either aggregating the objective functions into a single weighted function, or simply by 
optimizing one objective function and treating the remaining as constraints. Therefore, the resulting single 
optimization problem can be solved by deterministic or non-deterministic (heuristic) algorithms. However, these 
classical single-objective approaches have several limitations to solve multi-objective optimization problems: 1) it 
requires a priori knowledge about the relative importance of the objective functions; 2) the aggregated function leads 
to only one solution, and therefore, it requires multiple simulation runs to obtain the Pareto-optimal Set; 3) the trade-
offs among objective functions cannot be easily evaluated, and 4) the solution may not be attainable unless the 
Optimal Pareto Set is convex. Thus, classical optimization methods are not suitable to solve multi-objective 
optimization problems. Furthermore, due to the fact that real life problems involve several objectives and system 
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engineers may desire to know all possible optimization solutions of all objectives simultaneously, Pareto-based 
approaches have been proposed as an alternative to address the shortcomings of classical single- objective methods. 
These algorithms handle the objective functions simultaneously as competing objectives. 

In this chapter, a multi-objective teaching learning algorithm based on decomposition (MOTLA/D) is proposed for 
solving the reactive power handling problem. In order to minimize the reactive power losses and a voltage stability 
index [16], the proposed algorithm estimates the following optimal values: (i) generator bus voltages; (ii) tap setting 
transformers. The effectiveness of the proposed approach is demonstrated and compared with respect to the multi-
objective evolutionary algorithm based on decomposition (MOEA/D) [17], which is representative of the state-of-
the-art on the subject; both methods are applied on three test systems: 9-, 26-, and 118-buses. 

The rest of the chapter is organized as follows. Section 18.2 exposes a brief review of previous work. Section 18.3 
presents the problem approached in this chapter. Section 18.4 describes the formulation. Section 18.5 summarizes 
the decomposition strategy. In Sections 18.6, 18.7 and 18.8, the general framework of the proposed approach is 
summarized. Results of a comparative study are presented in Section 18.9. Finally, conclusions are provided. 

18.2 A brief review of previous work 

Several review articles about evolutionary algorithms in power systems applications have been published since the 
1990s: [18-21]. This section reviews the technical literature related to applications of multi-objective evolutionary 
algorithms to voltage stability enhancement, reactive power dispatch and economic dispatch optimization problems 
in power systems, which are the topics dealt with in this chapter. The review in this section has been drawn from 
refereed journal articles from the following journals: 

 IEEE Transactions on Power Systems. 

 International Journal of Electrical Power & Energy Systems. 

 Electric Power Systems Research. 

 Energy Conversion and Management. 

 Engineering Applications of Artificial Intelligence. 

These journals have published a large quantity of heuristic algorithms in the context of power system applications. 
Books and conference proceedings have not been included. 

Novel modern heuristics algorithms have been reported in Power systems applications. Chaohua Dai, et al. [22] 
proposed a seeker optimization algorithm (SOA) for the optimal reactive power dispatch considering three objective 
functions: active power losses, voltage deviation, and voltage stability index. SOA is a novel population-based 
heuristic search algorithm, which attempts to simulate the act of human searching for real-parameter optimization. 
The algorithm’s performance is studied on the IEEE 57 and 118-bus power systems. 

Liao, H.L., et al. [23] presented a new method called Multi-objective Optimization by Reinforcement Learning 
(MORL) to solve the optimal power system dispatch and voltage stability problem by achieving two objectives: 
reduction of fuel cost and enhancement of voltage stability. Reinforcement Learning stems from the idea of trial 
and-error learning, and focuses on goal-directed learning from interactions between learner and environment. 

 Panigrahi B.K., et al. [24] extend the bacteria foraging meta-heuristic into the domain of multi-objective 
optimization to solve the multi-objective environmental/economic dispatch (EED) problem. The idea of bacteria 
foraging principle is based on the fact that natural selection tends to eliminate animals with poor foraging strategies 
through methods for locating, handling, and ingesting food, and to favor the propagation of genes of those animals 
that have successful foraging strategies. In this work the multi-objective bacteria foraging (MOBF) optimization 
technique was compared respect to other multi-objective evolutionary algorithms on the standard IEEE 30-bus test 
system.  

Sivasubramani S. and Swarup K.S. [25] model the optimal power flow problem as a non-linear constrained multi-
objective optimization problem where power losses, fuel cost and voltage stability objectives are considered into the 
formulation. The problem is solved by a multi-objective harmony search (MOHS) algorithm. The Harmony search 



5 
 

algorithm has been recently developed in an analogy with improvisation process where musicians always try to 
polish their pitches to obtain a better harmony. 

Niknam T., et al. [26] present a multi-objective teaching-learning-based optimization algorithm (θ-MTLBO) to solve 
the dynamic economic/emission dispatch problem considering ramp-rate limits and valve-point effects. The 
Teaching-Learning Based Optimization algorithm is a new efficient optimization algorithm which has been inspired 
by learning mechanism in a class. The proposed algorithm is applied on three test systems and compared with 
respect to several heuristic optimization techniques and with a popular optimization software named general 
algebraic modeling system (GAMS), which uses linear programming to optimize the problems. In [30] a multi-
objective optimization algorithm based on modified teaching–learning-based optimization (MTLBO) algorithm is 
proposed in order to solve the optimal location of automatic voltage regulators (AVRs) in distribution systems in 
presence of distributed generators (DGs). 

Khorsandi A., et al. [27] propose a fuzzy based modified artificial bee colony (MABC) algorithm to solve the 
optimal power flow problem. The problem was formulated as a multi-objective mixed-integer nonlinear problem 
where the simultaneous minimization of the total fuel cost of thermal units, total emission, total real power losses, 
and voltage deviation were considered. The artificial bee colony algorithm is a relatively new optimization 
technique which simulates the intelligent foraging behavior of a bee swarm. The proposed approach is applied on 
the IEEE 30-bus and IEEE 118-bus test systems. 

More new modern meta-heuristic algorithms for multi-objective optimization can be found in the literature. This 
dissertation proposes the multi-objective variant for two popular meta-heuristics of current interest, namely, the 
artificial bee colony algorithm (ABC), and the teaching-learning-based optimization algorithm (TLBO). These 
algorithms are the two with the highest efficiencies in their class. The effectiveness of these algorithm have been 
tested in several benchmark functions and they have been compared with those of state-of-the-art algorithms such 
as: Differential Evolution (DE), Particle Swarm Optimization (PSO) and their variants [28] and [29]. Moreover, the 
performance and effectiveness of these algorithms to solve large scale optimization problems and real world 
optimization problems, including problems in power systems, have been demonstrated [26]-[27], [30]-[32]. 

There are multi-objective variants of the TLBO and ABC in the literature such as those presented in [26]-[27], [30], 
[33]. These variants are Pareto-based approach. Thus, these methods require some other techniques for ranking and 
distribution of the solutions (e.g., crowding distance, fitness sharing, niching). However, as above mentioned, these 
methods cannot always provide good results, especially when dealing with complex multi-objective optimization 
problems. Therefore, in this dissertation the proposed multi-objective variants of TLBO and ABC algorithm are 
based on the MOEA/D framework. This framework decomposes a multi-objective problem into several single-
objective optimization sub-problems with neighborhood relations. In this way, a set of approximate solutions to the 
Pareto front is achieved by minimizing each sub-problem instead of using Pareto ranking. 

The performance of the multi-objective evolutionary algorithms based on decomposition in power system problems, 
has not been fully investigated. A publication related with the application of MOEA/D in reactive power dispatch 
problem is presented on Innovative Smart Grid Technologies Conference Europe, 2010 IEEE PES [23]. In this 
work, Liao, H. L et al, compared a novel multi-objective optimization by reinforcement learning with the first 
version of the MOEA/D to solve the economic power dispatch with voltage stability enhancement. 

