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Chapter 1

Multi-Objective Ant Colony Optimization:

A Taxonomy and Review of Approaches

Guillermo Leguizamón∗ and Carlos A. Coello Coello†

Ant Colony Optimization (ACO) is one of the most representative meta-
heuristics derived from the broad concept known as Swarm Intelligence
(SI) where the behavior of social insects is the main source of inspiration.
Being a particular SI approach, the ACO metaheuristic is mainly charac-
terized by its distributiveness, flexibility, capacity of interaction among
simple agents, and its robustness. The ACO metaheuristic has been
successfully applied to an important number of discrete and continuous
single-objective optimization problems. However, this metaheuristic has
shown a great potential to also cope with multi-objective optimization
problems as evidenced by the several proposals currently available in
that regard. This chapter is aimed at describing the most relevant and
recent developments on the use of the ACO metaheuristic for solving
multi-objective optimization problems. Additionally, we also derive a
refined taxonomy of the types of ACO variants that have been used
for multi-objective optimization. Such a taxonomy intends to serve as
a quick guide for those interested in using an ACO variant for solving
multi-objective optimization problems. In the last part of the chapter,
we provide some potential paths for further research in this area.
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1.1. Introduction

The field of Computational Intelligence (CI), and particularly the algo-

rithms based on the concept of Swarm Intelligence (SI) has been inten-

sively studied and successfully applied to optimization problems. Among

these problems are those that include multiple objectives, which usually are

very common in many application areas. SI-based algorithms involve sev-

eral characteristics that make them particularly suitable for solving multi-

objective optimization problems (MOOPs), e.g., inherently decentralized,

the members of the swarm can be in charge of different objectives, different

levels and types of interactions can be defined in order to share individual

search experience with the rest of the swarm, etc. The most representative

and developed SI algorithms include Particle Swarm Optimization (PSO)

(see [1] for more details) and the Ant Colony Optimization (ACO) meta-

heuristic [2, 3].

In the case of ACO algorithms, an important number of proposals have

shown, with different levels of success, the applicability of these algorithms

to multi-objective optimization problems. As an example, two interesting

reviews on this topic can be found in Garćıa-Martinez et al. [4], and in

Angus and Woodward [5]. Similarly, a section in Coello Coello et al.’s book

is devoted to the ACO metaheuristic [6] as an example of an alternative

metaheuristica for solving MOOPs.

The remainder of this chapter is organized as follows. In the next sec-

tion, we present a general overview of the ACO metaheuristic for discrete

and continuous problems. Section 1.3 gives a general introduction to multi-

objective optimization in which the most relevant concepts are described.

In Section 1.4, we present an up-to-date review of the ACO metaheuristic

for multi-objective optimization problems in which the specific components

of the proposals dealing with the multi-objective aspects are highlighted. A

refined taxonomy of multi-objective ACO approaches is presented in Sec-

tion 1.5. Some of the promising research areas within this topic are briefly

described in Section 1.6. Finally, the conclusions of this chapter are pro-

vided in Section 1.7.

1.2. Ant Colony Optimization

The Ant Colony Optimization (ACO) metaheuristic [3] embodies a broad

class of algorithms whose design is mainly based on the foraging behavior of

aBy “alternative” the author means, with respect to evolutionary algorithms.



May 25, 2010 22:45 World Scientific Review Volume - 9in x 6in maco-chapter-final

MOACO: A Taxonomy and Review of Approaches 3

real ants. ACO algorithms were originally designed and have a long tradi-

tion in solving a specific type of combinatorial optimization problems (i.e.,

problems for which the solution construction process can be implemented

by simulating a walk through a construction graph). The seminal works of

the use the ACO metaheuristic were devoted to the Traveling Salesperson

Problem (TSP), a classical NP-complete problem whose main characteris-

tics can be easily exploited to show the applicability of this metaheuristic.

For example, in Dorigo [7] there is a description of the first ACO algorithm

designed to solve the TSP, the so-called Ant System (AS). After that, sev-

eral improvements to the AS for solving TSP were proposed: elitist-AS, an

AS with an elitist strategy for updating the pheromone trail levels, ASrank

(a rank-based version of Ant System), Max-Min Ant System (MMAS),

and the Ant Colony System (ACS) [3].

In the following, we present the main aspects to be considered when

applying the ACO metaheuristic to a particular discrete problem. First,

it is important to define an appropriate problem representation, i.e., the

construction graph and the way this represents the different problem com-

ponents and connections among them as well as the definition (if any) of the

problem information to be exploited. Second, the behavior of the artificial

ants should be defined in order to show how each ant will walk through the

construction graph to build the corresponding solutions.

Algorithm 1.1 Outline of the ACO metaheuristic

1: Initialize();

2: while termination-condition is NOT TRUE do

3: BuildSolutions();

4: PheromoneUpdate();

5: DaemonActions(); // Optional

6: end while

A general outline of the ACO metaheuristic is displayed in Algorithm 1.1

in which four main activities are considered. The way in which those activ-

ities are implemented defines the possible algorithms that can be obtained,

i.e., AS, elitist-AS, AS-rank, MMAS, ACS, or any other. The main ac-

tivities could vary from one algorithm to another, however, they can be

described in a general way as follows:

• Initialize(): As in any typical metaheuristic algorithm, some ba-

sic tasks need to be done before starting the exploration of the
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search space. In this case, the initialization of pheromone trail

structure, the heuristic values (when available and used), and any

other structure necessary to complete the problem representation.

