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Summary. Differential Evolution is currently one of the most popular heuristics to
solve single-objective optimization problems in continuous search spaces. Due to this
success, its use has been extended to other types of problems, such as multi-objective
optimization. In this chapter, we present a survey of algorithms based on differen-
tial evolution which have been used to solve multi-objective optimization problems.
Their main features are described and, based precisely on them, we propose a tax-
onomy of approaches. Some theoretical work found in the specialized literature is
also provided. To conclude, based on our findings, we suggest some topics that we
consider to be promising paths for future research in this area.

1 Introduction

Nowadays, evolutionary algorithms (EAs) are considered a very effective alter-
native to solve complex search problems, including either global (i.e., single-
objective) [39] or multi-objective optimization problems [10]. The first at-
tempts to use EAs to solve multi-objective problems relied mainly on genetic
algorithms (GAs) [16] and evolution strategies (ES) [6]. A comprehensive re-
view of these approaches can be found in [10].
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In 1995, Storn and Price proposed the most recent evolutionary algorithm
called Differential Evolution (DE) [45] to solve real-parameter optimization
problems. DE uses a simple mutation operator based on differences between
pairs of solutions (called vectors) with the aim of finding a search direction
based on the distribution of solutions in the current population. DE also
utilizes a steady-state-like replacement mechanism, where the newly generated
offspring (called trial vector) competes only against its corresponding parent
(old object vector) and replaces it if the offspring has a higher fitness value.
In the remainder of this chapter, we will use trial vector and offspring as
synonymous. The same applies for parent and old object vector.

DE shares some characteristics with previous EAs and also has some differ-
ences. The similarities are the following: DE is a population-based approach,
recombination and mutation are the variation operators used to generate new
solutions and a replacement mechanism provides capabilities to maintain a
fixed size in the population.

However, unlike GAs, where binary encoding can be used, solutions in DE
are coded with real values as in ES. But, DE does not use a fixed distribu-
tion (as the Gaussian distribution adopted in ES) to control the behavior of
the mutation operator; instead, the current distribution of the solutions in
the search space determines the stepsize and the search direction for each
individual. This last feature seems to be one of its main advantages.

Due to the multicriteria nature of most real-world problems, multi-objective
optimization problems are very common, particularly in engineering applica-
tions. As the name indicates, multi-objective optimization problems involve
multiple objectives, which should be optimized simultaneously and that often
are in conflict with each other. This results in a group of alternative solutions
which must be considered equivalent in the absence of information concerning
the relevance of the others.

Since Evolutionary Algorithms (EAs) deal with a group of candidate solu-
tions, it seems natural to use them in multi-objective optimization problems
to find a group of optimal solutions. Indeed, EAs have proved very efficient
in solving multi-objective optimization problems [10, 11].

With the rise of new bio-inspired heuristics for numerical optimization,
like Particle Swarm Optimization (PSO) [27] and also DE, it is important to
analyze how they are adapted to solve different types of problems, like, in our
case, multi-objective optimization problems. This work focuses on a review
of the state-of-the-art in multi-objective optimization with DE as a search
engine.

This chapter is organized as follows: In Section 2, DE is explained in detail
and its main variants are presented. Section 3, provides the statement of the
multi-objective optimization problems and also some related definitions. In
Section 4 some multi-objective issues included in evolutionary multi-objective
optimization are addressed. After that, in Section 5 we show our proposed tax-
onomy of DE-based approaches for multi-objective optimization. Some theo-
retical results regarding DE for multi-objective optimization are summarized
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in Section 6. Finally, Section 7 includes our conclusions and future paths of
research.

2 Differential Evolution variants

There are some variants of the DE algorithm. They vary on (1) the type
of the criterion to select one of the individuals to be used in the mutation
operator (called donor vector), (2) the number of differences computed also in
the mutation operator and, finally, (3) in the recombination operator chosen.

The most popular variant is called “DE/rand/1/bin”, where “DE” refers
to the name of the algorithm, the word “rand” indicates that the donor vec-
tor selected to compute the mutation values is chosen at random, “1” is the
number of pairs of solutions chosen (most of the time chosen at random) to
calculate the mutation differential and finally “bin” means that a binomial re-
combination is used. The corresponding algorithm of this variant is presented
in Figure 1.

Besides typical parameters used in EAs (number of individuals and number
of generations), two parameters are adopted in DE: “CR” and “F”. “CR”
controls the influence of the parent in the generation of the offspring. Higher
values mean less influence of the parent in the features of its offspring. “F”
scales the influence of the set of pairs of solutions selected to calculate the
mutation value (one pair in the case of the algorithm in Figure 1).

In Figure 2 the effect of the DE mutation and recombination operator
in its most popular variant (DE/rand/1/bin) is explained. xr3

is the donor
solution which can be chosen either at random or it can be the best solution in
the population. xr1

and xr2
are the pair of solutions chosen always at random

and used to compute the difference between them in order to define a search
direction. This difference is scaled with the “F” parameter. After that, it is
added to xr3

to define the location of the “mutation vector” (black square in
Figure 2). This “mutation vector” is combined with the original parent with
a binomial (discrete) recombination and the location of the mutation vector
plus the two filled squares in the figure represent the possible positions of
the offspring generated. Finally, this offspring will compete against its parent
(based on fitness) and the best one will remain in the population for the next
generation.