This chapter proposes a multi-objective Teaching-Learning algorithm for managing reactive power. The proposition 
is applied on several power test systems with different dimensionality. 

18.3 Multi-Objective Power Flow Formulation 

Over the past half-century, the optimal power flow (OPF) has become one of the most important and widely studied 
problems in power system operation, analysis and planning. In general, the OPF problem is a large-scale, highly 
constrained, non-linear, non-convex optimization problem which may contain both continuous and discrete control 
variables. The main purpose of the OPF is to optimize a selected objective function, cost for instance, with planning 
or reliability purposes by controlling power flow within an electrical network without violating network constraints 
or system and equipment operating limits [34]-[35]. 
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Many different OPF classes have been developed to address specific instances of the problem, among them the 
reactive power dispatch and economic dispatch problems have always been the major issues in terms of secure and 
economic power systems operation. These problems can be considered into the analysis of multi objective 
optimization. The objective functions in these problems have many variants, which include transmission network 
losses, transmission capacity, and investment of compensation devices. In addition, some technical indices such as 
voltage stability indices to prevent security margins, may be used as objectives. This research takes the voltage 
stability into account within the short-term operation planning context, where an optimal preventive action has to be 
found to enhance voltage stability including operational limits. 

In this chapter the minimization of the total power transmission losses has been selected as an objective function in 
the optimal reactive power dispatch and economic dispatch problems. An optimal power flow problem is formulated 
as a multi-objective optimization problem, where three objective functions are taken into account for minimization, 
while satisfying a number of equality and inequality constraints. The problem is formulated in the sequel. 

18.3.1 Problem Objectives 

The multi-objective optimal power flow addressed in this chapter uses the following objective functions: (i) 
minimization of the total fuel cost; (ii) minimization of the total power transmission losses; and (iii) voltage stability 
enhancement through the minimization of the L-index. 

18.3.1.1 Fuel cost minimization 

Figure 18.1 depicts a conventional cost curve for the i-th generator with active power output Pgi. 
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Fig. 18.1. Operating cost curve for the i-th generator. 

The objective is to minimize the total fuel cost Fcost. Conventionally, the fuel cost for i-th generator with active 
power output Pgi is modelled as a quadratic function of the active power generation, and the total fuel cost Fcost in 
($/h) may be expressed as, 

 2
cost

1

gN

i i gi i gi
i

F a b P c P


             (18.1) 

where Ng is the number of generators; ai, bi, and ci are the cost coefficients of the i-th generator, and Pgi is the 
corresponding active power output. 

18.3.1.2 Active power losses minimization 

Transmission losses constitute economic loss providing no benefits. Therefore, the objective is to minimize the 
active power losses (Ploss) through the transmission lines. If we express these losses in terms of bus voltages and 
associated angles, then the losses may be calculated by, 
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[ 2 cos( )]
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loss k i j i j i j
k

P g V V VV  


            (18.2) 

where nl is the number of transmission lines, gk is the conductance of the k-th transmission line connecting the i-th 
and j-th bus; Vi, Vj, θi, and θj are the voltages magnitudes and phase angles of i-th and j-th bus, respectively. 

18.3.1.3 Voltage stability enhancement  

A conventional way looking for voltage stability assessment is the use of indices, which estimate the proximity to 
voltage instability and determine those buses exhibiting weak stability. Nowadays, there are a variety of indexes that 
help to assess the steady state voltage stability [36-38]. 

In this research, voltage stability enhancement is achieved through minimizing the voltage stability index Lindex [39], 
which is able to evaluate the steady state voltage stability margin of each bus. The L-index value lies between 0 (no 
load) and 1 (voltage collapse). This value implicitly includes the load effect. The bus with the highest Lindex value 
will be the most vulnerable, and therefore, this method helps to identify weak areas that require reactive power 
critical support. The Lindex is calculated in the following way [39]. 

The network equations in terms of bus admittance matrix may be written as, 

 bus bus busI Y V            (18.3) 

The buses are broken down into two categories: (i) the set of load buses (αL); and (ii) the set of generator buses (αG). 
Thus, equation (18.3) becomes, 

 1 2

3 4

L L

G G

Y YI V

Y YI V

    
     
    

          (18.4) 

It is assumed that the transmission system is linear and allows a representation in terms of a hybrid matrix H. 
Therefore rearranging the above equation, 

 
L L LL LG L

G G GL GG G

V I Z F I
H

I V K Y V

       
          

       
        (18.5) 

where VL and IL are load voltage and current vectors; VG and IG are generator voltage and current vectors; ZLL, FLG, 
KGL, and YGG are sub-matrices of the hybrid matrix H. 

Matrix H is generated from the admittance matrix (Ybus) by a partial inversion, where the load buses’ voltage vector 
is exchanged for the current vector. This representation may then be utilized to define a voltage stability index for 
load buses, namely Lj which is defined by, 

 1 G

ji i
i

j
j

F V

L
V

 


          (18.6) 

For stable conditions, 0 ≤ Lj ≤ 1, must not be violated for any load bus j. A global indicator Lindex describing the 
whole system’s stability is defined by, 

 max( )
L

index j
j

L L


            (18.7) 

Lindex in Eq. (18.7) is associated with the worst bus in the sense of voltage stability. The Lindex minimization implies 
to take such bus toward a less stressed condition. 
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18.3.2 Problem Constraints 

The minimization of the above functions must satisfy a number of equality and inequality constraints. The OPF 
equality constraints reflect the physics of the power system by imposing Kirchhoff’s Laws to the electrical network, 
and the inequality constraints of the OPF reflect the limits on physical devices, as well as the limits created to ensure 
system security. These constraints are described in following. 

18.3.2.1 Equality constraints 

The equality constraints are the balance of the active and reactive power described by the set of power flow 
equations. They may be expressed as follows, 

 
1

cos( )
bN

gi di i j ij i j ij
j

P P V V Y   


            (18.8) 

 
1

sin( )
bN

gi di i j ij i j ij
j

Q Q V V Y   


            (18.9) 

where, Nb is the number of buses, Pgi is the i-th active power generation, Qgi is the i-th reactive power generation, Pdi 
is the i-th active power load, Qdi is the i-th reactive power load, and |Yij| is the ij-th element of the bus admittance 
matrix. 

18.3.2.2 Inequality constraints 

These constraints represent the system operating limits as follows, 

A) Generators: these constraints are associated to the generator voltages (Vg), active power output (Pg), and 
reactive power output (Qg) by lower and upper limits as follows, 

 min max , 1,...,gi gi gi gV V V i N            (18.10) 

 min max , 1,...,gi gi gi gP P P i N            (18.11) 

 min max , 1,...,gi gi gi gQ Q Q i N            (18.12) 

where Ng is the number of generators. 

B) Transformers: Transformers tap settings are restricted by their minimum and maximum limits as follows: 

 min max , 1,...,i i i tT T T i N            (18.13) 

where Nt is the number of transformers. 

C) Shunt VAR: Reactive power injections at buses are restricted by their minimum and maximum limits as 
follows: 

 min max , 1,...,ci ci ci cQ Q Q i N            (18.14) 

D) Load bus voltage: each load bus is restricted by its limits as follows: 

 min max , 1,...,i i i PQV V V i N            (18.15) 

where NPQ is the number of load buses. 
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18.4 Multi-objective optimal power flow formulation 

Considering the above-mentioned objective functions, equality, g(x,u), and inequality constraints, h(x,u), the multi-
objective optimal power flow is defined as the optimization of the following study case. 