• BuildSolutions(): This activity involves the release of an inde-

pendent colony of artificial ants in charge of incrementally building

a solution to the problem. Each ant, at each step of the con-

struction process, makes a local stochastic decision about the next

component to be included in the solution under construction.

• PheromoneUpdate(): The acquired experience achieved by the

colony at each iteration is considered in this activity. High quality

solutions will positively affect the amount of pheromone trail, i.e.,

those edges that are part of solutions found will receive an increased

amount of pheromone trail according to the goodness of these solu-

tions. This is known as the global pheromone update. As in nature,

a process of pheromone evaporation takes place (usual implemen-

tations of this metaheuristic decrease the amount of pheromone

trail for all edges in the construction graph). Thus, the amount of

pheromone corresponding to those edges that are not part of any

solution at the current iteration will show a gradually diminishing

pheromone intensity. It should be noticed that some ACO algo-

rithms, such as ACS, apply a local pheromone update rule which

does not depend on the solution quality. Instead, a fixed amount is

deposited as soon as an edge in the construction graph is selected

to make the move (the next component added to the solution under

construction).

• DaemonActions(): As single ants can not carry out some central-

ized actions, many ACO algorithms include some specific activities

called daemon actions. Examples of these activities are: activation

of a local search procedure or a collection of global information

(e.g., use of a set of the best ranked solutions) that could be used

to reinforce some entrances in the pheromone trail structure.

Let us assume that the problem under consideration is the TSP. Fig-

ure 1.1 shows a possible construction graph for an instance of size n = 5.

Each vertex represents the problem components (i.e., the cities) and

each edge represents the connections (routes) between the cities where the

distance (dij = dji) or other value (e.g., cost) is associated to each edge.

From the perspective of the ACO metaheuristic, two additional values are
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Fig. 1.1. Construction graph for an instance of the symmetric TSP of size n = 5

associated to each connection, the desirability of choosing edge (i, j) repre-

sented by τij , and the problem’s information, a heuristic value represented

by ηij . In the case of the TSP, the usual value is ηij = 1/dij. These two

values are then used in the construction solution process to estimate the

probability pij of choosing city j from city i by ant k:
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(1.1)

where α and β are the parameters that respectively represent the impor-

tance of the pheromone trail and the heuristic information, and N k(i) rep-

resents the set of cities that can be visited by ant k, i.e., the feasible cities.

On the side of the pheromone update process, the following equation (usu-

ally called global updating) can be applied:

τij(t + 1) = (1 − ρ) · τij(t) + ∆τij , (1.2)

where ρ is the evaporation rate and ∆τij represents the amount of

pheromone trail deposited in edge (i, j) according to the quality of the

solutions found by the whole colony that include that edge as part of the

solution found. It should be noticed that equations (1.1) and (1.2) repre-

sent the basic approach followed by the early ACO algorithms, like the AS.
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However, alternative ways of choosing the next problem components or for

updating the pheromone trail can be used, like in the ACS and the rest of

the family of the ACO algorithms.

From another point view, in the following we describe the activities

previously introduced in this section for the TSP. n is the size of the in-

stance, a is the number of ants in the colony, t the current iteration, tmax

the maximum number of iterations (the two last ones are generally used

in the “termination condition” of Algorithm 1.1). P a×n is the space of all

possible sets of cardinality a conformed by integer permutations of size n,

and S(t) ⊂ P a×n, is the set of solutions found at time t.

• The pheromone structure is initialized with a constant value τ0

which can be defined in different ways whereas the heuristic values

are usually set as the inverse of the distance between the cities.

τ(0) = τ0 × 1n×n and ηij = 1/dij for i, j ∈ {1, . . . , n}.

• The solution construction process, for each ant, takes into account

the current amount of the pheromone trails and the heuristic infor-

mation to obtain the new sample of solutions. The whole process

can be expressed as:

S(t) = BS(τ(t), η) for t ∈ {0, . . . , tmax},

where BS : R
n×n × R

n×n → P a×n manages the a ants to incre-

mentally build the solutions based on equation (1.1).

• After the whole colony has built a solutions (this applies for global

updating) the new pheromone trail values are calculated as follows:

τ(t + 1) = PU(τ(t), S(t)), for t ∈ {0, . . . , tmax − 1}

where PU : R
n×n × P a×n → R

n×n performs the pheromone up-

dating process based on equation (1.2).

For continuous problems, several proposals have been considered and

studied from the perspective of the ACO metaheuristic. The first ACO

extension designed to operate on continuous search spaces was introduced

by Bilchev et al. [8]. Since then, several other proposals have been intro-

duced (see [9–16]). Particularly, one relevant proposal is that introduced

by Socha [17]) and further extended by Socha & Dorigo [18]. Although

the different proposed versions of the ACO metaheuristic for continuous

problems have been applied with different levels of success, to the best of
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authors’ knowledge there is no unifying approach for continuous problems

as in the case of discrete problems. This has motivated more research in

this area, aiming to have a more standard and widely recognized platform

for the ACO metaheuristic in continuous domains. Indeed, it is expected

that in the near future, more powerful and competitive versions of con-

tinuous ACO algorithms will be available as has happened in the case of

other metaheuristics such as Evolutionary Algorithms and Particle Swarm

Optimization.