As it was mentioned before, the difference among the different DE variants
are mainly on the way the donor solution (from the set chosen to compute
the “mutation vector”) is selected, the number of pairs of randomly chosen
solutions and the type of recombination operator adopted. Among the main
variations we distinguish the following:

• Variants with discrete recombination operator (either binomial or expo-
nential):
– DE/rand/1/bin
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1 Begin

2 G=0
3 Create a random initial population xi,G ∀i, i = 1, . . . , NP

4 Evaluate f(xi,G) ∀i, i = 1, . . . , NP

5 For G=1 to MAX GEN Do

6 For i=1 to NP Do

7 ⇒ Select randomly r1 6= r2 6= r3 :
8 ⇒ jrand = randint(1, D)
9 ⇒ For j=1 to D Do

10 ⇒ If (randj [0, 1) < CR or j = jrand) Then

11 ⇒ ui,j,G+1 = xr3,j,G + F (xr1,j,G − xr2,j,G)
12 ⇒ Else

13 ⇒ ui,j,G+1 = xi,j,G

14 ⇒ End If

15 ⇒ End For

16 If (f(ui,G+1) ≤ f(xi,G)) Then

17 xi,G+1 = ui,G+1

18 Else

19 xi,G+1 = xi,G

20 End If

21 End For

22 G = G + 1
23 End For

24 End

Fig. 1. “DE/rand/1/bin” algorithm. randint(min,max) is a function that returns
an integer number between min and max. rand[0, 1) is a function that returns a
real number between 0 and 1. Both are based on a uniform probability distribu-
tion. “NP”, “MAX GEN”, “CR” and “F” are user-defined parameters. “D” is the
dimensionality of the problem. Steps pointed with arrows change from variant to
variant.

– DE/rand/1/exp
– DE/best/1/bin
– DE/best/1/exp
The “rand” variants select the donor solution (xr3

) and the pair of solu-
tions to calculate the mutation differential (xr1

and xr2
) at random. In

contrast, the “best” variants use the best solution in the population as the
donor solution and the pair of solutions are chosen at random.

• Variants with arithmetic recombination:
– DE/current-to-rand/1
– DE/current-to-best/1
The only difference between them is that the first one selects the donor
solution (xr3

) and the pair of solutions to calculate the differential muta-
tion (xr1

and xr2
) at random. The second one uses the best solution in
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Fig. 2. DE/rand/1/bin recombination and mutation operators example. xi is the
current parent, xr3

is the donor individual chosen at random (but it can be the best
solution in the population in other variants), xr1

and xr2
are the individuals chosen

at random to calculate the scaled difference between them and to define a search
direction. The black square represents the mutation vector which can be the loca-
tion of the only offspring generated after performing recombination. Additionally,
the filled squares are the other two possible locations for the only offspring after
recombination.

the population as the donor solution and, again, the pair of solutions to
calculate the differential mutation are chosen randomly.

• Variants with combined arithmetic-discrete recombination:
– DE/current-to-rand/1/bin

The implementation details of each DE variant are summarized in Table
1.

3 Multi-objective Optimization

We are interested in solving problems of the type4:

minimize f(x) := [f1(x), f2(x), . . . , fk(x)] (1)

subject to:
gi(x) ≤ 0 i = 1, 2, . . . , m (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

4 Without loss of generality, we will assume only minimization problems.
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Variant

rand/p/bin:

ui,j =

{

xr3,j + F ·

∑

p

k=1
(x

r
p

1
,j

− x
r

p

2
,j

) if Uj(0, 1) < CR or j = jr

xi,j otherwise

rand/p/exp:

ui,j =

{

xr3,j + F ·

∑

p

k=1
(x

r
p

1
,j

− x
r

p

2
,j

) from Uj(0, 1) < CR or j = jr

xi,j otherwise

best/p/bin:

ui,j =

{

xbest,j + F ·

∑

p

k=1
(x

r
p

1
,j

− x
r

p

2
,j

) if Uj(0, 1) < CR or j = jr

xi,j otherwise

best/p/exp:
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{

xbest,j + F ·

∑

p

k=1
(x

r
p

1
,j

− x
r

p

2
,j

) from Uj(0, 1) < CR or j = jr

xi,j otherwise

current-to-rand/p:

ui = xi + K · (xr3
− xi) + F ·

∑

p

k=1
(x

r
p

1

− x
r

p

2

)

current-to-best/p:

ui = xi + K · (xbest − xi) + F ·

∑

p

k=1
(x

r
p

1

− x
r

p

2

)

current-to-rand/p/bin:

ui,j =

{

xi,j + K · (xr3,j − xi,j) + F ·

∑

p

k=1
(x

r
p

1
,j

− x
r

p

2
,j

) if Uj(0, 1) < CR or j = jr

xi,j otherwise

Table 1. DE basic variants. jr is a random integer number generated between
[0, n], where n is the number of variables of the problem. Uj(0, 1) is a real number
generated at random between 0 an 1. Both numbers are generated using a uniform
distribution. p is the number of pairs of solutions used to compute the differences in
the mutation operator. ui is the offspring (or trial vector), xr3

is the donor solution
chosen at random, xbest is the best solution in the population as donor solution,
xi is the current parent (old object vector) and xr

p

1

and xr
p

2

are the “pth” pair to

compute the mutation differential.

where x = [x1, x2, . . . , xn]
T

is the vector of decision variables, fi : IRn → IR,
i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ..., m,
j = 1, ..., p are the constraint functions of the problem.

