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and Ma. Guadalupe Castillo Tapia

1 Introduction

The idea of using techniques based on the emulation of the mechanism of nat-
ural selection to solve optimization problems can be traced back to the 1960s
when the three main techniques based on this notion were developed: genetic
algorithms [61], evolution strategies [136] and evolutionary programming [41].
These approaches, which are now collectively denominated “evolutionary al-
gorithms”, have been very effective for solving single-objective optimization
problems [49, 137, 42].

The solution of problems having two or more objectives (which are nor-
mally in conflict with each other) has attracted a considerable interest in
recent years. The solution of the so-called multi-objective optimization prob-
lems (MOPs) consists of a set of solutions representing the best possible
trade-offs among the objectives. Such solutions, defined in decision variable
space constitute the so-called Pareto optimal set, and their corresponding
objective function values form the so-called Pareto front.

Although a variety of mathematical programming techniques to solve
MOPs have been developed since the 1970s [104], such techniques present
several limitations, from which two of the most important are that these
algorithms are normally very susceptible to the shape or continuity of the
Pareto front and that they tend to generate a single element of the Pareto
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optimal set per run. Additionally, in some real-world MOPs, the objective
functions are not provided in algebraic form, but are the output of a black-
box software (which, for example, runs a simulation to obtain an objective
function value). This severely limits the applicability of mathematical pro-
gramming techniques.

Evolutionary algorithms seem particularly suitable for solving multi-ob-
jective optimization problems because they deal simultaneously with a set
of possible solutions (the so-called population) which allows them to obtain
several members of the Pareto optimal set in a single run of the algorithm,
instead of having to perform a series of separate runs as in the case of the
traditional mathematical programming techniques. Additionally, evolution-
ary algorithms are less susceptible to the shape or continuity of the Pareto
front (e.g., they can easily deal with discontinuous and concave Pareto fronts),
whereas these two issues are a real concern for mathematical programming
techniques.

The potential of evolutionary algorithms for solving MOPs was first
pointed out by Rosenberg in the 1960s [125], but the first actual implementa-
tion of a multi-objective evolutionary algorithm (MOEA) was produced until
the mid-1980s by David Schaffer [133, 134]. Nevertheless, it was until the
mid-1990s that MOEAs started to attract serious attention from researchers.
Nowadays, it is possible to find applications of MOEAs in practically all areas
of knowledge.1

The contents of this chapter is organized as follows. Some basic concepts
required to make of this a self-contained chapter are provided in Section 2.
Section 3 describes the main algorithmic paradigms (as well as some rep-
resentative MOEAs belonging to each of them) developed from 1984 up to
the early 2000s. In Section 4, the most popular MOEAs developed from the
mid-2000s to date are briefly described. Some representative applications of
these MOEAs are also provided in this section. Then, in Section 5, some pos-
sible paths for future research in this area are briefly described. Finally, our
conclusions are provided in Section 6.

2 Basic Concepts

We are interested in solving problems of the type2:

minimize f(x) := [f1(x), f2(x), . . . , fk(x)] (1)

subject to:

1 The first author maintains the EMOO repository, which currently contains over 12,400

bibliographic references related to evolutionary multi-objective optimization. The EMOO
repository is located at: https://emoo.cs.cinvestav.mx.
2 Without loss of generality, we will assume only minimization problems.
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gi(x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

where x = [x1, x2, . . . , xn]
T

is the vector of decision variables, fi : IRn → IR,
i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ...,m,
j = 1, ..., p are the constraint functions of the problem.

To describe the concept of optimality in which we are interested, we will
introduce next a few definitions.

Definition 1. Given two vectors x,y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x 6= y.

Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is
nondominated with respect to X , if there does not exist another x′ ∈ X
such that f(x′) ≺ f(x).

Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F is
the feasible region) is Pareto optimal if it is nondominated with respect to
F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {x ∈ F|x is Pareto optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {f(x) ∈ IRk|x ∈ P∗}

We thus wish to determine the Pareto optimal set from the set F of all
the decision variable vectors that satisfy (2) and (3). Note however that in
practice, not all the Pareto optimal set is normally desirable (e.g., it may
not be desirable to have different solutions that map to the same values in
objective function space) or achievable.