To conclude this section, it is important to notice that ACO algorithms

have been traditionally applied to single-objective problems. However,

many researchers have reported encouraging results regarding the appli-

cation of such algorithms to multi-objective problems. The next section is

devoted to present some basic concepts about multi-objective optimization.

After that, we describe the most relevant and recent advances in the design

and application of MOACO algorithms.

1.3. Basic Concepts of multi-objective optimization

A multi-objective optimization problem (MOOP) can be formulated asb:

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fk(~x)] (1.3)

subject to:

gr(~x) ≤ 0 r = 1, 2, . . . , m (1.4)

hj(~x) = 0 j = 1, 2, . . . , p (1.5)

where ~x = [x1, x2, . . . , xn]T is the vector of decision variables, fi : IRn → IR,

i = 1, ..., k are the objective functions and gr, hj : IRn → IR, r = 1, ..., m,

j = 1, ..., p are the constraint functions of the problem.

To describe the concept of optimality in which we are interested, we will

introduce next a few definitions.

Definition 1. Given two vectors ~x, ~y ∈ IRk, we say that ~x ≤ ~y if xi ≤ yi

for i = 1, ..., k, and that ~x dominates ~y (denoted by ~x ≺ ~y) if ~x ≤ ~y and

~x 6= ~y.

Definition 2. We say that a vector of decision variables ~x ∈ X ⊂ IRn is

non-dominated with respect to X , if there does not exist another ~x′ ∈ X
bWithout loss of generality, we will assume only minimization problems.
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such that ~f(~x′) ≺ ~f(~x).

Definition 3. We say that a vector of decision variables ~x∗ ∈ F ⊂ IRn

(F is the feasible region) is Pareto-optimal if it is non-dominated with

respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {~x ∈ F|~x is Pareto-optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {~f(~x) ∈ IRk|~x ∈ P∗}

We thus wish to determine the Pareto optimal set from the set F of

all the decision variable vectors that satisfy (1.4) and (1.5). Note however

that in practice, not all the Pareto optimal set is normally desirable (e.g.,

it may not be desirable to have different solutions that map to the same

values in objective function space) or achievable.

1.4. The ACO metaheuristic for MOOPs in the literature

An important number of proposals of ACO algorithms have shown their ap-

plicability to multi-objective optimization problems with different degrees

of success. Many of those proposals were reviewed by Garćıa-Martinez

et al. [4], by Angus and Woodward [5], and by Coello Coello et al. [6].

In Garćıa-Martinez et al. [4] a taxonomy of the ACO metaheuristic for

MOOPs is proposed based on two criteria (number of structures to store

the pheromone trail and number of heuristic functions) and considering

a number of existing ACO algorithms for MOOPs (MOACOs). In ad-

dition, the authors include a comparative study of some of the reviewed

algorithms and two multi-objective evolutionary algorithms, an improved

Strength Pareto Evolutionary Algorithm (SPEA2) [19] and a Fast Elitist

Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimiza-

tion (NSGA-II) [20]. For the experimental study, it was considered the bi-

criteria TSP. In a more recent report, Angus and Woodward [5] present an

alternative and extended taxonomy of the ACO metaheuristic for MOOPs

which includes five attributes to classify a particular algorithm as seen in
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Table 1.1. Based on that taxonomy, the authors describe a set of relevant

ACO algorithms for MOOPs as well as their main characteristics.

Table 1.1. The taxonomy proposed by Angus and

Woodward [5]

Attribute Values

Pheromone matrix Multiple, Single
Solution construction Targeted, Dynamic, Fixed
Evaluation Pareto, Non-Pareto
Pheromone Update Individual, Global
Pareto archive Offline, Online, Elitist, None

In the remainder of this section, we extend the literature review pre-

sented in Garćıa-Martinez et al. [4], Angus and Woodward [5], and Coello

Coello et al.. [6] by considering some recent and relevant proposals of the

ACO metaheuristic for MOOPs. In the next section, we discuss a refined

taxonomy of ACO algorithms for MOOPs.

It is worth noticing that there exist few applications of ACO algo-

rithms for multi-objective problems in continuous domains. For exam-

ple, Angus [21] proposed a Population-based ACO algorithm for Multi-

Objetive Function Optimization (PACO-MOFO). PACO-MOFO is based

on the Crowding Population-based ACO algorithm (CPACO) [22] (which

was designed for discrete domains) and ACOR [18]. PACO-MOFO uses

an a posteriori preference articulation method and implements two niching

approaches: crowding (for the population replacement) and fitness shar-

ing (for the selection mechanism). The authors compared the proposed

algorithm with NSGA-II [20] on a set of four widely known benchmark

problems: MOP1, MOP2, MOP3, and MOP6 (see [6, 23]). Based on the

summary attainment analysis performance assessment measure [24], the re-

sults show a similar performance of PACO-MOFO and NSGA-II on prob-

lems MOP2, MOP3, and MOP6, but not problem MOP1 where NSGA-II

outperforms PACO-MOFO. An additional experiment was conducted to

study the algorithm’s scalability for which problem MOP2 was considered.