To describe the concept of optimality in which we are interested, we will
introduce next a few definitions.

Definition 1. Given two vectors x,y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x 6= y.

Figure 3 shows a particular case of the dominance relation in the pres-
ence of two objective functions.

Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is
nondominated with respect to X , if there does not exist another x′ ∈ X
such that f(x′) ≺ f (x).
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dominated solutions

f

f2

1

Fig. 3. Dominance relation in a bi-objective space.

Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F is
the feasible region) is Pareto-optimal if it is nondominated with respect to
F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {x ∈ F|x is Pareto-optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {f(x) ∈ IRk|x ∈ P∗}

Figure 4 shows a particular case of the Pareto front in the presence of
two objective functions.

dominated solutions

Pareto front solutions

f

f2

1

Fig. 4. The Pareto front of a set of solutions in a two objective space.

We thus wish to determine the Pareto optimal set from the set F of all the
decision variable vectors that satisfy (2) and (3). Note however that in prac-
tice, not all the Pareto optimal set is normally desirable (e.g., it may not be
desirable to have different solutions that map to the same values in objective
function space) or achievable.



8 Mezura-Montes, Reyes-Sierra & Coello Coello

4 Differential Evolution for Multi-Objective Problems

In order to apply the DE strategy for solving multi-objective optimization
problems, the original scheme has to be modified since the solution set of a
problem with multiple objectives does not consist of a single solution (as in
global optimization). Instead, in multi-objective optimization, we aim to find
a set of different solutions (the so-called Pareto optimal set), as mentioned in
Section 3.

Two are the main aspects that have been considered by researchers who
have extended the DE approach to multi-objective optimization:

1. How to promote diversity into the population?
2. How to select and/or retain the best individuals? That is, how to perform

elitism?

We briefly discuss these two design aspects in the following Sections.

4.1 Promoting Diversity

Promoting diversity may be done through the selection process by means of
mechanisms based on some quality measures that indicate the closeness of
the individuals within the population. In order to help understanding the
specific approaches that are going to be described later on, we present here
two of the most important density measures used in the area of multi-objective
optimization:

• Crowding distance [14]. The crowding distance factor gives us an idea
of how crowded are the closest neighbors of a given individual, in objective
function space. This measure estimates the perimeter of the cuboid formed
by using the nearest neighbors as the vertices. See Figure 5.

i−1

i

i+1

f

f

1

2

Fig. 5. The crowding distance factor for an example with two objective functions.
Individuals with a larger value of this factor are preferred.
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• Fitness sharing [17, 13]: When an individual is sharing resources with
others, its fitness is degraded in proportion to the number and closeness to
individual that surround it within a certain perimeter. A neighborhood of
an individual is defined in terms of a parameter called σshare that indicates
the radius of the neighborhood. Such neighborhoods are called niches. See
Figure 6.

σ
share

σ
share

Fig. 6. For each individual, a niche is defined. Individuals whose niche is less crowded
are preferred.

4.2 Performing Elitism

In evolutionary multi-objective optimization, elitism is usually implemented
through an external archive, also called secondary population, which stores
the nondominated individuals found along the search. Such an archive will
allow the entrance of a solution only if: (a) it is nondominated with respect
to the contents of the archive or (b) it dominates any of the solutions within
the archive (in this case, the dominated solutions have to be deleted from the
archive).

Besides, elitism can also be implemented through the use of (µ + λ)-
selection (also called plus selection), by which, at each generation, parents
and children are compared in order to select the best of them to conform the
next population.

One of the most popular mechanisms used to select the best individu-
als from the combined population of parents and children is the so-called
nondominated sorting approach. This approach is based on the Pareto rank-
ing mechanism firstly proposed by Goldberg in 1989 [16]. The nondominated
sorting mechanism ranks the individuals of the population in different lev-
els in the following way. All nondominated individuals are classified into one
category with rank 1 (level 1), then, this group of individuals with rank 1 is
ignored and the process is repeated. This time, the nondominated individuals
will have rank 2 (level 2). The process continues until all individuals are clas-
sified. Individuals with lower rank are always preferred for selection. Figure 7
shows the ranking process of the nondominated sorting approach.

According to Goldberg [16], to maintain appropriate diversity, the non-
dominated sorting procedure should be used in conjunction with niching tech-
niques as, for example, the fitness sharing mechanism previously mentioned.
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f1

2f
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Level 1

Level 2

Level 3

Fig. 7. Ranking process of the nondominated sorting approach.

The first multi-objective evolutionary algorithm (MOEA) which used the
nondominated sorting approach proposed by Goldberg was the Nondominated
Sorting Genetic Algorithm (NSGA) proposed by Srinivas and Deb in 1994 [54].
The NSGA algorithm combined the nondominated sorting approach with fit-
ness sharing in its corresponding fitness assignment process. Later, the im-
proved version of the NSGA, called NSGA-II [14], incorporated the nondomi-
nated sorting approach in order to perform a (µ+λ)-selection. In the NSGA-II,
the population for the next generation is obtained by first introducing all in-
dividuals with rank 1 (level 1), then all individuals with rank 2 (level 2) and
the process continues until the population is complete. However, when there
is not enough space to include all individuals with rank i (level i), a crowding
distance mechanism is applied in order to select the best individuals from such
level.