Minimization of fuel cost and power losses 

cosminimize  [ , ]t lossF P  

Subject to:   ( , ) 0g x u   

    ( , ) 0h x u   

where g is the equality constraints representing the non-linear power flow equations (18.8)-(18.9); h represents the 
inequality constraints through the system operating limits (18.10)-(18.15); and x is the vector of dependent variables 
including: 

1. Active power Pg1 generated by the slack bus 

2. Load bus voltage VL 

3. Generator reactive power output QG 

Hence x can be expressed as: 

 1 1 1[ , ,..., , ,..., ]
PQ gg L LN G GNx P V V Q Q          (18.16) 

where NPQ, Ng, are the number of load buses and the number of generators, respectively. 

Likewise, u is the vector of control or independent variables including: 

1. Generator active power outputs Pg except the slack bus Pg1. 

2. Generator bus voltage Vg. 

3. Transformer tap setting T. 

4. Shunt VAR compensation QC. 

Hence, the vector of control variables (u) is expressed as, 

 2 1 1 1[ ,..., , ,..., , ,..., , ,..., ]
g g cg gN g gN Nt c cNu P P V V T T Q Q        (18.17) 

where Nt and Nc denote the number of regulating transformers and number of shunt compensations, respectively. It 
is worth noting that the decision variables are self-constrained by the optimization algorithm. 

18.4.1 Handling of equality and inequality constraints 

The equality constraints of power balance equations shown in (18.8)-(18.9) are handled by the Newton-Raphson 
based power flow calculations; therefore, there is no need to integrate them into the objective function. 

Due to the optimal power flow results may violate the inequality constraints, it is common to use penalization to 
handle the inequality violation. The violations are multiplied by its corresponding penalty coefficient and added to 
the objective function in order to constitute a fitness function. It is simple of implementing and easy of 
understanding. However, it introduces new parameters into the algorithm and the value of such coefficients 
significantly influences the solution reached by algorithm. There is not a specific rule to choose the suitable penalty 
coefficient values and the trial-error strategy is applied in most situations. The electricity quality offered by power 
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system is vastly important and a large variation could result in a huge economic loss. For this consideration, a non-
parameter strategy is adopted to handle the inequality constraints. 

In this chapter Deb's heuristic constrained handling technique [40] is used in the proposed MOTLA/D and 
MOABC/D methods. This technique uses a tournament selection operator in which two solutions are selected and 
each other compared. Therefore, this approach does not require the use of the penalty function method.  

The following heuristic rules are implemented for the selection: 

i. If one solution is feasible and the other infeasible, then the feasible solution is preferred. 

ii. If both are feasible solutions, then the solution with better objective function value is preferred. 

iii. If both solutions are infeasible, then the solution with least constraint violation is preferred. 

iv. If both solutions are infeasible and have the same number of constraint’s violations, then the solution with a 
smaller objective function value is preferred. 

These rules are implemented at the end of the main phases of the proposed algorithms, i.e., at the end of the teacher 
and the learner phases for MOTLA/D, and at the end of the employed and onlooker phases for the MOABC/D. 
Instead of accepting the new solution xnew, if it gives better function value at the end of these phases, Deb’s 
constraint handling rules are used to select xnew based on the above heuristic rules. 

18.5 Metaheuristic Algorithms based on Decomposition 

“A metaheuristic is formally defined as an iterative generation process which guides a subordinate heuristic by 
combining intelligently different concepts for exploring and exploiting the search space, learning strategies are used 
to structure information in order to find efficiently near-optimal solutions [41]”. Some well-known algorithms 
falling within this category are: Genetic algorithms (GAs) [42], Differential Evolution (DE) [43], Particle Swarm 
Optimization (PSO) [44, 45], Artificial Bee Colony (ABC) [46, 47], and the Harmony Search (HS) [48]. 

Problems with multiple objectives arise in a natural manner in many disciplines and their solutions have been a 
challenge to researchers for a long time [49]. These problems are known as multi-objective optimization, multi-
criteria optimization, or vector optimization problem and can be defined (in words) as the problem of finding [50]: 
“a vector of decision variables which satisfies constraints and optimizes a vector function whose elements represent 
the objective functions. These functions form a mathematical description of performance criteria which are usually 
in conflict with each other. Hence, the term “optimize” means finding such a solution which would give the values 
of all the objective functions acceptable to the decision maker.” 

The mathematical definition of a multi-objective problem (MOP) is important in providing a basis of understanding 
between the interdisciplinary nature of every possible solution technique (deterministic, non-deterministic), i.e., 
search algorithms [49]. Without loss of generality, a multi-objective problem may be stated as: 

Finding a vector 1 2
* * * *[ , ,..., ]T

nx x x x
r

 which optimizes the vector function: 

  1 2Minimize   ( ) ( ), ( ),..., ( )
T

kx f x f x f x
r r r r

F         (18.18) 

Subject to the constraints: 

 ( ) 0, 1,...,ig x i m 
r

          (18.19) 

 ( ) 0, 1,...,jh x j p 
r

          (18.20) 

where a solution nx 
r

 is a vector of n decision variables: 1 2( , ,..., )T
nx x x x

r
. Notice that T indicates transposition. 

The inequality and equality constraints in (18.19) and (18.20), respectively, define the feasible region Ω and any 
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solution x
r

 defines a feasible solution. One of the notable differences between single-objective and multi-
objective optimization is that in the later one the objective functions constitute a multi-dimensional space, in 
addition to the usual decision variable space ( n ). This additional K-dimensional space is called objective space,

k . Therefore, for each solution x
r

 in the decision variable space, there exists a point z
r

 in the objective space,
kz 

r
. The vector function ( )x

r
F  is a function which maps the set of solutions from the decision variable space to 

the objective space: : n kx  
r

F , Fig. 18.2. The k-elements of ( )x
r

F  represents the values of the objective 

functions. 

Vector *x
r

 denotes the optimal solution. However, since the objective functions of a multi-objective optimization 
problem usually are in conflict with each other, and cannot be optimized simultaneously. Therefore, there no exists a 
unique optimal solution instead it has to be found a satisfactory trade-off between the conflicting objectives. This 
leads to a set of optimal solutions known as Pareto optimal solutions or non-dominated solutions. In multi-objective 
optimization, the goal is to find the best possible compromise (or trade-off) among the objectives since, frequently, 
one objective can be improved only at the expense of worsening another. Therefore, it is necessary to establish some 
criteria to define what would be considered as an “optimal” solution.  

In order to describe the concept of “optimality” for a multi-objective problem, which was generalized by Vilfredo 
Pareto [51] on the concept “Pareto optimum”, the following definitions are provided [49]: 

Definition 1 (Pareto Dominance): A solution 1 2( , ,..., )nx x x x
r

 is said to dominate another solution 

1 2( , ,..., )ny y y y
r

 (denoted by x y
r r

p ) if and only if x
r

 is partially less than y
r

 on the objective space, i.e., 

{1,..., }i k  , ( ) ( ) {1,..., }: ( ) ( )i i i if x f y i k f x f y    
r r r r

. 

, nA B
� �

, k
A BZ Z 

� �

1

2

( , )

( , )

f x y

f x y

 
  
 

F

 

Fig. 18.2 Example of the multidimensional space in a multi-objective problem 

Definition 2 (Pareto Optimality): A solution x
r

 is said to be a Pareto optimal solution *x
r

, if and only if there 
is no other solution y

r
 such that y x

r r
p . 

Definition 3 (Pareto Optimal Set): For a given MOP, the Pareto Optimal Set ( PS ) is defined by 

{  is Pareto Optimal Solution}PS x x 
r r

. 

Definition 4 (Pareto Front): For a given MOP and a Pareto Optimal Set PS , the Pareto Front PF  is defined as the 

image of PS  in the objective space, i.e., { ( ) }PF F x x PS 
r r

. 