3 The Past

As indicated before, the earliest attempt to use evolutionary algorithms
for solving multi-objective optimization problems dates back to Richard S.
Rosenberg’s PhD thesis [125] in which he suggested to use multiple proper-
ties (i.e., nearness to certain specified chemical composition) in his simula-
tion of the genetics and chemistry of a population of single-celled organisms.
Although his model considered two properties (i.e., two objectives), he trans-
formed one of them into a constraint and dealt with a constrained single-
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objective optimization problem. The first actual implementation of a multi-
objective evolutionary algorithm (MOEA) was developed by David Schaffer
in his PhD thesis [133]. His approach, called Vector Evaluated Genetic Algo-
rithm (VEGA) [134] will be briefly described next.

In this section, we will review the approaches proposed in the period from
1984 to the early 2000s. This period is divided in three parts each of which
corresponds to a different algorithmic paradigm: (1) Non-Elitist Non-Pareto
Approaches, (2) Non-Elitist Pareto-based Approaches and (3) Elitist Pareto-
based Approaches. Some representative algorithms within each of these three
groups are briefly described next.

3.1 Non-Elitist Non-Pareto Approaches

These are the oldest MOEAs and are characterized for not incorporating
elitism and for having selection mechanisms that do not incorporate the
notion of Pareto optimality. Here, we will briefly review the following ap-
proaches:

• Linear aggregating functions
• Vector Evaluated Genetic Algorithm (VEGA)
• Lexicographic ordering
• Target-vector approaches

3.1.1 Linear aggregating functions

The most straightforward way of transforming a vector optimization problem
into a scalar optimization problem is through the use of a linear combination
of all the objectives (e.g., using addition). These techniques are called “aggre-
gating functions” because they combine (or aggregate) all the objectives into
a single one. This is indeed the oldest mathematical programming method
developed for solving multi-objective problems, and it can be derived from
the Kuhn-Tucker conditions for nondominated solutions [82].

The most typical linear aggregating function is the following:

min

k∑
i=1

wifi(x) (4)

where wi ≥ 0 are the weighting coefficients representing the relative im-
portance of the k objective functions of our problem (the objectives need to
be normalized). It is usually assumed that:

k∑
i=1

wi = 1 (5)
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In order to generate different elements of the Pareto optimal set, the
weights must be varied and this is in fact the most common way in which
linear aggregating functions have been incorporated into evolutionary algo-
rithms for solving multi-objective problems (see for example [35]). The main
problem of linear aggregating functions is that they cannot generate non-
convex portions of the Pareto front, regardless of the weights that we adopt
[29]. Nevertheless, some clever proposals were made in the early 2000s to
overcome this limitation (see for example [74]).

3.1.2 Vector Evaluated Genetic Algorithm (VEGA)

This is the first actual implementation of an evolutionary multiobjective op-
timization technique, which, as indicated before, was developed by David
Schaffer [133, 134] in the mid-1980s. The Vector Evaluated Genetic Algorithm
(VEGA) basically consisted of a simple genetic algorithm (GA) with a mod-
ified selection mechanism. At each generation, a number of sub-populations
(as many as the number of objectives of the problem) were generated by per-
forming proportional selection according to each objective function in turn.
Thus, for a problem with k objectives, k sub-populations of size N/k each
would be generated (assuming a total population size of N). These sub-
populations would then be shuffled together to obtain a new population of
size N , on which the GA would apply the crossover and mutation operators
in the usual way. VEGA has several limitations. For example, Schaffer real-
ized that the solutions generated by his system were locally nondominated
but not necessarily globally non-dominated. Also, he noted that producing
individuals which were the best in one objective is not a good idea in multi-
objective optimization (in fact, this sort of selection mechanism opposes the
notion of Pareto optimality). Nevertheless, the selection mechanism of VEGA
has been adopted by some researchers (see for example [19]) and some other
population-based selection schemes which combine VEGA with linear aggre-
gating functions have been adopted by other researchers (see for example
[70]).

3.1.3 Lexicographic ordering

In this method, the user is asked to rank the objectives in order of impor-
tance. The optimum solution is then obtained by minimizing the objective
functions, starting with the most important one and proceeding according to
the assigned order of importance of the objectives, but maintaining the best
solutions previously produced.

Fourman [44] was the first to suggest a selection scheme based on lexico-
graphic ordering for a MOEA. In a first version of his algorithm, objectives
are assigned different priorities by the user and each pair of individuals are
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compared according to the objective with the highest priority. If this resulted
in a tie, the objective with the second highest priority was used, and so on.
In another version of this algorithm (that apparently worked quite well), an
objective is randomly selected at each run. Several other variations of lex-
icographic ordering have been adopted by other authors (see for example
[45, 111]), but this sort of approach is clearly not suitable for complex multi-
objective problems or even for (not so complex) problems having more than
two objectives [23].