5 Taxonomy

In this section, we propose a classification of approaches, based on common
features to adapt DE for multi-objective optimization. The proposed classes
are enumerated as follows:

1. Non-Pareto-based approaches.
2. Pareto-based approaches.

a) Using Pareto dominance
b) Using Pareto ranking.

3. Combined approaches.
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In the following Subsections, we will show the approaches located in each
category, by describing their main features, regarding the DE variant used
and their companion mechanisms to deal with multi-objective problems.

5.1 Non-Pareto-Based Approaches

In this class, we consider those approaches that use multi-objective concepts
like combination of functions, problem transformation, etc.

Babu and Jehan [5] propose the Differential Evolution for Multi-Objective
Optimization approach. This algorithm uses the DE/rand/1/bin variant with
two different mechanisms to solve bi-objective problems: (1) incorporating
one objective function as a constraint, and (2) using an aggregating function.
A single optimal solution is obtained after N iterations using the Penalty
Function Method [11] to handle the objective treated as a constraint in the
first case. On the other hand, a set of optimal solutions is obtained after N

iterations using the Weighting Factor Method [11] to provide the importance
of each objective from the user’s perspective, in the second case. The authors
present results for two bi-objective problems and compare them with respect
to a simple GA. The authors indicate that the DE algorithm provides the
exact optimum with a lower number of evaluations than the GA.

Li and Zhang [36] propose a multi-objective differential evolution algo-
rithm based on decomposition (MODE/D) for continuous multi-objective op-
timization problems with variable linkages. The authors use the weighted
Tchebycheff approach to decompose a multi-objective optimization problem
into several scalar optimization subproblems. The differential evolution opera-
tor based on the DE/rand/1/bin variant is used for generating new trail solu-
tions, and a neighborhood relationship among all the subproblems generated
is defined, such that they all have similar optimal solutions. For validating
their approach, the authors adopt test problems with variable linkages [41]
and propose variants of some of the Zitzler-Deb-Thiele (ZDT) test problems
[59]. Results are compared with respect to the NSGA-II [14], the Nondomi-
nated Sorting Differential Evolution (NSDE) [25] and GD3 [30]. The authors
report that MODE/D clearly outperformed the other approaches with respect
to which it was compared.

5.2 Pareto-Based Approaches

In this group we classify those methods that use Pareto concepts to deal with
multiple objectives. We divided this class into two subclasses, because we
detected two different ways to apply them: (1) as a criterion to select the best
solution in the DE selection mechanism and (2) as a ranking procedure.

Pareto dominance

In this subclass, we describe those approaches where Pareto Dominance was
used as a criterion to select the best solution between the old population vector
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and the trial vector. One of the features that distinguishes each approach
is the decision made when both solutions are nondominated between each
other. Furthermore, other authors use Pareto Dominance as a filter to get
only nondominated solutions.

Apparently, Chang et al. [9] constitutes the first reported attempt to ex-
tend differential evolution for multi-objective problems. In this paper, the
authors use DE/rand/1/bin with an external archive (called “Pareto optimal
set” by the authors) to store the nondominated solutions obtained during
the search. The approach also incorporates fitness sharing to maintain diver-
sity. An interesting aspect of this approach is that the selection mechanism
of the differential evolution algorithm is modified in order to enforce that the
members of the new generation are nondominated not only regarding their ob-
jective values but also regarding a set of distance metric values (one assigned
to each objective) which ensure the new solutions are at certain minimum
distance from the previously found nondominated solutions. This approach is
adopted to fine-tune the fuzzy automatic train operation (ATO) for a typical
mass transit system, in which three objectives are considered: (1) punctuality
(least deviation from scheduled arrival time), (2) least energy consumption
and (3) maximum passenger comfort. This application is discussed in further
detail in [8].

Abbass et al. [4, 3, 51] propose the Pareto Differential Evolution (also
abbreviated as PDE) algorithm. The authors use an special case of the DE/-
current to rand/1/bin variant with K = 0 (see last row in Table 1), because
the old population vector (the parent) is used in the calculation of the trial
vector (combined with the difference vector) and also in the discrete recom-
bination. The algorithm works as follows. The initial population is initialized
using a Gaussian distribution with mean 0.5 and standard deviation 0.15.
Only the nondominated solutions are retained in the population for recom-
bination (all dominated solutions are removed). Three parents are randomly
selected (one as the main parent and also trial solution) and a child is gener-
ated with them. The offspring is placed in the population only if it dominates
the main parent; otherwise, a new selection process takes place. This process
continues until the population is completed. If the number of nondominated
solutions exceeds a certain threshold (50 was adopted in [4]), a distance metric
is adopted to remove parents which are too close from each other (this can be
seen as a niching procedure in which this distance metric is the niche radius).
In this approach, the step-length parameter F is generated from a Gaussian
distribution N(0, 1) and the boundary constraints are preserved either by re-
versing the sign if the variable is ≤ 0 or by repetitively subtracting 1 if it
is ≥ 0, until the variable is within the allowable boundaries. This algorithm
also incorporates a mutation operator which is applied with certain probabil-
ity (after the crossover operator), by adding to each variable a small random
perturbation. PDE is compared with respect to SPEA [60] in [3] (without
mutation) and also with respect to many other approaches (including PAES
[28], the NSGA [54] and the NPGA [22]) in [4] (including mutation).
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In [2], a new version of PDE is introduced. This version is called Self-
adaptive Pareto Differential Evolution (SPDE) algorithm, because it self-
adapts its crossover and its mutation rates.