In this case, PACO-MOFO showed some interesting results regarding the

quality of the solutions found in the center of the Pareto front in com-

parison with those found by NSGA-II and in view of the capability of

PACO-MOFO to find solutions when considering a higher dimensionality

problem. Another proposal of MOACOs in continuous domains is the work

of Garcia-Nareja and Bullinaria [25] in which they present an extended ver-

sion of ACOR [18]. To deal with several objectives they maintain an archive
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of selected solutions (the approximation of the Pareto optimal set). The

concept of dominance depth is used to compare the quality of the solutions.

The criteria chosen to determine which solution should be eliminated from

the archive is the crowding distance. The proposed algorithm is applied to

a well-known set of multi-objetive problems and compared to NSGA-II [20]

and the Multi-Objective Particle Swarm Optimizer (MOPSO) [26]. The

solutions found by the extended ACOR were comparable to those found by

NSGA-II and MOPSO.

As one would expect, the use of ACO in discrete MOOPs is, by far,

the most commonly reported in the specialized literature. Next, we present

some of the most recent proposals in this regard.

Liu et al., [27] presented an ant algorithm, called MO-ant, to gener-

ate Pareto fronts for multi-objective siting of Emergency Service Facilities

(EFSs). They used the concept of Pareto ranking [28] to determine which

were the most qualified solutions to the problem of their interest. The

geographic area under study was represented as a grid map from which

the ants had to find the best sites to allocate the EFSs. MO-ant does not

use any heuristic information and it manages one pheromone matrix, in

which each position in that matrix represents the desirability of allocat-

ing an EFS at the corresponding position in the real geographic area. In

addition, this algorithm applies at each iteration a two-phase local search

procedure involving a Pareto ranking of the solutions generated. During the

first phase of the local search, it applies the so-called Neighborhood Random

Search (NRS) by which the ants randomly move from one cell to another

one within a certain distance. After that, all the solutions are re-evaluated

and a Pareto ranking is obtained. The second phase of the local search con-

sists in the application of the so-called Adaptive Enumeration Neighborhood

Search (AENS) to the first solution in the set of previously ranked solutions.

AENS aims at finding a better position than the current one for every ant

in the colony by considering all the cells within a certain distance. If the

total sum of the objective values has improved, the ant moves to the cell

that produced such a global improvement. This procedure is applied until

no more improvements can be observed. The new set of solutions found

by AENS are then Pareto ranked. The pheromone matrix is updated by

taking into account the rank of the solutions found. As can be seen, the

search of the Pareto front is mainly guided by the local search procedure

as well as by the pheromone values. MO-ant was applied in a real-world

scenario: the multi-objective siting of fire stations in Singapore for which

three objectives were considered. The results obtained were compared with
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respect to a set of Pareto ranked solutions obtained out of 10, 000 randomly

generated solutions.

Bui et al. [29] investigated the effect of elitism in a multi-objective ACO

algorithm under localc, global, and mixed non-dominated solutions. The

MOACO algorithm used one pheromone matrix for each of the objectives.

The authors presented a systematic study on five instances of the multi-

objective TSP (mTSP) considering the following elitist alternatives: a)

local-best, b) global-best, and c) local-set (all solutions, dominated and

non-dominated, generated in one iteration). These elitist alternatives are

then used in the pheromone updating process in one of the following ways:

i) local-set, ii) local-best, iii) local-best + local-set, iv) global-best, and v)

global-best+local-set. In addition, the authors proposed an adaptive mech-

anism (aging) to control the use of an external archive for the global-best

elitist alternative. The results indicate the importance of including elitism

in MOACOs, for which global elitism was the mechanism that provided

more effective information. Also, the adaptive strategy of aging showed an

extra improvement on the quality of the solutions found.

Benlian and Zhiquan [30] proposed a MOACO-based data association

method for bearings-only multi-target tracking. The algorithm uses multi-

ples matrices, one for each of the two objectives considered: distance and

slope difference. The heuristic information is shared by both pheromone

trail matrices and the corresponding values are calculated as an aggre-

gating function that combines the heuristic values of each objective. The

conducted experiments showed an improved performance of the proposed

MOACO with respect to the joint Maximum Likelihood method.

Mora et al. [31] reported a comparison of six different ACO algo-

rithms for the Bi-criteria Military Path-Finding Problem in which they

defined two objectives: minimize resources while maximizing safety on a

map corresponding to a simulated battlefield. Four of the compared algo-

rithms are variants of an enhanced version of the Compañ́ıa de Hormi-

gas Acorazadas (CHAC) or Armoured Ant Company [32], called hexa-

CHAC (hCHAC) [33]. The original CHAC is basically an ACS includ-

ing one pheromone matrix for each objective as well as the corresponding

heuristic information. In CHAC, two different state transition rules were

tested, one based on an aggregating function that combines heuristic and

pheromone information regarding the two objectives (CSTR) and the other

one, based on the dominance among solutions (DSTR). An additional pa-

cThe term local is used by the authors to refer to the current iteration.
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rameter (0 ≤ λ ≤ 1) was used in CSTR and DSTR to control the relative

importance of the two objectives of the problem under study. For the tested

scenarios, CHAC with CSTR showed a better performance. However, such

a performance was less robust than that of CHAC with DSTR. On the other

hand, hCHAC represented an algorithm capable of dealing with more realis-

tic problem conditions and constraints and the main difference with CHAC

was that the scenarios were modeled as a grid of hexagons which implies a

change in the construction graph, and the possibility of working with real-

world images by defining an underlying information layer. The other two

algorithms compared in Mora et al., [31] were the so-called mono-hCHAC (a

version the uses an aggregating function combining the two objectives into

a scalar value) and the Multi-Objective Ant Colony System (MOACS) [34].