Based on the concept of “Pareto Dominance”, the comparison between two decision vectors x
r

 and y
r

 can lead to 

the following three possibilities: 

1) (   y): ( ) ( ) for 1,..,i ix x y iff f x f y i k strictly dominates
r r r r r r

p  
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2) (    y): ( ) ( ) for 1,..,i ix x y iff f x f y i k weakly dominates
r r r r r r

p  

3) (  is  to y): ( ) ( ) ( ) ( ) for 1,..,i i i ix x y iff f x f y f y f x i k    incomparable
r r r r r r r r

:  

A graphical illustration of the previous concepts about Pareto Dominance, is provided in Fig. 18.3. 

 

Fig. 18.3 Illustrative example of the concepts about Pareto Dominance 

When the Pareto optimal solutions (or non-dominated solutions) are plotted in the objective space are collectively 
known as the Pareto front. The Pareto Front dominates all other possible solutions, and in many cases, is located on 
the boundary of the objective space (i.e., feasible solution space). In Fig. 18.4 a bold dash line is used to mark this 
boundary for a bi-objective problem which is known as the Pareto front. 

 

Fig. 18.4 Graphical illustration of the Pareto Front of a bi-objective minimization problem 

In general, it is not easy to find an analytical expression of the line or surface that contains the Pareto optimal 
solutions, and in most cases it turns out to be impossible. The normal procedure to generate the Pareto Front is to 
compute many solutions in the feasible region Ω and their corresponding f (Ω). When there is a sufficient number of 
these, it is then possible to determine the non-dominated points and to generate a Pareto front [49]. 

18.5.1 Decomposition of a multi-objective problem 
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It is well-known that a Pareto-optimal solution to a multi-objective optimization problem, under certain conditions, 
could be an optimal solution of a single-objective optimization problem in which the objective is an aggregation 
function of all the individual objectives. Therefore, the approximation of the Pareto front can be decomposed into a 
number of single objective optimization sub-problems. This is the basic idea behind many traditional mathematical 
programing methods for approximating the Pareto front. Several methods for constructing aggregation functions can 
be found in the literature (see for example [52]). These methods use a weighted vector to define a scalar function. In 
this way, and under certain assumptions (e.g., the minimum is unique, the weighting coefficients are positive, etc.) a 
Pareto optimal solution is achieved by minimizing such function. Among these methods, probably the two most 
widely used are the Weighted Sum and the Tchebycheff approaches. 

 Weighted Sum Method 

The classical aggregating approach to solve a multi-objective optimization problem is the weighted sum method. 
This method consists of assigning a weight wi to each objective function so that the multi-objective problem is 
converted to a single objective problem with a scalar objective function of the form: 

 1
Minimize   ( ) ( )

subject  to   

k

i ii
g x w w f x

x





r r

         (18.21) 

where wi is a vector of weights usually set by the decision maker such that, 
1

1
k

ii
w


   and 0iw   for all i = 1… k. 

If all of the weights are positive, then minimizing (18.21) provides a sufficient condition for the Pareto optimality, 
which means that the minimum of (18.21) is always a Pareto optimal solution of the multi-objective problem [53]. 
As with most methods involving scalar weights wi, setting one or more of the weights to zero may result in weakly 
Pareto optimal points [54]. The relative value of the weights generally reflects the relative importance of the 
objectives. This is another common characteristic of weighted methods. This method is easy to use, however, there 
are a few recognized difficulties with the weighted sum method [54-57]: 

1) This method does not provide a well-distributed set of solutions along the Pareto front, with a consistent 
change in weights, even with a consistent Euclidean distance between consecutive solutions. 

2) This method is unable to obtain points on non-convex portions of the Pareto Front. 

  Weighted Tchebycheff Approach 

Under this scheme, the scalar optimization problem can be stated as [58]: 

   * *

1,...,
Minimize    ( , ) max ( )

subject  to   

i i i
i k

g x w z w f x z

x


 



r r

       (18.22) 

where wi is a weighting vector such that, 0iw   for all i = 1,...,k, and 
1

1
k

ii
w


 . The vector * * *

1( ,..., )kz z z   

represent the reference point, i.e.,  * min ( )i iz f x x 
r

 , i = 1,...,k.  

Whereas the weighted sum method discussed previously always yields Pareto optimal solutions, this method may 
provide the complete Pareto optimal set, through weights variations; it provides a necessary condition for Pareto 
Optimality [52]. In addition, the solution using the Tchebycheff approach is always weakly Pareto optimal, and if the 
solution is unique, then it is Pareto optimal. This means that for each Pareto optimal solution x* there exists a weight 
vector “w” such that x* is an optimal solution of (18.22) and each optimal solution of (18.22) is a Pareto optimal 
solution of (18.18). Thus, it is able to obtain different Pareto optimal solutions by modifying the weighting vector. 

The advantages of the Tchebycheff approach are as follows: 

1) It provides a clear interpretation of minimizing the largest difference between fi and the reference point zi. 
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2) It can provide the complete Pareto optimal set. 

3) It always provides a weakly Pareto optimal solution. 

4) It is relatively well suited for generating the complete Pareto optimal set (with weight variation) 

The main disadvantage is that it requires the minimization of each objective when using the referent point, which 
can be computationally expensive. 

18.6 Teaching Learning based optimization (TLBO) 

Teaching learning based optimization (TLBO) algorithm was proposed by Rao et al. [59] in 2011 as a metaheuristic 
algorithm inspired on the philosophy of teaching-learning process in a class between the teacher and learners 
(students). TLBO has emerged as a simple and efficient technique for solving single-objective complex benchmark 
problems and real world problems including power system applications. It has been well tested on many 
optimization problems [59, 60, 61-63]. Thus, it is attractive to extend the TLBO in order to solve multi-objective 
optimization problems [64-66, 67-68]. 

Metaheuristics, in general, require parameters that affect their performance. For example, DE depends on the 
mutation strategy adopted, and on its intrinsic control parameters such as its scaling factor and the crossover rate. 
PSO requires learning factors, the variation of the inertia weight and the maximum value of velocity. ABC requires 
the number of employed bees, onlooker bees and a value of limit. HS, requires harmony memory consideration rate, 
pitch adjusting rate and the number of improvisations. In contrast, TLBO does not require any specific parameter to 

be tuned, which facilitates its implementation and use [62]. This represents another remarkable characteristic of 
TLBO. 

The main idea of TLBO is explained in the sequel [59]. Figure 18.5 shows the distribution of marks obtained by the 
learners of two different classes. A normal distribution is assumed for the marks, but in actual practice it can have 
skewness. The normal distribution is defined as, 

 
2

2

( )

2
1

( )
2

x

f x e




 

 

           (18.23) 

where   is the variance, µ is the mean and x is the independent variable. 

It is evident from Fig. 18.5 that the teacher in class 2 is better than the teacher in class 1 since the mean of the 
grades, M2, obtained by the learners in class 2 attain better results than M1. Therefore, it can be stated that a good 
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Fig. 18.5. Distribution of marks obtained by learners in two different classes 
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teacher produces a better average in learners. Students also learn from interaction between themselves, which also 
helps in their results. However, in practice a teacher can only move the mean of a class toward some extent 
depending on the capability of the class [59]. Consequently, since a teacher, who is the most experienced person on 
a subject in the society, influences the learner’s behavior to attain good marks or grades, and it is expected that the 
teacher increases the knowledge level of the whole class depending on his/her skills. Therefore, the teacher will put 
maximum effort into teaching his/her students, but students will gain knowledge according to the quality of teaching 
delivered by a teacher and the quality of students attending the class [59]. In addition, the students can also gain 
knowledge by discussing, communicating, discovering and interacting each other. 