In [1], Abbass proposes an approach called Memetic Pareto Artificial Neu-
ral Networks (MPANN). This approach consists of a version of Pareto Differ-
ential Evolution (PDE) [3] enhanced with the Back-Propagation (BP) local
search algorithm, in order to speed up convergence. MPANN is used to evolve
neural networks in which an attempt is made to obtain a trade-off between the
architecture and generalization ability of the network. So, two objectives are
minimized: (1) error and (2) the number of hidden units. MPANN is validated
using two benchmark data sets: the Australian credit card assessment problem
and the diabetes problem (both were taken from the UCI Machine Learning
Repository [40]). Results are compared with respect to 23 algorithms, which
include decision trees, rule-based methods, neural networks and statistical al-
gorithms. MPANN was able to outperform the traditional backpropagation
approach and obtained results competitive against the other 23 algorithms
with respect to which it was compared.

Kukkonen and Lampinen extended DE/rand/1/bin to solve multi-objective
optimization problems in their approach called Generalized Differential Evo-
lution (GDE). In fact, GDE is able to solve global and multi-objective op-
timization problems (either constrained or unconstrained). The first version
of their approach [32] modified the original DE selection operation by intro-
ducing Pareto Dominance as a selection criterion between the old population
member and the trial vector. Also, Pareto dominance in the constraint space
is considered to handle the constraints of the problem.

To promote a better distribution of the nondominated solutions, a second
version of the approach, called GDE2 [29] was introduced. In this version,
a crowding distance measure was used to select the best solution when the
old population vector and the trial vector are feasible and nondominated with
respect to each other, in such a way that the vector located in the less crowded
region will be part of the population of the next generation. The authors
acknowledge that GDE2 was sensitive to its initial parameters and that the
modified selection mechanism slows down convergence.

Santana-Quintero and Coello Coello [50] propose the ǫ-MyDE. This ap-
proach keeps two populations: the main population (which is used to select
the parents) and a secondary (external) population, in which the concept of
ǫ-dominance [35] is adopted to retain the nondominated solutions found and
to distribute them in an uniform way. The concept of ǫ-dominance does not
allow two solutions with a difference less than ǫi in the i-th objective to be
nondominated with respect to each other, thereby allowing a good spread
of solutions. ǫ-MyDE uses real numbers representation, and incorporates a
constraint-handling mechanism that allows infeasible solutions to intervene
during recombination. DE/rand/1/bin variant is used to evolve the main pop-
ulation. However, after a user-defined number of generations, the three ran-
dom solutions used in the mutation operator are selected from the secondary
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population in such a way that they are close among them in the objective
function space. If none of the solutions satisfies this condition, a random solu-
tion from this secondary population is chosen. Finally, to improve exploration
capabilities, a uniform mutation operator is added.

Portilla Flores [44] proposes a multi-objective version of differential evo-
lution, which is used for concurrent design of pinion–rack continuously vari-
able transmission (CVT). This mechatronic design problem is formulated as
a dynamic multi-objective optimization problem in which two objectives are
considered: (1) maximize the mechanical CVT efficiency, and (2) minimize the
controller energy. The DE/rand/1/bin variant is used in this approach and
Pareto dominance between a parent and its offspring works like the selection
criterion. Also, this technique incorporates a secondary population to retain
the nondominated solutions found during the evolutionary process. Finally, it
uses the feasibility rules from [38] to handle the constraints of the problem.

However, the approach does not include an explicit mechanism to main-
tain diversity (although a set of diverse solutions is actually generated). An
interesting aspect of this work is that results are compared with respect to a
mathematical programming technique: the goal attainment method. The com-
parison of results indicated that, as expected, the goal attainment method was
very sensitive to its initial search point. Also, in several runs, it was not able
to converge to a feasible solution. In contrast, the differential evolution al-
gorithm was able to converge to feasible solutions in all the runs performed.
However, the solutions generated by the goal attainment method were non-
dominated with respect to the solutions produced by differential evolution.
Additionally, the CPU time required by differential evolution was about twice
the time required by the goal attainment method.

Pareto Ranking

This subsection includes those approaches where a Pareto ranking procedure
was added to them. The aim is to perform a (µ + λ)-selection after the set of
trial vectors have been generated from the current population.

In [37], Madavan proposes the Pareto-Based Differential Evolution (PBDE)
approach. In this algorithm, Differential Evolution is extended to multi-
objective optimization by incorporating Pareto-based mechanisms proposed
previously by Deb et al. [12, 14]. It is interesting to note that this approach
uses the same special case of the DE/current to rand/1/bin variant used by
Abbass [4, 3, 51] where K = 0. The PBDE algorithm modifies the selection
procedure in the basic DE algorithm by incorporating the key elements of
the NSGA-II algorithm: the nondominated sorting and ranking selection pro-
cedure. In this way, once the new candidate vectors are obtained using DE
operators (where the basic crossover operator is applied using the trial vector
as the main parent), the new population is combined with the existing parents
population and then the best members of the combined population (parents
plus offspring) are chosen. As in the NSGA-II algorithm, the population for
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the next generation is filled by taking the individuals from the best nondomi-
nated rank down and discarding individuals with the same rank based on the
diversity measure (crowding distance). This algorithm is not compared with
respect to any other approach and is tested on 10 different unconstrained
problems performing 250,000 evaluations. The authors indicate that the ap-
proach has difficulties to converge to the true Pareto front in two problems
(Kursawe’s test function [31] and ZDT4 [59]).

