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Abstract

Evolutionary algorithms have been successfully used teesptoblems with

2 or more objective functions (called “multi-objectiveuing the last 20 years.
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This field is now called “Evolutionary Multi-Objective Optization” and has be-
come a very active research area, giving rise to a wide yeofetlgorithms, tech-
niques to maintain diversity, selection mechanisms, aitischemes, and ap-
plications, among other important contributions. In thiger, we will provide a
general overview of this area, emphasizing the main rebdardings that have

shaped the field, as well as its current research trends sifdutre challenges.

1 Introduction

Problems with two or more objectives (called “multi-objeet or “multi-criteria”)
are very common in engineering and many other disciplinese Jolution of such
problems is difficult because their objectives tend to bednflict with each other,
which makes necessary a new notion of optimality.

In the late XIX century, a notion of optimality was develodedthese problems,
in the context of economics. Later on, such a notion was fiyrreroduced in Oper-
ations Research, originating several methods to solve-ohjictive problems. Over
the years, this research area grew until become practaagparate branch of Opera-
tions Research.

Historically, evolutionary algorithms’ experts first metifti-objective optimization
in the 1960s. However, the first actual algorithmic conttittucame until 1985. Since
then, this field (now called “evolutionary multi-objectieptimization”, or EMO) has
experienced a significant growth.

This paper presents a general overview of EMO, seen fromehsppctive of the

key contributions that have shaped this field. The remaiofithis paper is organized



as follows. Section 2 presents some basic concepts recoinedke this paper self-
contained. In Section 3, we describe the origins of mulfeotive optimization, and a
brief motivation of the use of evolutionary algorithms ifistrea. Section 4 describes
the initial period of EMO, which consists of approximatel$ §ears, and includes
approaches characterized by their simplicity. Section &dees the second period,
which includes our current days. Finally, Section 6 progideme of the topics that,
from the author’s perspective, will keep busy to EMO resears in the next few years.

Some conclusions are drawn in Section 7.

2 Basic Concepts

The emphasis of this paper is the solution of multiobjectptimization problems

(MOPs) of the form:

minimize [f1 (%), f2(Z), ..., fx(Z)] (1)

subject to then inequality constraints:

g:(¥) <0 i=1,2,....m )

hi(E)=0 i=1,2,...,p 3)

wherek is the number of objective functiorfs : R* — R. We callZ = [z1, 2, - . ., xn]T



the vector of decision variables. We wish to determine fromag the sef of all vec-
tors which satisfy (2) and (3) the particular set of valugses, . . ., z;, which yield the

optimum values of all the objective functions.

2.1 Pareto optimality

It is rarely the case that there is a single point that simekaisly optimizes all the
objective functions. Therefore, we normally look for “texdffs”, rather than single
solutions when dealing with multiobjective optimizatiomplems. The notion of “op-
timality” is therefore, different. The most commonly adegtotion of optimality is
that originally proposed by Francis Ysidro Edgeworth [28Hdater generalized by
Vilfredo Pareto [58]. Although some authors call this natiedgeworth-Pareto opti-
mality (see for example [68]), we will use the most commonly acakpdem: Pareto
optimality.

We say that a vector of decision variabi&se F is Pareto optimalf there does not
exist anothel € F such thatf;(¥) < f;(&*) foralli = 1,...,k andf;(Z) < f;(£*)
for at least ong.