3.1.4 Target-vector approaches

This category encompasses methods in which we have to define a set of goals
(or targets) that we wish to achieve for each objective function under consid-
eration. The MOEA in this case will try to minimize the difference between
the current solution generated and the vector of desirable goals (different
metrics can be used for this purpose). Although target vector approaches can
be considered as another aggregating approach, these techniques can gener-
ate (under certain conditions) concave portions of the Pareto front, whereas
approaches based on simple linear aggregating functions cannot.

The most popular techniques included here are hybrids of MOEAs with:
Goal Programming [30, 149, 129], Goal Attainment [150, 155], and the min-
max algorithm [54, 21]. These techniques are relatively simple to implement
and are very efficient (computationally speaker). However, their main disad-
vantage is the difficulty to define the desired goals. Additionally, some of them
can generate nondominated solutions only under certain conditions [23].

3.2 Non-Elitist Pareto-based Approaches

Goldberg discussed the main drawbacks of VEGA in his seminal book on
genetic algorithms [49] and proposed an approach to solve multi-objective
optimization problems which incorporated the concept of Pareto optimality
(this approach is now known as Pareto ranking) and also suggested the use
of a mechanism to block the selection mechanism so that a diverse set of
solutions could be generated in a single run of a MOEA (he suggested fitness
sharing for this sake [50]). Such a mechanism is known today as density
estimator and is a standard procedure in modern MOEAs [23].

Early Pareto-based MOEAs relied on variations of Goldberg’s proposal
and adopted relatively simple density estimators. Here, we will briefly review
the following MOEAs:

• Multi-Objective Genetic Algorithm (MOGA)
• Nondominated Sorting Genetic Algorithm (NSGA)
• Niched-Pareto Genetic Algorithm (NPGA)
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3.2.1 Multi-Objective Genetic Algorithm (MOGA)

It was proposed by Fonseca and Fleming in 1993 [43]. In MOGA, the rank
of a certain individual corresponds to the number of individuals in the pop-
ulation by which it is dominated. However, it adopts a clever Pareto ranking
scheme which classifies all individuals in a single pass and assigns fitness to
each of them based on their ranks. All nondominated individuals are assigned
the same fitness value and all dominated individuals are assigned a fitness
value that decreases proportionally to the number of individuals that domi-
nate them (as more individuals dominate a certain solution, its fitness value
becomes lower).

MOGA was used by an important number of researchers, particularly in
automatic control (see for example [113, 97]).

3.2.2 Nondominated Sorting Genetic Algorithm (NSGA)

This algorithm was proposed by Srinivas and Deb in the mid-1990s and it
was the first MOEA published in a specialized journal [139]. NSGA is based
on the creation of several layers of classifications of the individuals (this
procedure is now called nondominated sorting) as suggested by Goldberg [49].
Before selection is performed, the population is ranked on the basis of Pareto
optimality: all nondominated individuals are classified into one category or
layer (using a dummy fitness value, which is proportional to the population
size). The density estimator in this case is fitness sharing (which is applied on
the dummy fitness values). Once a group of individuals has been classified,
then such a group is ignored and another layer of nondominated individuals is
considered. This process is repeated until all the individuals in the population
had been classified.

Several applications of NSGA were developed in the 1990s and early 2000s
(see for example [148, 96, 8]).

3.2.3 Niched-Pareto Genetic Algorithm (NPGA)

It was proposed by Horn et al. in the mid-1990s [62]. NPGA uses binary
tournament selection based on Pareto dominance. Thus, two individuals are
randomly chosen and compared against a subset from the entire population
(typically, the number of individuals in this set is of around 10% of the total
population size). If one of them is dominated (by the individuals randomly
chosen from the population) and the other is not, then the nondominated
individual wins the tournament. Otherwise, (i.e., when both competitors are
either dominated or nondominated), the result of the tournament is decided
through fitness sharing [50].
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NPGA was not as popular as NSGA or MOGA, but there are some appli-
cations of this MOEA reported in the literature (see for example [156, 118]).