Xue et al. [56, 55] propose the Multi-Objective Differential Evolution
(MODE) approach. This algorithm uses a variant of DE created by the au-
thors in which the best individual is incorporated to create the offspring. This
variant has some similarities with the traditional DE/best/1/bin. A Pareto-
based approach is introduced to implement the selection of the best individual:
if the trial solution is dominated, a set of nondominated individuals can be
identified, and the “best” turns out to be any individual (randomly picked)
from this set. On the other hand, if the trial solution is nondominated, it will
be the “best” solution itself. The formula used by Xue et al. to create the
offspring is the following:

p′i = γ · pbest + (1 − γ)pi + F ·
K

∑

k=1

(

pi
ak

− pi
bk

)

where pbest is the best individual selected, γ ∈ [0, 1] represents the greediness
of the operator, and K is the number of perturbation vectors (they use K = 2).
It is worth noting that the previous formula is applied with certain mutation
probability (pm). Also, the authors adopt (µ + λ)-selection, Pareto ranking
(according to Goldberg [16]) and crowding distance [14] in order to produce
and maintain well-distributed solutions. Actually, the authors incorporate a
new parameter, called σcrowd, which is used to penalize the fitness of the
individuals, based on the crowding distance values, in order to improve the
(µ + λ)-selection approach. MODE is used to solve five high dimensionality
unconstrained problems with 250,000 evaluations and the results are compared
only to those obtained by SPEA [61].

Iorio and Li [25] propose the Nondominated Sorting Differential Evolution
(NSDE). This approach is a simple modification of the NSGA-II [14]. The only
difference between this approach and the NSGA-II is in the method for gener-
ating new individuals. The NSGA-II uses a real-coded crossover and mutation
operator, but in the NSDE, these operators are replaced with the operators of
Differential Evolution. New candidates are generated using the DE/current-
to-rand/1 variant, which is known to be rotationally invariant. A number
of experiments are conducted on a uni-modal rotated problem from the lit-
erature. NSDE is used to solve a uni-modal rotated problem with a certain
degree of rotation on each plane. The results of the NSDE outperformed those
produced by the NSGA-II, and thus, it is shown that Differential Evolution
can provide rotationally invariant behavior on a multi-objective optimization
problem. In further work, Iorio and Li [26] propose three new versions of
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NSDE that incorporate directional information, by selecting parents for the
generation of new individuals according to measures of both convergence and
spread. For convergence, the authors modify the selection process (of the main
parent) of NSDE in order to calculate differential vectors that point towards
regions where better ranked individuals are located. For spread, the authors
modify NSDE so that it favors the selection process (of the supporting parents)
from different regions of decision variable space, but with the same rank. The
modified approach is called NSDE-DCS (DCS stands for “directional conver-
gence and spread”) and is compared with respect to the NSGA-II, the original
NSDE [25], NSDE-DC (NSDE only with the directional convergence mecha-
nism), and NSDE-DS (NSDE only with the directional spread mechanism).
Results indicate that all the NSDE versions outperform the NSGA-II, but
NSDE-DS practically provides the same results as NSDE-DCS. This is a very
interesting outcome that indicates that improving spread may, in some cases,
also improve convergence.

Robič and Filipič [48] propose an approach called Differential Evolution
for Multi-Objective Optimization (DEMO). They used the DE/rand/1/bin
variant. DEMO modifies the mechanism followed to decide when a new vec-
tor replaces the parent: if the new vector dominates the parent, the new vector
replaces the parent; if the parent dominates the new vector, the new vector is
discarded; otherwise, the new vector is added in the population. In this way,
the population can be extended and the newly created vectors take part imme-
diately in the creation of the subsequent vectors. After the creation process of
new vectors has finished, DEMO applies a nondominated sorting mechanism
(combined with the use of the crowding distance measure) in order to trun-
cate the population and maintain a fixed number of vectors at each iteration.
This enables a fast convergence towards the true Pareto front, while the use
of nondominated sorting and crowding distance (derived from the NSGA-II
[14]) of the extended population promotes the uniform spread of solutions.
Robič and Filipič also propose two additional versions of DEMO in which the
newly created vector is not compared against the parent, but against the most
similar individual in either the decision variable space or the objective space.
The three DEMO variants are compared in five high-dimensionality uncon-
strained problems outperforming in some problems to the NSGA-II, PDE [2],
PAES [28], SPEA [61] and MODE [56]. However, the authors didn’t find any
variant of DEMO to be significantly better than another, so they recommend
to use the original version of DEMO (which compares the new vector against
the parent), since it is the most efficient one (computationally speaking).