In words, this definition says that* is Pareto optimal if there exists no feasible
vector of decision variableg € F which would decrease some criterion without caus-
ing a simultaneous increase in at least one other critetimfiortunately, this concept
almost always gives not a single solution, but rather a setloftions called th®areto
optimal set The vectorg™ correspoding to the solutions included in the Pareto optima
set are callechondominated The image of the Pareto optimal set under the objective

functions is calledPareto front



3 TheOriginsof the Field

The Operations Research (OR) community has developed agpes to solve MOPs
since the late 1950s. Currently, a wide variety of matherahfprogramming tech-
niques designed to solve MOPs are available in the OR litezasee for example
[52, 24]). However, mathematical programming techniquagehcertain limitations
when tackling MOPs. For example, many of them are susceptibthe shape and/or
continuity of the Pareto front and may not work when the Rafeint is concave or
disconnected. Others require differentiability of theembive functions and the con-
straints. Additionally, an initial point is required to ff@m a run of a mathematical
programming technique, and the type of search normallyopexéd is such that the
final solution is located relatively close to this initialipb Thus, mathematical pro-
gramming techniques are normally very susceptible to ftindialization. Also, the
outcome of each run of a mathematical programming techrigjnermally a single
nondominated solution. So, in order to obtain several etasef the Pareto optimal
set, several runs, departing from different initial pojraie required [52].
Evolutionary Algorithms (EAs) have been found to be verycassful in a vari-
ety of (single-objective) optimization problems [37, 2%, @5]. The use of EAs for
solving MOPs seems like a natural choice if we consider soitieeir main features.
EAs operate on a set of solutions (called “population”), ebhinake us think of the
possibility of finding several members of the Pareto optisslin a single run of an
EA. Additionally, EAs are also less susceptible to the stapontinuity of the Pareto
front (i.e., they can easily deal with discontinuous andoawe Pareto fronts), and do

not require any information about the derivatives of thesotiyes or the constraints.



The first hint regarding the possibility of using evolutiopalgorithms to solve
a MOP appears in a PhD thesis from 1967 [60] in which, howewer ctual multi-
objective evolutionary algorithm (MOEA) was developede(timulti-objective prob-
lem was restated as a single-objective problem and solvidangenetic algorithm).
Although there is a rarely mentioned attempt to use a geadgiarithm to solve a
multi-objective optimization problem from 1983 (see [4Dpavid Schaffer is normally
considered to be the first to have designed a MOEA during thlie1880s [64, 65].
Schaffer’s approach, callédector Evaluated Genetic Algorithm (VEGA) consists
of a simple genetic algorithm with a modified selection medsa. At each gener-
ation, a number of sub-populations were generated by peifigrproportional selec-
tion according to each objective function in turn. These-papulations would then
be shuffled together to obtain a new population, on which tAewduld apply the
crossover and mutation operators in the usual way. VEGA hashsber of problems,
from which the main one had to do with its inability to retamliugions with accept-
able performance, perhaps above average, but not outstpfodiany of the objective
functions. These solutions were perhaps good candidatégémming nondominated

solutions, but could not survive under the selection scheifigis approach.

4 TheOld Days. Naive and Simple Approaches

After VEGA, researchers adopted for several years oth@erspproaches. The most
popular were théinear aggregating functions, which consist in adding all the objec-

tive functions into a single value which is directly adoptedthe fitness of an evolu-



tionary algorithm [22, 26]. This sort of aggregating apmtoes are, in fact, the oldest
mathematical programming methods used for multi-objeadiptimization, since they
can be derived from the Kuhn-Tucker conditions for nondated solutions [50].

Nonlinear aggregatingfunctions were also popular [77, 62, 39, 4], but were seyerel
criticized despite the fact that they normally do not hawerain limitation of linear
aggregating techniques (i.e., nonlinear aggregatingtiimme can normally generate
non-convex portions of the Pareto front, whereas linearegaging functions cannot).

L exicographic ordering was another interesting choice. In this case, a single ob-
jective (which is considered the most important) is chosehaptimized without con-
sidering any of the others. Then, the second objective isnigetd but without decreas-
ing the quality of the solution obtained for the first objeeti This process is repeated
for all the remaining objectives [34]. Lexicographic orteris still used today, par-
ticularly in applications in which certain objective is kmo to be more important than
the others (see for example [35, 56]).