Based on the above teaching process a mathematical model of a novel optimization technique called Teaching-
Learning-based optimization (TLBO) was developed by Rao et al. [59]. Like any other nature-inspired algorithm, 
TLBO is a population-based method that use a population of solutions to proceed to the global solution. For TLBO, 
the population is described as a class of learners. In optimization algorithms, the population consists of different 
design variables. In TLBO, the different design variables represent the number of subjects offered to learners, and 
the grade attained by learner is analogous to the ‘fitness’, as in any other population-based optimization technique. 
The teacher is considered as the best solution obtained so far. The process of TLBO is based on two main phases. 
The first phase is the “teacher phase”, which involves learning from the teacher, and the second phase is the “learner 
phase”, which involves learning through the interaction among learners. It should be noted that the output solutions 
of the “teacher phase” are the input solutions for the “learner phase”.  

The pseudo-code of the TLBO algorithm may be summarized in the sequel. 

1: Initialization 

2: Evaluation 

3: Iteration = 1 

4: Repeat 

5: Teacher Phase 

6: Keep the best solutions 

7: Learner Phase 

8: Keep the best solutions 

9: iteration = iteration + 1 

10: Until iteration = Maximum number of iterations 

 

A brief description of the main phases is provided in the following sub-sections. 

18.6.1 Teacher phase 

A good teacher is one who brings his (or her) learners up to his (or her) level in terms of knowledge. But in practice 
this is not possible and a teacher can only move the mean of a class up to some extent depending on the capability of 
the class. This follows a random process which is interfered by many factors [59]. 

Let Mi be the mean of the class and Tbest,i be the teacher of that class (best solution so far) at the i-th iteration. Hence, 
Tbest,i, will try to move the mean of the class (Mi) toward its own level. Thus, the new mean will be Tbest,i, designated 
as Mnew,i. The difference between the mean of the class (Mi) and the new mean (Mnew,i) is expressed by [59]: 

  ,i i new i F ir M T M             (18.24) 
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where TF is a teaching factor that weights the current mean value. The value of TF can be either 1 or 2, which is 
determined randomly with equal probability as round[1 (0,1)]FT rand  , and ri is a random number within [0, 1]. 

TLBO uses the current best solution to improve the existing solution, thereby increasing the convergence rate. The 
difference (18.24) updates the current solution according to the following expression [59]: 

 , ,new i old i ix x  
           (18.25) 

xnew is accepted if it improves the function value. 

18.6.2 Learning phase 

A learner interacts randomly with other learners through group discussions, presentations, formal communications, 
etc. Thus, each learner may acquire new knowledge if the others have more knowledge than him/her. The 
modification of the learners is expressed as [69]: 

 

,

,

 1 to number of learners
 select two learners  and  such that 

( ( )
( )

( )
 i

 

i j i j

i j

new i i i i j

new i i i j i

for i
Randomly x x x x

if f x f x
x x r x x

else
x x r x x

end f
end for




 
  

  

      (18.26) 

xnew is accepted if it accomplishes a better objective function value. The new solutions update the initial learners and 
the teaching-learning process continues until the stopping criterion is achieved. 

18.7 Multi-objective Teaching Learning Algorithm based on decomposition 
(MOTLA/D) 

This is a proposed metaheuristic algorithm [70]: the Multi-objective Teaching Learning Algorithm based on 
decomposition (MOTLA/D). This approach is an extension of the Teaching learning based optimization algorithm 
previously described, and its main aim is to deal with multi-objective optimization problems employing a 
decomposition framework. This framework decomposes a multi-objective problem into several single-objective 
optimization sub-problems. In this way, a set of approximate solutions to the Pareto front is achieved by minimizing 
each sub-problem through neighborhood relationships, instead of using a Pareto ranking method. This characteristic 
makes MOTLA/D different from the multi-objective variants of the published TLBO algorithm since the proposed 
approach does not need a density estimator that distributes the solutions along the Pareto front. 

In this chapter MOTLA/D uses the Tchebycheff approach to decompose a multi-objective optimization problem into 
single-objective sub-problems by choosing N uniformly distributed weighting vectors. The goal of the i-th sub-
problem is minimize 

 * *

{1,.., }
( , ) max { ( ) }i i

j j jj m
g x w z w f x z


          (18.27) 

where 1{ ,..., }i i i
mw w w   is the weighting vector with 1,2,...,i N , and 0i

jw   for all objective functions

1, 2,..., .j m 1i
jj

w   and vector * * *
1( ,..., )mz z z  represents the reference point, i.e.,  * min ( )j jz f x x  . If N 

is large enough and these weights are uniformly distributed, then under a mild condition, the N optimal solutions to 
these sub-problems will be a good approximation to the Pareto front. In case of two objective functions i.e., m = 2 
the weighting vector, 1 2( , )i i iw w w  may be set as, 
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 1

2

, 1,2,...,
( )

i

i

w j N
j N

w N j N




 
         (18.28) 

This method for generating weighting vectors works well for the formulation in this proposition. Nevertheless, other 
methods may be used as well. 

The i-th sub-problem is associated with weighting vector wi and its scalar function is denoted as ( | )ig x w . 

MOTLA/D solves simultaneously these sub-problems based on the philosophy of teaching-learning process in a 
class among teacher and learners, in a similar way as that described in the TLBO [59]. Due to ( | )g x w  is a 

continuous function of w, two sub-problems are likely to have similar solutions if their weighting vectors are close 
from each other [71]. Therefore, any information about the weighting vectors close to wi should be helpful for 
optimizing ( | )ig x w . Based on this observation, the neighborhood of sub-problem i, defined as B(i), contains a 

predetermined number (Tn) of sub-problems with the closest weighting vectors with respect to wi. The Euclidean 

distance is used to measure the closeness between any two weighting vectors, while it is assumed that ( )i B i . That 
is, the i-th sub-problem is its own neighbor. The neighborhood for each sub-problem represents a group of learners 
or a class, responsible to solve such sub-problem. The neighborhood size Tn should be much smaller than the 
population size N [71]. The main steps of the proposed MOTLA/D may be summarized as follows. 

1) Initial Learners 

At the first step, the algorithm generates a randomly distributed initial population of learners ( ,i jx ) within the range 

of the parameters’ boundaries by, 

 min max min
, (0,1) ( )i j j j jx x rand x x            (18.29) 

where i = 1,…, N and j = 1,…, D. The population size is N, i.e., the potential solutions, and D is the number of 

decision variables. min
jx  and max

jx  are the lower and upper limits for the j-th decision variable, respectively. 

2) Selection of the class 

The class for the i-th sub-problem is selected between the neighborhood B(i) and the entire population N according 
to, 

 th

( )

{1,... }i

B i if rand
C

N otherwise


 


         (18.30) 

where rand is a random number within [0, 1] and δ is the probability to select the neighborhood B(i) as the colony. 

3) Teacher phase 

In this phase, the class of the i-th sub-problem may be expressed as, 

 

1,1 1,2 1,

2,1 2,2 2,

-

,1 ,2 ,T T T

D

D

i th

D

x x x

x x x
C

x x x  

 
 
   
 
  

L

L

M M O M

L

         (18.31) 

where ΩT is the size of the class and D is the number of design variables. Within the teacher phase, the mean of the 
class (Mclass) for each particular design variable is calculated column-wise, 

 , 1 2[ , ,..., ]class i DM mean mean mean          (18.32) 
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The teacher (Mnew) for the i-th sub-problem represents the best learner of the class -i thC . Thus, the teacher is 

determined by, 

 *
, min ( , )}

i T

i
new i i i

x

M x g x w z


          (18.33) 

The current solutions are updated according to the difference between the mean of the class (Mclass) and the new 
mean (Mnew), 

 , , , ,( )new i j i j new i F class ix x rand M T M            (18.34) 

where index i corresponds to the current i-th sub-problem, randi,j is a random number within the interval [0, 1]. TF is 
the teaching factor, which value can be either 1 or 2; this is decided randomly with equal probability as 

round[1 (0,1)]FT rand  . If one or more decision variables of the new solution exceeds its predetermined 

boundaries, the j-th variable is set to an acceptable value through, 

 
min min

,
max max

,

,

,
j new j j

new
j new j j

x if x x
x

x if x x

   
         (18.35) 

The new solution (xnew) is accepted if it improves the function value and it replaces the old one (xi). 