To deal with the shortcomings of GDE2 (described in the previous group)
regarding slow convergence, Kukkonen and Lampinen proposed an improved
version called GDE3 [30] (a combination of the earlier GDE versions and
the Pareto-Based Differential Evolution algorithm [37]). This version added a
growing population size and nondominated sorting (as in the NSGA-II [14]) to
improve the distribution of solutions in the final Pareto front and to decrease
the sensitivity of the approach to its initial parameters. In GDE3, when the
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old population vector and the trial vector are feasible and nondominated with
respect to each other, both of them are maintained. Hence, the population
size will grow. To maintain a fixed population size for the next generation,
nondominated sorting is performed after each generation to prune the pop-
ulation size. GDE3 is compared with respect to the NSGA-II in several test
functions, including some from the Deb-Thiele-Laumanns-Zitzler (DTLZ) test
suite [15].

5.3 Combined Approaches

Finally, this class considers those approaches where a set of schemes have
been mixed in the DE-based multi-objective algorithm. There are approaches
which consider either Pareto concepts and also population-based concepts in
the same approach, or techniques where, besides global search, local search is
considered.

In [42], Parsopoulos et al. introduce a parallel multi-population DE called
the Vector Evaluated Differential Evolution (VEDE) approach, for multi-
objective optimization. VEDE is inspired by the Vector Evaluated Genetic
Algorithm (VEGA) [52] approach. A number M of sub-populations are consid-
ered in a ring topology. Each population is evaluated using one of the objective
functions of the problem, and there is an exchange of information among the
populations through the migration of the best individuals. In this way, only
the versions of DE that use the best individual to create new vectors can take
full advantage of this information exchange. Also, the algorithm incorporates
a domination selection procedure to enhance its performance by favoring non-
dominated individuals in the population. The selection mechanism introduced
by Parsopoulos et al. is similar to that used by Abbass et al. [4], in which the
new vector is introduced in the population if it dominates the main parent.
Finally, VEDE uses an external archive for the maintenance of the Pareto
optimal set. VEDE is validated using four bi-objective unconstrained prob-
lems and is compared with respect to VEGA. Furthermore, VEDE was tested
on three versions, using different DE variants: DE/best/1/bin, DE/best/2/bin
and DE/current to best/1. The authors indicate that the proposed approach
outperformed VEGA in all cases, however, among the three DE variants, none
of the them was clearly superior to the other two.

Santana-Quintero’s approach (ǫ-MyDE) was further hybridized with rough
sets to give raise to a new approach called DEMORS (Differential Evolution
for Multiobjective Optimization with Rough Sets) [20]. DEMORS operates in
two phases. During the first phase, an improved version of ǫ-MyDE is applied
for 2000 fitness function evaluations. The main improvement on ǫ-MyDE is
the incorporation of the so-called Pareto-adaptive ǫ-grid [21] for the secondary
population. The concept of Pareto-adaptive ǫ-dominance eliminates several of
the drawbacks of ǫ-dominance [35]. During the second phase, a local search
procedure based on rough sets theory [43] is applied for 1000 fitness function
evaluations, in order to improve the solutions produced at the previous phase.
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The idea is to combine the high convergence rate of differential evolution with
the high local search capabilities of rough sets. DEMORS is able to converge
to the true Pareto front (or very close to it) in test problems with up to 30
decision variables, while only performing 3000 fitness function evaluations.
Results are compared with respect to the NSGA-II.

Landa-Becerra and Coello Coello [34] propose the use of the ε-constraint
technique [18] hybridized with a single-objective evolutionary optimizer: the
cultured differential evolution [33]. The variant used in this approach is
DE/rand/1/bin, however, the influence of the knowledge of the problem dur-
ing the process, allows to change the variant to DE/best/1/bin. In fact, some
modifications to the original DE/rand/1/bin are used (e.g. using the abso-
lute value of the differences, adding another scaling factor besides “F” and
using historical values of the best solution during the evolutionary process).
The ε-constraint method transforms a multi-objective optimization problem
into several single-objective optimization problems (each of these optimiza-
tions leads to a single Pareto optimal point). This method has been normally
disregarded in the evolutionary multi-objective optimization literature due to
its high computational cost [53, 46]. However, the authors argue that, if care
is placed in the single-objective optimizer, this sort of hybrid can generate
the true Pareto front of very difficult multi-objective optimization problems
at a reasonable computational cost. Such a hypothesis is validated by solv-
ing DTLZ8 and DTLZ9 from the benchmark proposed in [15] together with
several other test problems from the benchmark proposed in [23, 24]. All of
these test functions are considered very hard to solve by current MOEAs, and
this is illustrated by showing the results obtained by the NSGA-II in them.
In most cases, even when performing a very high number of fitness function
evaluations, the NSGA-II is unable to reach the true Pareto front. In contrast,
the hybrid algorithm proposed in this paper is able to converge to the true
Pareto front (or very close to it) of all the problems.