Despite all these early efforts, the direct incorporatiérih@ concept of Pareto
optimality into an evolutionary algorithm was first hinteg bavid E. Goldberg in his
seminal book on genetic algorithms [37]. Goldberg suggktste use of nondominated
ranking and selection to move a population toward the Pdretd in a multiobjective
optimization problem. This mechanism was calfateto ranking. The basic idea
is to find the set of strings in the population that are Parettdominated by the rest
of the population. These strings are then assigned the $tighek and eliminated
from further contention. Another set of Pareto nondomidatigings are determined

from the remaining population and are assigned the nextelsigtank. This process



continues until the population is suitably ranked. Goldbalso suggested the use of
some kind of niching technique to keep the GA from converdging single point on
the front [15]. A niching mechanism such as fitness sharig8piuld allow the EA to
maintain individuals all along the nondominated frontigne basic expression adopted
in fitness sharing is the following:

d.4 o
1- (i) ) dz] < Oshare

Osh

¢(dij) = (4)

0, otherwise

wherea = 1, d;; indicates the distance between solutiérend j, andogpare
is the niche radius (or sharing threshold). By using thisapwater, the fitness of the

individual is modified as:

fi

= 5
ij\i1 ¢(dij) ©

s

whereM is the number of individuals that are located in the neighbod of the
i-th individual.

Goldberg did not provide an actual implementation of hiscprture, but practically
all the MOEAs developed after the publication of his bookeefluenced by his ideas.

BesidesVEGA, the most remarkable MOEAs from the early days of evolution-
ary multi-objective optimization are: the Nondominatedt®g Genetic Algorithm
(NSGA) [67], the Niched-Pareto Genetic AlgorithiNPGA) [40], and the Multi-
Objective Genetic AlgorithmNiOGA) [30].

During this early period, few researchers reported conparatudies among dif-

ferent MOEASs, since the main focus was to introduce new aggires which were



normally compared to single-objective EAs. However, thae® compared VEGA,
NSGA, NPGA and MOGA unanimously agreed on the superioritfGGA, followed
by the NPGA, the NSGA, and VEGA (which every other MOEA coulgperform)
[10, 72]. These early days were characterized by the desigimple (and even naive)
algorithms, the lack of a methodology to validate them, dredlack of a benchmark
that other researchers could use as a reference. Comawsoa visual in most cases
and most problems tackled were bi-objective.

One of the most remarkable outcomes of these early days wadetrelopment
of the first scheme to incorporate user’s preferences intoQERN, which is due to
Masahiro Tanaka [69]. The incorporation of user’s prefeesrinto a MOEA is a topic
commonly disregarded in the evolutionary multi-objectiygimization literature (even
today), but it's a very important issue when dealing witH-warld applications [9]. It
is normally the case that in real-world problems, the erRimeeto front is not needed,
but only a portion of it. So, if we knew the sort of trade-offat the user requires,
it would be possible to magnify the portions of the Paretmfrtbat the user is more
interested on.

Another important event during these early days was theigatin of the first
survey of the field. Fonseca and Fleming published such a&gimthe journaEvolu-
tionary Computatiorin 1995 [31]. Less known are two other important contribagio
from Carlos M. Fonseca that was made in those days: (1) peapibe first perfor-
mance measure that did not require the true Pareto fronteoptbblem beforehand
(he called it “attainment surfaces”) [32], and (2) he wasfitst to suggest a way of

modifying the Pareto dominance relationship in order todi@aonstraints [33].



5 The Second Period: The Growing Pains

Towards the end of the 1990s, things started to change riegéaite trends in evolu-
tionary multi-objective optimization. However, the chasgvere so fast, and some of
them are still not fully absorbed by researchers workindis field.