3.3 Elitist Pareto-based Approaches

MOEAs developed in the late 1990s started to incorporate the notion of
elitism. In the context of evolutionary multi-objective optimization, elitism
refers to retaining the nondominated solutions generated by a MOEA. The
most popular mechanism for implementing elitist is through the use of an
external archive (also called secondary population) which may or may not
intervene in the selection process. This external archive stores the nondomi-
nated solutions generated by a MOEA and is normally bounded and pruned
once it is full. This is done for two main reasons: (1) to facilitate direct com-
parisons among different elitist MOEAs and (2) to dilute the selection process
(when the external archive participates in the selection process) and/or to
avoid storing an excessively large number of solutions.

Elitism is a very important mechanism in MOEAs, because it is required
to (theoretically) guarantee convergence [127].

It is worth noting that elitism can also be introduced through the use of a
(µ+λ)-selection in which parents compete with their children and those which
are nondominated (and possibly comply with some additional criterion such
as providing a better distribution of solutions) are selected for the following
generation. This is the elitist mechanism adopted by NSGA-II [33].

The most representative elitist Pareto-based approaches developed in the
later 1990s and early 2000s which will be briefly described here are the fol-
lowing:

• The Strength Pareto Evolutionary Algorithm (SPEA)
• The Pareto Archived Evolution Strategy (PAES)
• The Nondominated Sorting Genetic Algorithm-II (NSGA-II)

It is also worth indicating that alternative density estimators were pro-
posed with these MOEAs as will be indicated next.

3.3.1 The Strength Pareto Evolutionary Algorithm (SPEA)

It was introduced by Zitzler & Thiele in the late 1990s [161]. This approach
was conceived as a way of integrating different MOEAs. SPEA uses an exter-
nal archive that contains the nondominated solutions previously generated.
At each generation, nondominated individuals are copied to the external
archive. For each individual in this external set, a strength value is com-
puted. This strength is similar to the ranking value of MOGA, since it is
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proportional to the number of solutions to which a certain individual dom-
inates. The fitness of each member of the current population is computed
according to the strengths of all external nondominated solutions that domi-
nate it. Additionally, a clustering technique called “average linkage method”
[110] is used as the density estimator.

SPEA has been used in a variety of applications (see for example [103, 3]).
In 2001, a revised version of this algorithm (called SPEA2) was proposed

[163]. This approach has three main differences with respect to its original
version: (1) it incorporates a fine-grained fitness assignment strategy which
takes into account for each individual the number of individuals that domi-
nate it and the number of individuals by which it is dominated; (2) it uses a
nearest neighbor density estimation technique which guides the search more
efficiently, and (3) it has an enhanced archive truncation method that guar-
antees the preservation of boundary solutions. SPEA2 has also been widely
applied (see for example [114, 147]).

3.3.2 The Pareto Archived Evolution Strategy (PAES)

This MOEA was introduced by Knowles and Corne [80] and it consists of a
(1+1) evolution strategy (i.e., a single parent that generates a single offspring)
in combination with an external archive that records the nondominated solu-
tions previously found. This archive is used as a reference set against which
each mutated individual is compared. An interesting aspect of this algorithm
is the procedure used to maintain diversity which consists of a crowding
procedure that divides objective function space in a recursive manner. Each
solution is placed in a certain grid location based on the values of its ob-
jectives (which are used as its “coordinates” or “geographical location”). A
map of such grid is maintained, indicating the number of solutions that reside
in each grid location. Since the procedure is adaptive, no extra parameters
are required (except for the number of divisions of the objective function
space). This sort of density estimator (i.e., the so-called adaptive grid) is a
very nice idea, but unfortunately, it does not scale property when increasing
the number of objectives [20].

There are a few applications of PAES reported in the specialized literature
(see for example [1, 122]).

3.3.3 The Nondominated Sorting Genetic Algorithm-II
(NSGA-II)

Deb et al. [31, 33] proposed a revised version of the NSGA [139], called
NSGA-II, which is more efficient (computationally speaking), uses elitism
and a crowded comparison operator that keeps diversity without specifying
any additional parameters (it is based on how close are the neighbors of a
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solution). This algorithm is, in fact, quite different from the original NSGA,
since even its nondominated sorting process is done in a more efficient way.

As indicated before, NSGA-II does not use an external memory but adopts
instead an elitist mechanism that consists of combining the best parents with
the best offspring obtained (i.e., a (µ+ λ)-selection).