4) Learner phase 

In this phase for the i-th sub-problem, two learners xj and xk are selected randomly such that i ≠ j ≠ k. A new solution 
(xnew) is generated as follows, 

 

( ) ( )

( )

( )

j k

new i j k

new i k j

if f x f x

x x rand x x

else

x x rand x x

end



   

   
         (18.36) 

Additionally, a polynomial mutation operator is applied to maintain solutions’ diversity. This operator uses the 
polynomial distribution, 

 

1

1

1

1

(2 ) 1,

1 [2 (1 )] , 0.5

j j
j

j j

r if r

r if r











   

 
    

        (18.37) 

where rj is a random number in the interval [0, 1], and μ is a mutation distribution index. The mutated element is 
given by, 

 max min
,new new j j j jx x x x               (18.38) 

where max
jx  and min

jx  are the upper and lower limits for the j-th decision variable, respectively. For the new solution, 

if one or more decision variables exceed their predetermined boundaries, the j-th variable is set to an acceptable 
value, (18.38). The new solution (xnew) is accepted if it improves the function value and replaces the old one (xi). 

5) Updating the Class 



19 
 

At the end of each phase (teacher and learner) the next strategy is applied in order to update the class of the i-th sub-
problem [72]. Set n = 0 and then do the following: 

 

( ) is empty

. Otherwise picks an index  from 

( ) ( ) ( ), Then set 

and 1

( ) remove  form  and go to ( )

r

i i
new i i new

a if n s or C

randomly i C

b if g x w g x w x x

n n

c i C a



 

 

break

      (18.39) 

where (sr) is the maximum number of solutions replaced by the new solution. 

Summarizing, the proposed MOTLA/D algorithm may be described as in the next pseudo-code. 

Step 1) Initialization 

 Generate a well-distributed set of N weighting vectors by (18.28) 

 Find the neighborhood of each sub-problem B(i) 

 Generate the initial population by using eq. (18.29) and evaluate its fitness. 

 Initialize the reference point z* 

Step 2)  

 For i = 1 to N 

 Determine the class (Ci) according to eq. (18.30)  

 Teacher phase: Create a new solution (xnew) by eq. (18.34) 

 Update the reference point z* 

 Update solutions by eq. (18.39) 

 End For i 

Step 3)  

 For i = 1 to N 

 Determine the class (Ci) according to eq. (18.30)  

 Learner Phase: Create a new solution (xnew) by eq. (18.36) and eq. (18.38) 

 Update the reference point z* 

 Update solutions by eq. (18.39) 

 End For i 

Step 4) Stop Criterion 

 If the stop condition is satisfied, (such as getting the maximum number of iterations or the maximum 
number of function evaluations), then stop MOTLA/D. Otherwise, go to Step 2). 

18.7.1 Remarks about MOTLA/D 
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The flow chart of the proposed MOTLA/D algorithm is presented in Figure 18.6. Notice that algorithm MOABC/D 
(multi-objective Artificial Bee Colony based on decomposition) is included too. Although the proposed approaches 
are based on the MOEA/D (multi-objective Evolutionary Algorithm based on Decomposition) framework [71], an 
important difference between the original scheme of decomposition in MOEA/D and the proposed one, is the 
number of stages. While MOEA/D uses only one stage to apply a search strategy, in the proposed scheme two 
individual stages are implemented, Fig. 18.6. The main phases of each algorithm are included within each of these 
stages. The applied phase depends on the used algorithm. This scheme allows that each phase explores individually 
the searching space, and also helps to compose hybrid algorithms easily by including the desired strategy within the 
stages. 

It is noteworthy, that the onlooker phase and the learner phase of the proposed MOABC/D and MOLTA/D, 
respectively, has been modified from the original ABC and TLBO. These two phases in the original ABC and 
TLBO, create a new solution from the random selection of two parents. This strategy may increase the probability 
that algorithms remain trapped in local minima. Therefore, to prevent premature convergence and to avoid getting 
trapped in local minima, a new strategy was needed. In the proposed onlooker and learner phase, in order to create a 
new solution for the i-th sub-problem, three parents (xi, xj, and xk) are selected such that xi ≠ xj ≠ xk. Additionally, in 
the learner phase, a polynomial mutation operator is applied to maintain the solutions’ diversity. 

       Initialize Algorithm Parameters
 Generate initial population with N individuals
 Create a uniform spread of N weight vectors
 Compute the neighborhood B(i) of each weight vector
 trial (i) = 0, for all i = 1,2,…,N. (only for MOABC/D) 
 Evalute Fitness Function
 Initialize the reference point Z*

i = 1

Select subproblem (i)

Select: Colony or Class

Algorithm Phase (Employed or Teacher)

Update sub-problems and reference point Z*

Is Stop Criteria 
satisfied?

END

i = i+1

Evaluate fitness

Select subproblem (i)

Select: Colony or Class

Algorithm Phase (Onlooker or Learner)i = i+1

i < N

Scout Phase (only for MOABC/D)

Stage 1
Stage 2

NO

NO

YES

i = 1

Evaluate fitness

Update sub-problems and reference point Z*

i < N

YES

NO

YES

 

Fig. 18.6. Flowchart of MOABC/D and MOTLA/D 

18.8 Performance assessment 
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The ultimate goal of a multi-objective optimization algorithm is to identify solutions in the Pareto optimal set. 
However, identifying the entire Pareto optimal set is practically impossible. In addition, for many problems, 
especially for combinatorial optimization problems, the solution optimality proof is computationally infeasible [73]. 
Therefore, a practical approach to multi-objective optimization is to investigate a set of solutions (the best-known 
Pareto set) that represents the Pareto Optimal Set as well as possible. With these concerns in mind, a multi-objective 
optimization approach should achieve the following three conflicting goals [74]: 

1) The estimated Pareto front should be as close as possible to the true Pareto front. Ideally, it should be a 
subset of the Pareto optimal set. 

2) Solutions in the estimated Pareto set should be uniformly distributed and diverse over the true Pareto front 
in order to provide the decision-maker a true picture of tradeoffs. 

3) The estimated Pareto front should capture the whole spectrum of the true Pareto front. This requires 
investigating solutions at the extreme ends of the objective function space. 

These tree tasks cannot be measured adequately by a performance measure. Therefore, in order to assess the 
performance of the proposed algorithms the following performance measures are adopted. 

18.8.1 Inverted generational distance (IGD) 

The concept of the generational distance (GD) was introduced by David Veldhuizen and Gary Lamont as a way of 
estimating how far the Pareto-optimal solutions obtained by an algorithm are from those in the Pareto front of the 
problem [75]. The inverted generational distance (IGD), as its name suggests, it is an inverted variation of the 
widely used GD performance metric. There are different ways of computing and averaging the distances in the GD 
(e.g., [75] and [76]). The version of the IGD used in this chapter inverts the γ version in [76]. This means, that the 
Pareto front is used as the reference point and all its elements are compared with respect to the approximation 
generated by the algorithms. This measure is described as follows. 

Let P* be a set of points uniformly distributed on the Pareto front and A be the approximation obtained by an 
algorithm. IGD represents the average distance from P* to A defined as, 
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where d (v, A) is the minimum Euclidean distance between v and the points in A. If the points in the set P* can 
appropriately represent the Pareto front, IGD may measure both the spread and convergence of set A. The smaller 
the value of this metric is, the better is the performance of the algorithm. A value of IGD equal to zero implies that 
all obtained solutions lie on the true Pareto front and have the best possible spreads. 