In 1998, Eckart Zitzler proposed a MOEA called Strength RelEvolutionary Al-
gorithm (SPEA [82]. An extended version of this work was published in 189¢he
IEEE Transactions on Evolutionary Computatif@8]. This paper is particularly im-
portant, because it contains several elements that gavegshindications of the new
period coming. First, SPEA popularized the notion of usiliisen in MOEAs. The
idea of retaining the nondominated solutions found aloegetrolutionary process (the
notion of elitism in evolutionary multi-objective optinadon) wasn't new (see for ex-
ample [41, 57]). However, it was until the publication of SPthat the use of elitism
started to become commanTo retain the nondominated solutions previously found,
SPEA uses an archive that is called theéernal nondominated 9etAt each genera-
tion, nondominated individuals are copied to the exteroaldominated set. For each
individual in this external set, strengthvalue is computed. This strength is similar
to the ranking value of MOGA [30], since it is proportionalttee number of solu-
tions to which a certain individual dominates. In SPEA, thesfss of each member of
the current population is computed according to the strengt all external nondom-
inated solutions that dominate it. The fitness assignmenttgas of SPEA considers

both closeness to the true Pareto front and even distribaficGolutions at the same

1in fact, the use of elitism is a theoretical requirement iienito guarantee convergence of a MOEA and
therefore its importance [61].
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time. Thus, instead of using niches based on distance,dPdostinance is used to

ensure that the solutions are properly distributed aloedPtreto front. Although this

approach does not require a niche radius, its effectivenedies on the size of the ex-
ternal nondominated set. In fact, since the external nonmulated set participates in

the selection process of SPEA, if its size grows too largajdtht reduce the selection
pressure, thus slowing down the search. Because of thigutiers decided to adopt
a clustering technique that prunes the contents of theredtaondominated set so that
its size remains below a certain threshold [53].

Another important aspect of the paper on SPEA is the intrbonof two per-
formance measures to allow a comparison of different MOERse notion of using
standard test functions was also indicated in the papezléZiadopted 0/1 knapsack
problems). This same idea was later developed by Kalyannedyddd by Zitzler him-
self (in collaboration with other researchers), who predadifferent methodologies to

construct multi-objective test functions [13, 19, 78, 20].

5.1 Performance Measures

Performance measures are, with no doubt, an important toggolutionary multi-
objective optimization. Thus, we will discuss next a litbié about their development.
In a paper from 2000, Zitzler et al., summarized the threetingsortant aspects that

we aimed to assess when measuring the performance of a MCHA [7

1. Maximize the number of elements of the Pareto optimalastd.

2. Minimize the distance of the Pareto front produced by ¢gorithm with respect

to the global Pareto front (assuming we know its location).
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3. Maximize the spread of solutions found, so that we can laagistribution of

vectors as smooth and uniform as possible.

Note however, that some of these aspects require that we kefovehand the
exact location of the true Pareto front. This is certainly possible in most real-
world problems. Another interesting issue was that, ginemature of the three above
aspects, it is unlikely that a single performance measuresaess such aspects at the
same time. In other words, assessing the performance of aAM©O&so a MOP!

Performance measures were later studied by David A. Varhvétén who empir-
ically identified several of their main weaknesses [72, Béveral researchers realized
that most performance measures were biased. In other veontig times they provided
results that didn’t correspond to what we could see from tiaplgcal representation
of the results. Ironically, many researchers went back éodgtaphical comparisons
when suspected that something was wrong with the numeasalts produced from
applying the performance measures available.

Although slowly, researchers started to proposed a difteygoe of performance
measures that considered not one algorithm at a time, buf3®,083]. These per-
formance measures were called “binary” (in contrast toghbat assess performance
of a single algorithm at a time, which were called “unary”heffirst formal studies
of performance assessment measures were published in 20081], and we soon
found out what was wrong with some of them: Unary performaneasures are not
compliant with Pareto dominance and, therefore, are niathiel for assessing perfor-
mance [81, 84]. Not everything is lost, however, since hinserformance measures

can overcome this limitation [80, 84].