NSGA-II has been the most popular MOEA developed so far. This is
mainly because of its efficiency, efficacy and because of the availability of its
source code in the public domain (in several versions). However, its crowded
comparison operator does not scale properly as the number of objectives
increases [83], which motivated a number of variations of this algorithm in-
cluding the NSGA-III [32], which is discussed in a further section.

There are many applications of NSGA-II reported in the literature (see
for example [90, 27, 56]).

4 The Present

In addition to the MOEAs briefly discussed in the previous section, many
others were developed, but few of them were adopted by researchers different
from their developers (see for example [26, 25, 20, 140]).

Nevertheless, for over 10 years, Pareto-based MOEAs remained as the most
popular approaches in the specialized literature. In 2004, a different type
of algorithmic design was proposed, although it remained underdeveloped
for several years: indicator-based selection.3 The core idea of this sort of
MOEA was introduced in the Indicator-Based Evolutionary Algorithm
(IBEA) [162], which consists of an algorithmic framework that allows the
incorporation of any performance indicator into the selection mechanism of
a MOEA. IBEA was originally tested with the hypervolume [160] and the
binary ε indicator [162].

The limitations of Pareto-based selection for dealing with problems hav-
ing 4 or more objectives (the so-called many-objective optimization problems)
motivated researchers to look for alternative approaches. Indicator-based se-
lection became an attractive option because these schemes can properly deal
with any number of objectives. Much of the early interest in this area was mo-
tivated by the introduction of the S Metric Selection Evolutionary Mul-
tiobjective Algorithm (SMS-EMOA) [36]. SMS-EMOA randomly gener-
ates an initial population and then produces a single solution per iteration
(i.e., it uses a steady state selection scheme) adopting the crossover and mu-
tation operators from NSGA-II. Then, it applies nondominated sorting (as
in NSGA-II). When the last nondominated front has more than one solu-
tion, SMS-EMOA uses hypervolume [160] to decide which solution should be
removed.

3 It is worth indicating that indicator-based archiving was introduced earlier (see [79, 78]).
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Beume et al. [7] proposed an improved version of SMS-EMOA in which
the hypervolume contribution is not used when, in the nondominated sort-
ing process, we obtain more than one front (i.e., the hypervolume is used as
a density estimator in this case). When this happens, they use the number
of solutions that dominate to a certain individual (i.e., the solution that is
dominated by the largest number of solutions is removed). This makes SMS-
EMOA a bit more efficient. However, since this MOEA relies on the use of
exact hypervolume contributions, it becomes too computationally expensive
as we increase the number of objectives [6]. SMS-EMOA started a trend for
designing indicator-based MOEAs (several of which rely on the hypervolume
indicator) although it is worth indicating that in such approaches, the perfor-
mance indicator has been mostly used as a density estimator (see for example
[66]). The use of “pure” indicator-based selection mechanisms has been very
rare in the specialized literature (see for example [101]).

Researchers quickly realized that the efficacy and efficiency of indicator-
based MOEAs relies on the adopted performance indicator. So far, the only
performance indicator that is known to have the mathematical properties to
guarantee convergence (from a theortical point of view) is the hypervolume
(i.e., it is a Pareto compliant performance indicator [164]). The hypervolume
(which is also known as the S metric or the Lebesgue Measure) of a set of so-
lutions measures the size of the portion of objective space that is dominated
by those solutions collectively. As indicated before, one of its main advantages
are its mathematical properties, since it has been proved that the maximiza-
tion of this performance measure is equivalent to finding the Pareto optimal
set [40]. Additionally, empirical studies have shown that (for a certain number
of points previously determined) maximizing the hypervolume does produce
subsets of the true Pareto front [78, 36]. As a performance indicator, the hy-
pervolume assesses both convergence and, to a certain extent, also the spread
of solutions along the Pareto front (although without necessarily enforcing
a uniform distribution of solutions). Nevertheless, there are several practical
issues regarding the use of the hypervolume. First, the computation of this
performance indicator depends of a reference point, which can influence the
results in a significant manner. Some people have proposed to use the worst
objective function values in the current population, but this requires scaling
the objectives. Nevertheless, the most serious limitation of the hypervolume
is its high computational cost. The best algorithms known to compute hy-
pervolume have a polynomial complexity on the number of points used, but
such complexity grows exponentially on the number of objectives [6]. This has
motivated a significant amount of research related to the development of so-
phisticated algorithms that can reduce the computational cost of computing
the hypervolume and the hypervolume contributions, which is what we need
for a hypervolume-based MOEA4 (see for example [84, 72, 52]). Today, most
researchers believe that it’s not possible to overcome the high computational