From this comparison, hCHAC-CSTR was considered to be the best overall

performer for this particular problem, i.e., the enhanced CHAC algorithm

applying a combined state transition rule during the solution construction

phase.

McMullen and Tarasewich [35] presented an application of the ACO

metaphor to solve a multi-objective assembly line balancing problem. The

approach adopted by the authors consisted of using an ad hoc aggregating

function that combined the four objectives considered: required crew size,

system utilization, probability of jobs being assembled within a certain

time frame, and cost of the system design. This function (called metric) is

involved in the computation of pheromone levels associated to a particular

task i when considering its assignment to the work center j. In addition,

the pheromone levels depend on a value observed regarding the historical

precedence of task i with respect to the remaining task in work center

j. The authors used the concept of “efficient frontierd” to measure the

solutions quality by considering two entities: required crew size and a value

obtained by a combination of system utilization, probability of jobs being

assembled within a certain time frame, and cost of the system design.

Xing et al. [36] proposed a fuzzy multi-objective ACO algorithm with

linguistically quantified decision functions for flexible job shop scheduling

with an interactive decision maker (DM). The main contribution of this

work is the interaction of the ACO algorithm with a DM at each iteration

in order to bias the search. Particularly, the DM takes into account the

distance of the best solution found at each iteration with respect to the

aspiration level considering a fuzzy metric. In this case, a classical single-

dEfficient frontier is the term used in Operations Research to denote the Pareto front of
a problem.
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objective ACO algorithm is used as the search engine within a more complex

process that includes a close interaction with the DM to solve a multi-

objective problem.

Angus [22] extended a Population-based ACO algorithm [37] (PACO)

with a Crowding population replacement scheme for the multi-objective the

TSP (CPACO). The proposed CPACO algorithm uses only one pheromone

matrix and individual heuristic values for each objective. The basic idea of

the crowding scheme is taken from Evolutionary Computation (EC). In the

CPACO algorithm, the pheromone matrix at each iteration is updated in

the following way: i) the set of solutions in the population are ranked (the

same approach used in NSGA-II [20]), ii) all the elements of the pheromone

matrices are re-initialized to a value τinit, and iii) the ranked solutions in

the population produce an updating bias in the re-initialized pheromone

matrices using the inverse of their ranks. Thus, the better the rank obtained

for a solution, the more the amount of pheromone laid on the corresponding

matrix entrances determined by that solution. The way in which CPACO

combines one pheromone matrix and several heuristic values (one for each

objective) follows the proposal of Barán and Schaerer [34]. CPACO was

studied on a set of bi-objective test instances of TSP as well as a 4-objective

version of TSP. The comparative study of CPACO with respect to the

original PACO showed an improved performance of CPACO on the bi-

objective instances of TSP. Although the results were not as good as for

the first set of instances, CPACO showed an acceptable performance on

the 4-objective TSP. The authors indicated that the pheromone update

process and the use historical information are mechanisms that require

further research.

In Alaya et al. [38], a generic ACO algorithm for multi-objective prob-

lems was presented. The proposed ant algorithm (called m-ACO) follows

the design of a MMAS and it is parameterized with the number of colonies

and the number of pheromone matrices. As the values of these param-

eters can vary, the authors instantiated them on four different ways: m-

ACO1(m + 1, m), m-ACO2(m + 1, m), m-ACO3(1, 1), and m-ACO4(1, m),

where m represents the number of objectives. The two first variants are

similar in the sense that they use m+1 colonies and m pheromone matrices.

The difference is that the first algorithm produces solutions in colony m+1

by using a randomly selected pheromone matrix (i.e., a random objective)

to build the solutions whereas in the second variant, the pheromone values

associated to colony m +1 correspond to the sum of the all the pheromone

values associated to each objective. In the third variant, m-ACO3(1, 1),
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only one colony and one pheromone matrix are involved. This is, in fact,

very similar to the solution of a single-objective problem. However, the

heuristic values are obtained in this case as the sum of the heuristic values

associated to each objective. In addition, the pheromone update process

only takes into account the non-dominated solutions. Thus, the compo-

nents of each of the non-dominated solutions indicated which entrances

of the pheromone matrix would be rewarded. The amount of pheromone

added to each component was the same for all the non-dominated solu-

tions. Finally, the last variant (m-ACO4(1, m)) used one colony and m

pheromone matrices. First, each ant of the (only) colony randomly se-

lects one objective and then builds the solution using the corresponding

pheromone matrix. The heuristic values are always calculated as in the

third variant. At each iteration, i.e., once the colony has built the so-

lutions, the pheromone matrices are updated by considering in turn the

best m solutions with respect to each of the m objective function values.