12



5.2 Archiving

We have already mentioned the use of an external archiveEAS®hich made pop-
ular this form of elitism. The main motivation for adoptingreechanism of this sort
is the fact that a solution that is nondominated with respedts current population
is not necessarily nondominated with respect to all the fatimuns that are produced
by an evolutionary algorithm. Thus, the use of such a type @fhmanism guarantees
that the solutions that we will report to the user are nonaaed with respect to every
other solution that our algorithm has produced. An archivihée most intuitive way
of retaining all the nondominated solutions found alongrmafia MOEA. If a solu-
tion that wishes to enter the archive is dominated by itsexutst then it is not allowed
to enter. Conversely, if a solution dominates anyone storede file, the dominated
solution must be deleted. Note however, that the use of #tesrmal file raises several

questions:

¢ Is there any interaction between the main population andexternal archive

(also called “secondary population”)?

e Do we impose bounds on the size of the external archive? libat do we do

when the archive is full?

These and some other issues related to external archiges@led “elite” archives)
have been studied both from an empirical and from a the@ilgtierspective (see for
example [45, 28]).

An interesting aspect of external archives is that they ledse serve as inspira-

tion for the development of new MOEAs. The most remarkablngXe is the Pareto
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Figure 1: Graphical illustration of the adaptive grid usgdPAES.

Archived Evolution StrategyRAES) [48]. This algorithm consists of a (1+1) evolu-
tion strategy (i.e., a single parent that generates a soffgpring) in combination with
a historical archive that records the nondominated saistioreviously found. This
archive is used as a reference set against which each mutdteidual is being com-
pared. An interesting aspect of this algorithm is the procedised to maintain diver-
sity which consists of a crowding procedure that dividegotiye space in a recursive
manner. Each solution is placed in a certain grid locatiosedaon the values of its
objectives (which are used as its “coordinates” or “geobiegd location”) as indicated
in Figure 1. A map of such grid is maintained, indicating thienier of solutions that
reside in each grid location. Since the procedure is adaptiv extra parameters are
required (except for the number of divisions of the objextpace). The adaptive grid

of PAES has been adopted (with some variations) by sevenalr sbodern MOEAs
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(see for example [12, 11, 7]).

5.3 TheNSGA-II

Inspired on some findings from the single-objective optatian literature, some re-
searchers realized that elitism could also be introducedNIOEA using a plus selec-
tion (i.e., to select from the union of parents and offspyinbhe issue here was how
to impose a total order (rather than a partial order) on thrifagion of a MOEA, such
that an absolute ranking could be found for the selectiohisfgort of approach to be
effective. Kalyanmoy Deb and his students found a solutidhé selection mechanism
of the Nondominated Sorting Genetic Algorithm N$GA-I1) [14, 18]. In the NSGA-
I, for each solution one has to determine how many solutdominate it and the set
of solutions to which it dominates. The NSGA-II estimates tfensity of solutions
surrounding a particular solution in the population by comm the average distance
of two points on either side of this point along each of theeatiyes of the problem.
This value is the so-calledrowding distance During selection, the NSGA-II uses a
crowded-comparison operator which takes into considmrdioth the nondomination
rank of an individual in the population and its crowding diste (i.e., nondominated
solutions are preferred over dominated solutions, but detwwo solutions with the
same nondomination rank, the one that resides in the lesslerbregion is preferred).
Due to its clever mechanisms, the NSGA-II is much more eflicieomputation-

ally speaking) than its predecessor, and its performanee igood, that it has be-
come very popular in the last few years, becoming a landmgalinat which other

multi-objective evolutionary algorithms have to be congshrNote however, that the

15



NSGA-II has some scalability problems (when the number ¢éatives is increased,

its crowding mechanism does not work as well as expected).