6 Convergence Properties of Multi-Objective

Differential Evolution

Some theoretical studies about multi-objective extensions of differential evo-
lution have been done recently. In [56, 57], Xue et al. perform a mathematical
modeling and convergence analysis of a continuous Multi-Objective Differen-
tial Evolution (C-MODE) algorithm. The convergence properties of C-MODE
are studied in a similar manner to the work presented by Hanne in [19], where
convergence has been defined as follows:
Definition 6. A MOEA is said to converge to the entire set of Pareto

optimal solutions P∗ with probability one if

d(P∗,Pt)→ 0 with probability one as t → ∞,
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where d(P∗,Pt) is a distance function between P∗ and Pt, and it is defined
as:

d(P∗,Pt) =| P∗ ∪ Pt | − | P∗ ∩ Pt |

The approach of Xue et al. employs underlying geometric structures
(cones) based primarily on convex sets, to prove the convergence of the popu-
lation of the C-MODE to the Pareto optimal set with probability one. Readers
are directed to the associated references for a detailed description and associ-
ated theorem proof details.

On the other hand, Xue et al. study the C-MODE operators and their
effects on the convergence properties of the algorithm, under the Gaussian
initial population assumption. They show that the limiting properties of C-
MODE depend on the factor (2KF 2 + (1 − γ)2), where K, F and γ are the
parameters associated to the approach. If this factor is greater than 1, the
population variance matrix explodes, and C-MODE successfully identifies the
optimal solution set; otherwise, the population variance matrix vanishes.

Xue et al. confirm the mathematical results developed by simulation results
obtained by applying C-MODE to numerical examples with different parame-
ter settings. Also, they conduct simulation results on complicated continuous
benchmark functions and show that the C-MODE performs better when the
parameters are set to meet the obtained conditions. In this way, the results
obtained by Xue et al. can also be used to guide the parameter setting of the
C-MODE when applied in real world applications.

In [56, 58], Xue et al. extend their theoretical work by modeling a dis-
crete version of MODE, D-MODE, in the framework of Markov processes and
develop the corresponding convergence properties. They study the Markov
model for the D-MODE with finite population size. Two situations are con-
sidered: one with a population large enough to contain all the Pareto optimal
solutions while the other is the opposite. In the second situation, an external
archive is needed to store all visited Pareto optimal solutions. In both cases,
Xue et al. prove the convergence with probability one of D-MODE to the
set of Pareto optimal solutions in a similar manner to the work presented by
Rudolph in [49].

7 Conclusions and Future Research Paths

In this chapter, we have presented a survey of Differential Evolution ap-
proaches modified to solve multi-objective optimization problems. We found
that the techniques can be categorized in three classes: (1) Non-Pareto-based,
(2) Pareto-based and (3) combined approaches. In fact, Pareto-based ap-
proaches were divided into two sub-classes: Using Pareto dominance and Using
Pareto ranking. Combined approaches, as the name indicates, combines dif-
ferent schemes (e.g. global and local search, Pareto dominance and ranking)
into one single approach.
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In other heuristics to solve multi-objective optimization problems, such
as particle swarm optimization (PSO) [47], key features of the heuristic itself
have been adapted as to get some benefit in the way the problem is being
solved (e.g. leader selection for creating new solutions). In contrast, from our
findings, we observed that in the case of DE, the selection of the individuals
used for the generation of new solutions has not been modified in most cases,
with the exception of a few proposals [26]. We also found that the most popular
schemes added to DE for multi-objective optimization were Pareto dominance
for the selection mechanism between parent and offspring and Pareto ranking
after the whole set of offspring have been generated.

Based on the aforementioned findings, we enumerate the topics we consider
as promising paths for future research:

• Diversity: DE has shown a high convergence rate, like other metaheuris-
tics such as PSO [27], but with a higher degree of robustness. However, DE
present problems to actually reach the true Pareto front (it gets trapped
in local optimum fronts). Furthermore, DE has some problems to spread
solutions along the obtained front. This seems to indicate that multi-
objective DE-based approaches require alternative (i.e., more effective)
diversity maintenance schemes.

• Variants: Most approaches included in this survey use the most popular
variant (DE/rand/1/bin) [9, 5, 32, 29, 30, 48, 50, 44, 20, 34, 36]. Despite the
fact that other authors have used others variants like DE/current to best/1
[42], DE/current to rand/1 [26], special cases of DE/current to rand/1/bin
[4, 1, 3, 37] and new variants [56, 55], it is not clear which variant is more
suited for multi-objective optimization (i.e., which type of mutation and
recombination operator is able to bias the search in a better way as to
reach the true Pareto front in a more effective manner).

• DE mutation operator: In DE for global optimization, it is common to
assume that the vectors that will be used to calculate the differences when
computing the trial vector are chosen at random. However, as it was shown
by Iorio and Li [26], in multi-objective optimization, some additional cri-
teria might be taken into account for the selection of the pairs of solutions
to participate in the mutation operator.

• Parameter adaptation: Online and self-adaptation attempts are still
scarce in multi-objective differential evolution. Novel schemes to adapt
key parameters like “CR”, “F” or even the number of differences for the
mutation operator are promising topics for future research.

• Alternative encodings: DE was proposed for continuous search spaces.
Thus, one topic of interest is to develop alternative encodings that allow
the use of differential evolution in problems requiring alternative encodings
(e.g., combinatorial optimization problems). The use of encodings such as
the random keys [7] or other proposals may be alternatives worth exploring
in such cases.
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• Theory: Studies about convergence of different DE variants, and runtime
analysis, among other topics, will improve the current DE theory.

• Applications: Another path of research is the application of previ-
ously proposed DE-based approaches to the solution of real-world multi-
objective optimization problems. Interesting behaviors may be found when
applying DE in real-world multi-objective search spaces.
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