The experimental study reported the results of the four variants described

above when applied to different instances of the multi-objective multidimen-

sional knapsack problem. The variant m-ACO4(1, m) globally achieved the

best performance on the tested instances. This variant was compared with

several non-elitist multi-objective evolutionary algorithmse (MOGA [39],

NSGA [40], SPEA [41], HLGA [42], and VEGA [43]) based on the coverage

of two sets measure [44] for which m-ACO4(1, m) found the best results

except for some instances when compared with SPEA [41]. Although the

presentation of m-ACO seems to be a generalization for multi-objective

subset problems, it could also be generalized for any discrete combinatorial

optimization problem.

Afshar et al. [45] presented a bi-colony ACO algorithm with a Non-

dominated Archive (NA-ACO) which combines a novel interaction of the

two involved colonies to evolve the solutions. The NA-ACO algorithm

maintains one pheromone matrix and an archive of non-dominated solu-

tions. Each colony is in charge of optimizing one of the two objectives.

eElitism, in the context of multi-objective metaheuristics, normally consists of using an
external archive (usually called a “secondary population”) that can (or cannot) interact
in different ways with the main (or “primary”) population of the multi-objective meta-
heuristic. The main purpose of this archive is to store all the non-dominated solutions
generated throughout the search process, while removing those that become dominated
later in the search (called local non-dominated solutions). The approximation of the
Pareto optimal set produced by an algorithm is thus the final contents of this archive.
Practically all modern multi-objective evolutionary algorithms (i.e., those designed after
1999) are elitist [6].
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NA-ACO works as follows: the first colony produces a set of solutions that

are moved and evaluated according to the objective function assigned to

the second colony. From this set of solutions, the second colony selects

the best one and uses this solution to update the pheromone matrix. Af-

ter that, a new set of solution is generated and moved to the first colony

for evaluation according to the corresponding objective function. The new

best ant is then considered for pheromone updating. The above process is

repeated for N cycles after which the values of the objective functions are

computed, in order to find the non-dominated solutions to be stored in the

archive. The pheromone matrix is re-initialized and then updated accord-

ing to the new solutions in the archive. The whole process is repeated for M

iterations. NA-ACO algorithms was first studied on problems ZDT1 and

ZDT2 [46], and compared with NSGA-II [20], SPEA [41], and the Pareto

Archived Evolution Strategy (PAES) [47]. In addition, NA-ACO was tested

on two bi-objective water-resource problems for which encouraging results

were found when compared with a weighted-sum method.

In an extended abstract, Eppe [48] presented a mechanism that inte-

grated the decision maker’s preferences into multi-objective Ant Colony

Optimization. The main contribution of this work was the use of a prefer-

ence function (based on the PROMETHEE methodology [49]) to define a

normalized and aggregated preference index. This preference index is ap-

plied to a solution at the component level for the TSP. Although no actual

results were reported by the author, the proposed mechanism seems to be

capable to deal with multi-objective problems.

Chica et al., [50] incorporated preferences to a multi-objective ACO al-

gorithm for a variant of the time and space assembly line balancing problem

(TSALBP-1/3) which was previously studied by the authors in [51]. The

preferences incorporated were represented by a priori information of the

problem provided by the plant experts and was used to guide the search.

The authors selected a Multiple Ant Colony System (MACS) as their search

engine (see [34]). The main goal of the new proposed algorithm was to re-

duce the size of the Pareto optimal set and increase the quality of the Pareto

front. For the authors a high quality Pareto front is one which presents a

focused and reduced set of solutions for the decision maker. The gener-

ation of such a high quality Pareto front required the redefinition of the

concept of Pareto dominance in order to include some specific preferences

given by the experts and applied when there were some solutions with the

same objective function values. In the case of TSALBP-1/3, the informa-

tion considered was the adoption of the same value for the area and number
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of stations for a fixed cycle time in the assembly line. The new dominance

definition takes into account the workload of the plant and the required

space for the workers’ instruments. Accordingly, two measures were formu-

lated and the corresponding preference-based dominance definitions were

provided. MACS was tested in a real world problem: the assembly process

of the Nissan Pathfinder engine. The results were compared to those of the

Multi-Objective Randomised Greedy Algorithm (MORGA) [51] and to a

modified version of the ACS reported in [51]. The results showed an im-

proved performance of MACS with respect to the other two algorithms with

respect to which it was compared, regarding each of the metrics considered

in the experimental study. Following this same line of research, Chica et

al. [52] extended this proposal by incorporating the elicitation of preferences

regarding the economic factors related to the location of the plant. These

preferences were included in the objective space in order to achieve a more

focused Pareto front and then make easier the task of the decision maker.

They used six scenarios around the world and the preferences were based

on the Evolutionary Multi-Objective (EMO) preferences given in [53, 54].