5.4 Reaxed Formsof Dominance

More recently, some researchers have proposed the usexdéddbrms of Pareto dom-
inance as a way of regulating convergence of a MOEA [49]. Launs et al. [51] pro-
posed a relaxed form of dominance for multi-objective etiohary algorithms called
e-dominance. This mechanism acts as an archiving strategygore both properties
of convergence towards the Pareto-optimal set and pregeofidiversity among the
solutions found. The idea is to use a set of boxes to coverdhet@front, where the
size of such boxes is defined by a user-defined parametezdeallWithin each box,
we only allow a single nondominated solution to be retaireed.( the one closest to
the lower lefthand corner). Thus, by using a large value,dhe use can accelerate
convergence, while sacrificing the quality of the Paretaffiabtained. In contrast, if
a high-quality of the front is required, then a small value ehust be adopted. The
definition of, is then, quite important. However, it's not straightfordi@o find the
most appropriate value afwhen nothing is known in advance about the shape of the
Pareto front. Also, to correlate the number of nondominat#dtions desired with the
value ofe chosen is not easy, and normally some preliminary runs apgined in or-
der to estimate the appropriate value. This makes diffioutbimpare approaches that
adopte with respect to MOEAs that do not use this concept. Finallg, use of this
mechanism naturally eliminates the extreme points of thretBdront, which may be

undesirable in some cases.
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Several modern MOEASs have adopted the conceptddminance (see for example
[16, 55, 17, 63]). Its limitations have also been recentigradsed by some researchers

(see for example [75]).

6 TheFutureof theFied

Many problems still remain to be solved, but they requireghBr investment of time
than the small problems that were solved during the last &amsy For example, we
still do not know what are the actual sources of difficultyttimake it hard for a modern
MOEA to solve a MOP.

The issue of how to deal with many-objective problems is asoth exploring.
Some current research has revealed that a more carefukanafythe Pareto domi-
nance relation is required when dealing with problems tlaaelmore than three ob-
jectives [59].

New algorithms can be designed, but they require fresh idether than small
(and little innovative) changes to existing approached¢clvis a common pattern in
much of the research that we see nowadays. A few steps initkigtidn (with nice
ideas) have been undertaken with the design of MOEASs thdiased on performance
measures (see for example [79, 27]). The algorithmic effiyehat share most modern
MOEAs should now evolve into new algorithms in which the nemdif fitness function
evaluations is minimized. The use of surrogate technicgiagpossible choice (see for
example [46, 44, 76]), but it is not the only one (see for exi@fif0]) and much more

work in this direction is expected within the next few years.
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Parameter control is another issue that certainly desettestion. Self-adaptation
in the context of MOEAS is a very interesting topic that veeyfresearchers have
addressed in the specialized literature (see for examflel[y.

Twenty years after its inception, evolutionary multi-odijee optimization still
looks like a healthy research area. However, things areréifit now of what used
to be ten or fifteen years ago. Today, we can say that thereastairestablishment
that makes necessary to know more about performance measesefunctions and
parameters fine-tuning. So, the field may seem less frieodigtvcomers than in the
old days, but that is only a sign of certain maturity. Irofliganore than ever, we need
this “new blood” to challenge the establishment and propese ideas that can keep

this field alive for a long time.

7 Conclusions

This paper does not intend to serve as a sufumy, more like a summary of achieve-
ments that have shaped this field. Due to space limitatioth®r énteresting topics,
such as applications of MOEAs were omitted (see [6], for nmrehis topic). Also,
we didn’t mention anything about the (now so popular) malijective extensions of
other meta-heuristics such as artificial immune system&3p the ant colony [21, 36],
scatter search, and particle swarm optimization [8, 54].

This paper, however, aims to motivate other researchergtianterested in the

field. Hopefully, these newcomers will bring their diverssckgrounds into this area,

2Surveys are available in [3, 73, 2].

18



proposing new ideas, relating our ideas to concepts in diblels, and challenging
what we believe to be the foundations of this area.

As more and more papers get published in this flelde see more work done
by analogy, and less new ideas. We need more significantilootidns and more

challenging ideas that can constitute trends for othersltow.
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