18.8.2 Spacing (Sp) 

This performance measure was proposed by Schott [77], and it quantifies the spread of solutions (i.e., how 
uniformly distributed the solutions are) along a Pareto front approximation. This is defined by, 
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where n is the number of non-dominated solutions, 
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  . A value of zero implies that all solutions are uniformly spread (i.e., the best 

possible performance). 

18.8.3 Coverage of two sets C(A,B) 
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This performance measure was proposed by Zitzler et al. [74]. This metric compares two sets of non-dominated 
solutions (A, B) and evaluates the percentage of individuals in one set dominated by the individuals on the other set. 
This performance measure is defined by, 
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The value C(A,B) = 1 means that all points in B are dominated by or equal to all points in A. The opposite, C(A,B) = 
0 represents the situation when none of the solutions in B are covered by the set A. It is worth noting that both 
C(A,B) and C(B,A) have to be considered, since C(A,B) is not necessarily equal to 1 ( , )C A B . When C(A,B) = 1 

and C(B,A) = 0 then, the solutions in A completely dominate the solutions in B (i.e., this is the best possible 
performance for A). 

18.9 Case studies 

This chapter compares the effectiveness and performance of the proposed algorithm with respect to that of the 
MOEA/D. Both MOTLA/D and MOEA/D have been applied to three test systems. In the first case study, we 
consider the nine-bus test system; this system consists of 9 transmission lines and 3 generating units. The system 
model and data can be found in [78]. The second case study is related to the IEEE-26 bus test system, which has 26 
buses, 46 branches, 6 generators, 7 transformers, and 9 shunt capacitors. The detailed data of this problem can be 
found in [79]. Finally, in the third case study, the IEEE 118-bus test system is used. The system has 54 generator 
buses, 64 load buses and 186 transmission lines with 9 tap setting transformers. The complete system data are taken 
from [80]. For each case study, 20 independent runs are performed. The number of sub-problems considered by each 
algorithm are 100 for cases 1 and 2, and 200 for case 3. It is worth mentioning that the stopping criterion of each 
algorithm is the number of generations Ngen, (120, 180, and 200 generations for cases 1, 2 and 3, respectively). For 
all test instances, the control parameter settings utilized by the MOTLA/D and MOEA/D are summarized in the 
following. The neighborhood size (Tsize), is 30. The distribution index (μ), used in the polynomial mutation, is 20. 
The parameter of scale factor (Fs) associated with MOEA/D, which represents the amount of perturbation added to 
the main parent, is 0.5. The Crossover rate (Pcr) associated with MOEA/D, which determines the quantity of 
elements to be exchanged by the crossover operator, is 1. Finally, a mutation rate Pm=1/n is taken into account, 
where n is the number of decision variables. This parameter indicates the probability that each decision variable has 
of being changed. 

18.9.1 Performance measures 

There are two goals in multi-objective optimization: (a) to achieve convergence to the Pareto-optimal set; and (b) to 
obtain a well-distributed set of solutions along the Pareto front. These two tasks cannot be measured adequately by 
one performance measure each. Therefore, in order to assess the algorithms' performance two performance measures 
are adopted: (i) spacing (18.41), and (ii) coverage of two sets (18.42). 

18.9.2 Experimental results and comparison 

The advantage of evolutionary algorithms is that they have minimum requirements regarding the problem 
formulation; objectives can be easily added, removed, or modified. Likewise, in this application, they are well-suited 
to tackle highly complex problems such as those existing in power systems. 

All algorithms compared were implemented in MATLAB 7.3 and run on a PC with a Pentium core duo processor 
operating @ 2 GHz with 2 GB RAM. Three test systems were used: the IEEE 9-bus, IEEE 26-bus, and the IEEE 
118-bus systems, operating under their corresponding base case. For each test power system and each algorithm, 20 
runs were executed. The following results correspond to the best solution attained by each algorithm, with respect to 
the coverage of two set performance measure. 

18.9.2.1 Case study 1: 9-buses test system 

The decision variables are related to the generator voltage Vgi, and range in the interval [1.0, 1.05] pu. Table 1 
summarizes the best solution for minimum reactive losses calculated through MOTLA/D and MOEA/D. Notice that 
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for the optimized case, a reduction of the reactive losses and voltage stability index is attained. Both algorithms 
reduce the losses in 38.54%, which represents an important proportion of the losses with respect to the base case. 
Regarding the voltage stability index, Lindex, this has been decreased in 10.99% relative to the base case. In summary, 
the objective functions become: 

fRloss (Base Case)  = 0.0755 p.u  fLindex (Base Case) = 0.1673 

fRloss (MOTLA/D)  = 0.0464 p.u  fLindex (MOTLA/D) = 0.1489 

fRloss (MOEA/D)   = 0.0464 p.u. fLindex (MOEA/D)   = 0.1489 

Table 1. Case study 1: best solutions calculated by both MOTLA/D and MOEA/D 

Decision variables Base case
fRloss fLindex 

MOTLA/D MOEA/D MOTLA/D MOEA/D 

Vg1 (p.u) 1.04 1.05 1.05 1.05 1.05 

Vg2 (p.u) 1.02533 1.0376 1.0377 1.05 1.05 

Vg3 (p.u) 1.02536 1.0328 1.0331 1.0499 1.0499 

 

18.9.2.2 Case study 2: IEEE 26-buses test system 

The decision variables are related to the generator voltage Vgi, and range in the interval [1.0, 1.05] pu. Likewise, 
another decision variable is the transformer tap setting Ti, which ranges in the interval [0.95, 1.05]. 

The best solution for minimum reactive losses (Rloss) and voltage stability index (Lindex) is summarized in Table 2. 
The minimum Rloss and Lindex for the base case is 0.6302 p.u. and 0.1241, respectively. As can be noticed, MOTLA/D 
estimates Rloss = 0.1487 p.u and Lindex = 0.1023, while MOEA/D attains Rloss = 0.2105 p.u and Lindex = 0.0995. This 
means that MOTLA/D reaches 76.4% reduction in losses and 17.56% reduction in Lindex with respect to the base 
case. Meanwhile, MOEA/D reaches 66.59% reduction in losses and 19.82% reduction in Lindex with respect to the 
base case. It is assumed that the tap positions vary among 32 positions (16 up, and 16 down), and the closest is 
selected in Table 2. In summary, the objective functions become: 

fRloss (Base Case)  = 0.6302 p.u  fLindex (Base Case) = 0.1241 

fRloss (MOTLA/D)  = 0.1487 p.u  fLindex (MOTLA/D) = 0.1023 

fRloss (MOEA/D)   = 0.2105 p.u  fLindex (MOEA/D)  = 0.0995 

Table 2. Case study 2: best solutions calculated by both MOTLA/D and MOEA/D 

Decision variables Base case 
fRloss fLindex 

MOTLA/D MOEA/D MOTLA/D MOEA/D 

Vg1 (p.u) 1.025 1.0265 1.0466 1.05 1.0498 

Vg2 (p.u) 1.02 1.0109 1.0112 1.0429 1.0365 

Vg3 (p.u) 1.03 1.021 1.0137 1.0498 1.0420 

Vg4 (p.u) 1.045 1.0498 1.0487 1.05 1.0499 
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Vg5 (p.u) 1.045 1.0248 1.0445 1.05 1.0379 

Vg26 (p.u) 1.015 1.0459 1.0216 1.0499 1.0500 

T3 0.96 (-13) 1.0135 (4) 0.9705 (-9) 0.95 (-16) 0.9850(-5) 

T6 0.96 (-13) 0.95 (-16) 1.0493 (13) 0.95 (-16) 1.0129(1) 

T8 1.017 (5) 1.0016 (1) 0.9840 (-6) 0.95 (-16) 0.9579(-14) 

T9 1.05 (16) 0.9637 (-12) 0.9703 (-10) 0.95 (-16) 0.9500(-16) 

T10 1.05 (16) 0.9735 (-8) 0.9598 (-13) 0.95 (-16) 0.9507(-16) 

T15 0.95 (-16) 0.964 (-12) 0.9507 (-16) 0.95 (-16) 0.9515(-16) 

T18 0.95 (-16) 0.9768 (-7) 0.9730 (-9) 0.95 (-16) 0.9500(-16) 

 

18.9.2.3 Case study 3: 118-buses tests system 

The decision variables are related to the generator voltage Vgi, and range in the interval [0.98, 1.05] pu. Likewise, 
another decision variable is the transformer tap setting Ti, which ranges in the interval [0.95, 1.05]. 