4 See:

http://ls11-www.cs.uni-dortmund.de/rudolph/hypervolume/start
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cost of computing exact hypervolume contributions. An obvious alternative
to deal with this issue is to approximate the actual hypervolume contribu-
tions. This is the approach adopted by the Hypervolume Estimation Al-
gorithm for Multi-Objective Optimization (HyPE) [4] in which Monte
Carlo simulations are adopted to approximate exact hypervolume values. In
spite of the fact that HyPE can efficiently solve multi-objective problems
having a very large number of objectives, its results are not as competitive
as when using exact hypervolume contributions.

Another alternative is to use a different performance indicator whose com-
putation is relatively inexpensive. Unfortunately, the hypervolume is the
only unary indicator which is known to be Pareto compliant [164], which
makes less attractive the use of other performance indicators. Neverthe-
less, there are some other performance indicators which are weakly Pareto
compliant, such as R2 [11] and the Inverted Generational Distance plus
(IGD+) [69]. Although several efficient and effective indicator-based MOEAs
have been proposed around these performance indicators (see for example
[57, 12, 94, 86, 95]), their use has remained relatively scarce until now. An-
other interesting idea that has been only scarcely explored is the combination
of performance indicators in order to take advantage of their strenghts and
compensate for their limitations (see for example [37]).

In 2007, a different sort of approach was proposed, quickly attracting a lot
of interest: the Multi-Objective Evolutionary Algorithm based on De-
composition (MOEA/D) [157]. The idea of using decomposition (or scalar-
ization) methods was originally proposed in mathematical programming in
the late 1990s [28] and it consists in transforming a multi-objective optimiza-
tion problem into several single-objective optimization problems which are
then solved to generate the nondominated solutions of the original problem.
Unlike linear aggregating functions, the use of scalarization (or decomposi-
tion) methods allows the generation of non-convex portions of the Pareto
front and works even in disconnected Pareto fronts. MOEA/D presents an
important advantage with respect to methods proposed in the mathemat-
ical programming literature (such as Normal Boundary Intersection (NBI)
[28]): it uses neighborhood search to solve simultaneously all the single-
objective optimization problems generated from the transformation. Addi-
tionally, MOEA/D is not only effective and efficient, but can also be used
for solving problems with more than 3 objectives although in such cases it
will require higher population sizes (however, the population size needs to be
increased linearly with respect to the number of objectives).

Decomposition-based MOEAs became fashionable at around 2010 and
have remained as an active research area since then [131]. In fact, this sort of
approach influenced the development of the Nondominated Sorting Ge-

http://people.mpi-inf.mpg.de/~tfried/HYP/

http://iridia.ulb.ac.be/~manuel/hypervolume
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netic Algorithm-III (NSGA-III5) [32] which adopts both decomposition
and reference points to deal with many-objective optimization problems.
However, it was recently found that decomposition-based MOEAs do not
work properly with certain Pareto front geometries [71]. This has motivated
a lot of research that aims to overcome this limitation.

4.1 Some Applications

In recent years, a significant number of applications of MOEAs have been
reported in the literature [22].

Roughly, we can classify applications in three large groups: (1) engineering,
(2) industrial and (3) scientific. Some specific areas within each of these
groups are indicated next. We will start with the engineering applications,
which are, by far, the most popular in the literature. This is not surprising
because engineering disciplines normally have problems with better known
and understood mathematical models which facilitates the use of MOEAs. A
sample of engineering applications is the following:

• Electrical engineering [51, 88]
• Hydraulic engineering [146, 93]
• Structural engineering [67, 60]
• Aeronautical engineering [115, 152]
• Robotics [73, 39]
• Automatic Control [145, 63]
• Telecommunications [64, 9]
• Civil engineering [85, 75]
• Transport engineering [24, 76]

A sample of industrial applications of MOEAs is the following:

• Design and manufacture [92, 77]
• Scheduling [154, 126]
• Management [121, 138]

Finally, we have a variety of scientific applications:

• Chemistry [17, 38]
• Physics [109, 46]
• Medicine [128, 102]
• Bioinformatics [124, 34]
• Computer science [89, 55]

5 NSGA-III was designed to solve many-objective optimization problems and its use is

relatively popular today.
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5 The Future

A large number of MOEAs have been developed since 1984 (most of them,
during this century), but few of them have become popular among practition-
ers. This raises a relevant question: where is the research on MOEAs leading
to? In other words, can we design new MOEAs that can become popular?
This is indeed an interesting question, although people working on the devel-
opment of MOEAs evidently consider that there is room for new (sometimes
highly specialized MOEAs).