Häckel et al. [55] developed an ACO algorithm for solving the multi-

objective shortest path problem. The authors considered in their experi-

mental study a problem with three criteria. However, their proposal can be

extended to a higher number of objectives. Interestingly, they used only one

pheromone matrix. However, their corresponding trail values were weighted

differently according to each ant and criteria. This weighting policy was also

applied to the heuristic values which were calculated by considering four

alternatives: i) standard (inverted edge weights), ii) LAH/bc, iii) LAH/wc,

and iv) LAH/ac; where LAH stands for Look-Ahead Heuristic considering

the best (bc), worst (wc), and average (ac) cases. The corresponding LAH

values were separately calculated using dynamic programming for each of

the criteria involved. Two ACO algorithms were tested: the Ant System

(AS) and the Ant Colony System (ACS). The ACS with LAH/wc showed

the best overall performance regarding the set of ad hoc metrics adopted

by the authors.

Chaharsooghi and Kermani [56] proposed a multi-objective ACO al-

gorithm for solving the Multi-Objective Resource Allocation Problem

(MORAP) in which the objectives considered were: maximization of work-

ers’ efficiency and minimization of the resources cost. The ACO algorithm

used only one pheromone matrix and only one structure to store the heuris-

tic values that represented a combined calculation obtained as the product

of the heuristic values associated to the two separate objectives: efficiency
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and cost. The pheromone matrix was updated considering a modified up-

dating rule that took into account the concept of non-dominance between

solutions, current iteration, and an ad hoc parameter to control the influence

of the current generation on the amount of pheromone trail to be deposited.

Since the approach adopted for pheromone updating can generate negative

values when calculating the probability used during the construction solu-

tion phase, a mechanism was incorporated to deal with this problem. The

proposal was compared and showed an improved performance with respect

to a hybrid GA (hGA) using only one particular instance of MORAP. In

a related work of Chaharsooghi and Kermani [57] a similar approach was

adopted for solving the multi-objective Multidimensional Knapsack Prob-

lem. The main difference on the ACO algorithm proposed here is that this

algorithm used multiple colonies, each one updating its own pheromone

matrix associated to the two objectives considered here. The probability

of selection used in the phase of solution construction was based exclu-

sively on a combination of the pheromone values for each objective and no

heuristic information was considered. This version of the ACO algorithm

was applied on a set of instances of the knapsack problem and compared

with NSGA-II [20]. Based on two different metrics, the authors claimed

that the ACO algorithm outperformed NSGA-II when considering the so-

lutions on the extreme portions of the Pareto front. However, by ruling

out these extreme solutions, NSGA-II actually outperformed the proposed

ACO algorithm.

Vieira et al. [58] dealt with the feature selection problem as a multi-

criteria problem with a single objective function. Two criteria were con-

sidered: the size of the subset of features and the features that are to be

selected to build a fuzzy classifier. The ant algorithm used two colonies,

two pheromone matrices and two different heuristic values, one for each

criterion. The objective function to be minimized was an aggregation of

the two criteria which were combined in order to measure the classification

error rate and the number of features. The ant algorithm worked as follows:

the first colony was in charge of selecting the number of features (one for

each ant) and then, this selected number was used for the corresponding

ant in the second colony in order to find the features used to build the

classifier. The ant algorithm was tested on data sets taken from the UCI

repository [59] and compared with some previous works. The achieved per-

formance of the proposed ant algorithm was similar or better to that of the

compared algorithms.

In Yang et al. [60], a multi-objective task scheduling approach for Grid
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over Optical Burst Switching (GOBS) networks was proposed, considering

three objectives: 1) completion time, 2) cost for using the resources, and

3) load balancing. The Multi-Objective ACO algorithm (called MOACO

in this work) incorporated the idea of Pareto dominance as well as an ad

hoc operator that combined pheromone exchanges and a sharing niching

method. MOACO uses one pheromone and one heuristic information (lin-

eal) structure associated to each of the resources in the network. The

pheromone structure was initialized according to the computational ca-

pacity of each resource, i.e., the higher the computational capacity, the

higher the initial amount of the pheromone trail. Similarly, the heuris-

tic values were calculated combining the corresponding initial amount of

pheromone trails (i.e., computational resources) and network resources.

Interestingly, the probability of selection of a particular resource included

a threshold value below which the corresponding resource could not choose

(i.e., it avoided the overuse of computational resources). With respect to

the pheromone updating, the authors proposed, as in the Ant Colony Sys-

tem, two pheromone updating rules: local and global. The local one aims

at influencing the pheromone values according to the time necessary to ex-

ecute a job assigned to that particular computational resource considering

a recently obtained solution, whereas the global one is similar to the local

rule but the solution involved is the one obtained by searching the optimal

solution found by one of the following: either pheromone exchanging or the

sharing niching method. The experimental study was conducted on one

particular instance of GOBS and the results were compared with respect

to those of NSGA-II [20]. The results showed that MOACO outperformed

NSGA-II. The authors claim that these results are due to the fact that

in MOACO the pheromone values are initialized such that they incorpo-

rate information about the problem, whereas NSGA-II performs a blinder

search. Additional experiments were conducted to compare separately the

results of MOACO with respect to those found by a single-objective ACO

algorithm considering each objective in turn.