Table 3 summarizes the optimal values for the two objective functions (Rloss) and (Lindex) estimated by both 
algorithms. The minimum Rloss and Lindex for the base case became 7.8223 p.u and 0.0693, respectively. MOTLA/D 
reduced reactive losses from 7.8223 p.u to 6.9097 p.u (a reduction of approximately 11.66%) and improved the Lindex 
from 0.0693 to 0.0630 (a reduction of approximately 9.1%). Meanwhile, MOEA/D reduced reactive losses from 
7.8223 p.u to 6.9116 p.u (a reduction of approximately 11.64%) and improved the Lindex from 0.0693 to 0.0630 (a 
reduction of approximately 9.1%). It is assumed that taps vary among 32 positions (16 up, and 16 down), and the 
closest is selected in Table 3. In summary, the objective functions become: 

fRloss (Base Case)  = 7.8223 p.u  fLindex (Base Case) = 0.0693 

fRloss (MOTLA/D)  = 6.9097 p.u  fLindex (MOTLA/D) = 0.0630 

fRloss (MOEA/D)   = 6.9116 p.u  fLindex (MOEA/D)  = 0.0630 

Table 3. Case study 3: best solutions calculated by both MOTLA/D and MOEA/D 

Decision variables Base case 
fRloss fLindex 

MOTLA/D MOEAD MOTLA/D MOEAD 

Vg1 (p.u) 0.955 1.0356 1.0334 1.0285 1.0273 

Vg4 (p.u) 0.998 1.05 1.05 1.0497 1.05 

Vg6 (p.u) 0.99 1.0472 1.0451 1.0459 1.0401 

Vg10 (p.u) 1.05 1.0499 1.05 1.0491 1.05 

Vg19 (p.u) 0.963 1.0435 1.037 1.0497 1.0397 

Vg24 (p.u) 0.992 1.0497 1.0436 1.0498 1.047 

Vg27 (p.u) 0.968 1.037 1.0371 1.049 1.0327 
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Vg31 (p.u) 0.967 1.033 1.031 1.0362 1.035 

Vg36 (p.u) 0.98 1.0495 1.0493 1.0493 1.0495 

Vg40 (p.u) 0.97 1.0398 1.0351 1.0415 1.0461 

Vg42 (p.u) 0.985 1.0499 1.0435 1.0499 1.0498 

Vg54 (p.u) 0.955 1.0187 1.0122 1.0203 1.0118 

T8 0.985 (-5) 0.9935 (-2) 0.9903 (-3) 0.9871 (-4) 0.9911 (-3) 

T32 0.96 (-13) 1.000 (1) 1.0006 (1) 1.0013 (1) 0.9995 (-1) 

T36 0.96 (-13) 0.9948 (-2) 0.9965 (-5) 1.0006 (1) 1.0032 (2) 

T51 0.955 (-14) 0.983 (-6) 0.9857 (-5) 0.9725 (-9) 0.9814 (-6) 

T93 0.96 (-13) 1.0259 (9) 1.0177 (6) 1.05 (16) 1.0223 (8) 

T95 0.985 (-5) 1.0179 (6) 1.013 (5) 1.0377 (12) 1.0136 (5) 

 

18.9.2.4 Comparison of MOTLA/D and MOEA/D 

For each case study, MOTLA/D and MOEA/D are evaluated using the two performance measures (18.41) and 
(18.42). The results are summarized in Tables 4 and 5. Each of these Tables present the average and the standard 
deviation (in brackets) of each performance measure for each case study. The best results are displayed in boldface. 

Notice in Table 4 that the proposed approach (MOTLA/D) outperformed MOEA/D in all cases regarding the 
Coverage of two sets (C). This indicates that the proposed approach produces more solutions that dominate 
(according to Pareto optimality) the solutions produced by MOEA/D. The difference among the non-dominated 
solutions produced by MOTLA/D and MOEA/D is more noticeable in cases 2 and 3. According to Table 4, in the 
case study 2, MOTLA/D produced solutions which dominate to 55% of the solutions generated by MOEA/D. In 
contrast, MOEA/D produced solutions that dominate only to 30% of the solutions generated by MOTLA/D. In the 
case study 3, the solutions obtained by MOTLA/D dominate about 41% of the solutions generated by MOEA/D; in 
contrast, MOEA/D produced solutions that only dominate 25% of the solutions generated by MOTLA/D. 

Regarding Spacing (S), MOEA/D attains relatively better results for cases 1 and 2. However, since coverage (which 
relates to convergence) has precedence over spread, we can conclude that our proposed MOTLA/D outperformed 
MOEA/D in the analyzed cases of study. 

The Pareto’s fronts obtained by MOTLA/D and MOEA/D for all cases are depicted in Fig. 18.7. These curves 
represent the best case, according to the performance measures defined in (18.41)-(18.42). Notice that both 
algorithms perform similarly for case study 1. The difference between the approximations obtained by MOTLA/D 
and MOEA/D is more noticeable in cases 2 and 3. It is noteworthy that MOTLA/D is able to achieve more 
distributed solutions in the case study 3. A distribution of non-dominated solutions as uniform as possible along the 
Pareto front, ensures that there are not big gaps in the Pareto front and, therefore, all the different types of trade-off 
solutions are generated. This is relevant, because if big gaps occur, it may happen that the trade-off solution in 
which we are interested on is not produced (i.e., the solution of concern may be located in the missing portion of the 
Pareto front). 
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Fig. 18.7. From left to right: Pareto fronts (f1 – f2) for both the MOTLA/D and MOEA/D (best result): (a) Case study 1; (b) Case study 2; (c) 
Case study 3. 

Table 4. Results of Coverage of two set(C) performance measure 

TEST C(MOTLA/D,MOEA/D) C(MOEA/D,MOTLA/D) 

 Average 

(Std. Dev.) 

Average 

(Std. Dev.) 

Case study 1 0.014 

(0.009) 

0.011 

(0.011) 

Case study 2 0.545 

(0.415) 

0.293 

(0.335) 

Case study 3 0.411 

(0.354) 

0.252 

(0.224) 

 

Table 5. Results of Spacing (S) performance measure 

TEST MOTLA/D MOEA/D 

 
Average 

(Std. Dev.) 

Average 

(Std. Dev.) 

Case study 1 
0.0228 

(0.000) 

0.0197 

(0.002) 

Case study 2 
0.0256 

(0.002) 

0.0184 

(0.003) 

Case study 3 
0.0254 

(0.013) 

0.0338 

(0.014) 
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Conclusions 

This chapter proposed a multi-objective teaching learning algorithm based on decomposition (MOTLA/D) for 
solving a reactive power system problem. The effectiveness and performance of MOTLA/D were compared with 
respect to those of MOEA/D, which represents a state-of-the-art algorithm, in three cases of study: 9-, 26-, and 118-
buses test systems. The results indicate that the proposed algorithm was able to obtain better solutions than 
MOEA/D in all the analyzed cases. Thus, it may be concluded that the proposed algorithm is a reliable choice for 
power systems applications. In this chapter, an improvement of both reactive losses and voltage stability were 
attained. Likewise, some other additional objectives could be taken into account as well. 
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