If we look at specific domains, it is easier to justify the development of
particular MOEAs to tackle them. Let’s consider the following examples:

• Large-Scale Multi-Objective Optimization: It refers to solving multi-
objective problems with more than 100 decision variables (something not
unusual in real-world applications). Little work has been done in this area,
and cooperative coevolutionary approaches (which are popular in single-
objective large-scale optimization) have been the most popular choice (see
for example [105, 91, 159]). However, there is still plenty of research to
be done in this area. For example, appropriate test suites for large-scale
multi-objective optimization are required (see for example [18]).

• Expensive Objective Functions: The design of parallel MOEAs seems
as the most obvious choice for dealing with expensive objective functions
(see for example [10]). However, basic research on parallel MOEAs has re-
mained scarce and most of the current papers on this topic focus either on
applications [123, 24] or on straightforward parallelizations of well-known
MOEAs (see for example [153]). Many other topics remained to be ex-
plored, including the development of asynchronous parallel MOEAs [130],
the study of theoretical aspects of parallel MOEAs [108] and the proper
use of modern architectures such as Graphical Processing Units (GPUs)
for designing MOEAs [116]. Another alternative to deal with expensive ob-
jective functions is the use of surrogate methods. When using surrogates,
an empirical model that approximates the real problem is built through
the use of information gathered from actual objective function evaluations
[112]. Then, the empirical model (on which evaluating the fitness func-
tion is computationally inexpensive) is used to predict new (promising)
solutions [2, 100]. Although frequently used in engineering applications,
surrogate methods can normally be adopted only in problems of low dimen-
sionality, which is an important limitation when dealing with real-world
problems. Additionally, surrogate models tend to lack robustness which
is also an important issue in optimization problems. Nevertheless, there
has been recent research oriented towards overcoming the scalability and
robustness limitations of surrogate methods (see for example [151, 117]).

• Many-Objective Optimization: Developing MOEAs for properly solv-
ing multi-objective problems having more than 3 objectives is indeed a hot
research topic nowadays. In spite of the existence of a number of indicator-
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based MOEAs and decomposition-based MOEAs that were explicitly de-
signed for many-objective optimization, a number of other approaches are
also possible. For example, we can use alternative ranking schemes (differ-
ent from nondominated sorting) (see for example [47]), machine learning
techniques (as in MONEDA [99]), or approaches such as the two-archive
MOEA, which uses one archive for convergence and another for diversity
[120]. It is also possible to use dimensionality reduction techniques which
identify redundant objectives (i.e., objective that can be removed without
changing the dominance relation induced by the original objective set)
and remove them so that the actual dimensionality of the problem can
be reduced (see for example [13, 132]). Additionally, several other topics
related to many-objective optimization still require further research. Two
good examples are visualization techniques [141] and density estimators
[59] for problems having a large number of objectives. Another relevant
topic is the solution of large-scale many-objective problems (see for exam-
ple [16, 158]).

Nevertheless, a more profound and complex question is the folliwing: is it
possible to design MOEAs in a different way? This is a question of great rele-
vance because if it is no longer possible to produce new algorithmic proposals,
this entire research area may stagnate and even disappear.

Clearly, it is not trivial to produce a selection mechanism that does not
belong to any of the paradigms that we revised in this chapter (i.e., Pareto-
based, decomposition-based or indicator-based), but this is indeed possible.
For example, Molinet Berenguer and Coello Coello [5, 107], proposed an ap-
proach that transforms a multi-objective optimization problem into a linear
assignment problem using a set of weight vectors uniformly scattered. Uni-
form design is adopted to obtain the set of weights, and the Kuhn-Munkres
(Hungarian) algorithm [81] is used to solve the resulting assignment problem.
This approach was found to perform quite well (and at a low computational
cost) even in many-objective optimization problems. This approach consti-
tutes an intriguing new family of MOEAs, since it does not belong to any of
the three types of schemes previously described. But designing a new type
of MOEA is not enough. It is perhaps more challenging (and certainly more
difficult) that such an approach becomes popular.

In addition to the proposal of new algorithmic paradigms, many other
approaches are possible. For example, it is possible to combine components
of MOEAs under a single framework that allows to exploit their advantages.
This is the basic idea of Borg [53], which adopts ε-dominance, a measure
of convergence speed called ε progress, an adaptive population size, multiple
recombination operators and a steady-state selection mechanism. Related to
this sort of approach is the notion of being able to automatically design
MOEAs for particular applications/domains, which is something that has
been suggested by researchers from automated parameter tuning for single-
objective evolutionary algorithms (see for example [65]).
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A related idea is the design of hyper-heuristics for multi-objective opti-
mization. A hyper-heuristic is a search method or learning mechanism for se-
lecting or generating heuristics to solve complex search problems [14]. Hyper-
heuristics are high-level approaches that operate on a search space of heuris-
tics or on a pool of heuristics instead of the search space of the problem at
hand. They constitute an interesting choice to provide more general search
methodologies, since simple heuristics tend to work well on certain types of
problems, but can perform very poorly on other classes of problems or even
in slight variations of a certain class in which they perform well. Although
the ideas behind hyper-heuristics can be traced back to the early 1960s in
single-objective optimization, their potential hadn’t been explored in multi-
objective optimization until relatively recently. Several multi-objective hyper-
heuristics have been proposed for combinatorial problems (see for example
[15, 142, 98]) but they are still rare in continuous multi-objective optimization
(see for example [143, 144, 58]).

Another interesting path for future research in this area is to gain a deeper
understanding of the limitations of current MOEAs. For example, knowing
that some scalarizing functions offer advantages over others is very useful to
design good decomposition-based and even indicator-based MOEAs (see for
example [119]). It is also important to design new mechanisms (e.g., oper-
ators, encodings, etc.) for MOEAs aimed for particular real-world problems
(e.g., variable length encodings, expensive objective functions, uncertainty,
etc.). See for example [87].

Other evolutionary computation areas can also be brought to this field
to enrich the design of MOEAs. One example is coevolutionary approaches,
which have been used so far mainly for large-scale multi-objective optimiza-
tion, but could have more applications in this area (e.g., they could be used
to solve dynamic multi-objective optimization problems [48]). Clearly, the
potential of coevolutionary schemes has been only scarcely explored in multi-
objective optimization (see [106]).

6 Conclusions

This chapter has provided a review of the research on the development of
multi-objective evolutionary algorithms that has been conducted since their
inception in 1984 to date. In addition to providing short descriptions of the
main algorithmic proposals, several ideas for future research in the area have
been provided.

This overview has shown that the design of MOEAs has been a very active
research area, which still has a wide variety of topics to be explored. Clearly,
evolutionary multi-objective optimization is still a very promising research
area which should remain very active for several more years. However, it is
important to work in a diverse set of topics in order to avoid focusing only on
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the work by analogy (for example, producing more small variants of existing
MOEAs).

Additionally, many fundamental topics still remain unexplored, thus of-
fering great research opportunities for those interested in tackling them. For
example, we are lacking theoretical studies related to the limitations of cur-
rent MOEAs, which are fundamental for the development of the area. An
interesting example of the importance of this topic is the study conducted by
Schütze et al. [135] in which the actual source of difficulty in many-objective
problems was analyzed. This study concluded that adding more objectives to
a multi-objective problem does not necessarily makes it harder. According to
this study (which has been largely ignored by several researchers working on
many-objective optimization), the difficulty of many-objective problems is re-
ally associated to the intersection of the descent cones of the objectives (these
descent cones are obtained with the combination of the gradients of each ob-
jective). This was somehow corroborated by an empirical study conducted
by Ishibuchi et al. [68] in which it was shown that NSGA-II could properly
solve many-objective knapsack problems in which the objectives were highly
correlated. Clearly, the study of Schütze et al. [135] could had re-directed the
research conducted in many-objective optimization, if researchers working in
this area had taken it into account.

The main goal of this chapter is to serve as an introductory guide to those
interested in tackling some of the many challenges that this research area
still has to offer during the next few years. These days, such topics are not
trivial to identify within the vast volume of references available on this topic
and therefore the importance of providing a highly compressed overview of
the research that has been conducted during 35 years around this topic.
Hopefully, this chapter will serve to that purpose.
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