1.5. ACO Variants for MOOP: A Refined Taxonomy

When considering the development of the Evolutionary Multiobjective Op-

timization (EMO) field, it is clear that ACO has a lot of room left for

expansion, particularly if we consider continuous search spaces. The lit-

erature review presented by Garćıa-Martinez et al. [4], Angus and Wood-

ward [5], Coello Coello et al.. [6], and in this chapter, show important
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achievements of muti-objective ACO in several application domains within

the last few years. Here, we complement this information with a refinement

of the taxonomy proposed by Angus and Woodward [5]. More precisely,

we reconsider the different attributes presented in [5] and some dependen-

cies observed among them. Based on the previous discussion, we propose a

taxonomy with hierarchical elements that could better help to visualize the

different components of the existing MOACOs. Our taxonomy also adds

an additional attribute that was discussed in [5] but was not included in

their proposed taxonomy. The names and meaning of each of the attributes

considered remains the same in our taxonomy as those described in [5].

Before describing our extended taxonomy, let us discuss the inclusion

of the new attribute #Colonies. As indicated before, in Angus and Wood-

ward [5] this attribute was discussed but not included. Although the design

of multi-colonies ACO algorithms must consider a certain level of communi-

cation of solutions between colonies for achieving an improved performance,

this alternative should also be considered when showing to the researchers

a global perspective of the current and future developments of MOACOs.

Particularly, those researchers involved in parallel models of the ACO meta-

heuristic could be very interested in the development and application of ex-

isting and new parallel models of MOACOs. On the other hand, we made

a simple modification and created a hierarchical taxonomy by associating

some attributes to specific places on the tree (see Figure 1.2). For example,

the only way of selecting between Global and Individual pheromone update

(according to the meaning given in [5]) is when the particular MOACO al-

gorithm includes multiple pheromone matrices. Similarly, the attribute

Evaluation has two possible values: Pareto and Non-Pareto. By choosing

the option “Pareto”, two alternatives (values) are possible, i.e., a Pareto

Archive can be used or not. Thus, the option that includes the use of

a Pareto Archive allows us to select from among (at least) three options:

Offline, Online, and Elitist.

Similarly to the claims of Angus and Woodward [5], the taxonomy pro-

posed here is mainly aimed at gaining an enhanced understanding of the

different up-to-date design choices that have been explored in the field the

ACO variants for MOOPs.

From the above, it is clear that many possibilities can be considered

when attempting to design an ACO algorithm for multi-objective problems.

This makes difficult to present an unified ACO algorithm that embodies all

those alternatives. In spite of that, we give in the following a possible

example of a general MOACO algorithm as shown in Algorithm 1.2 for
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Fig. 1.2. A refined and extended taxonomy of MOACO algorithms.

solving a multi-objective TSP-like problem. The design of Algorithm 1.2

includes a single colony of ants, k pheromone matrices and k structures

that maintain respectively the amount of pheromone trails and heuristic

information associated to each one of the k problem objectives. This al-

gorithm corresponds to the class of MOACO algorithms that use Pareto

evaluation for the solutions and maintain an archive, in this case, a set of

ranked non-dominated solutions. In the following we describe in detail each

one of the main components of the MOACO presented in Algorithm 1.2.

Firstly, it must be noticed that t represents the current generation, tmax is
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the maximum number of iterations, Na is the number of ants in the colony,

and A is the archive that maintains the set of non-dominated solutions and

it is updated at each iteration.

Algorithm 1.2 Outline of a possible MOACO for k objectives

1: Init Pheromone Trails( τ i
rj ); // for i = 1, . . . , k; r, j = 1, . . . , n

2: A = ∅ ; // Archive of ranked non-dominated solutions

3: t = 0;

4: while ( t ≤ Tmax ) do

5: for h = 1, . . . , Na do

6: BuildSolutionh(S(t), τ1, . . . , τk, η1, . . . , ηk);

7: end for

8: ArchiveUpdate(S(t), A);

9: PheromoneUpdate(τ1, . . . , τk, A);

10: t = t + 1

11: end while

12: return A ; // the Pareto front achieved

Algorithm 1.2 starts by initializing the k pheromone matrices

(Init Pheromone Trails()). These initial values could depend on the partic-

ular objective. The archive of non-dominated solutions is initially empty

(line 2). Function BuildSolutionh() is executed once for each of the Na

ants. This function is in charge of building a particular solution based on

information of the k pheromone matrices and the respective heuristic infor-

mation for each objective. As a general algorithm design, we do not show

the way in which those values are used. Nevertheless, many possibilities

can be considered, e.g., building an aggregating function used to calculate

the probability values involved at each step on the solution construction

process. The Na solutions obtained at iteration t are stored in S(t). After

that, the archive of non-dominated solutions is updated in a such way that

the new created solutions in S(t) compete with the solutions stored in A to

obtain a renewed set of ranked non-dominated solutions (ArchiveUpdate()).

According to the new set A of non-dominated solutions, all the pheromone

matrices are updated taking into account the respective objective values.

Finally, after Tmax iterations, the achieved set of non-dominated solutions

is returned.
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1.6. Promising Research Areas

There are several topics within this area that we believe that have a high

potential for future research. The main ones are the following:

• Use in continuous optimization problems: In contrast with

the several ACO variants that have been recently proposed for con-

tinuous single-objective search spaces (see for example [15, 16, 18]),

such proposals are very scarce within multi-objective optimization.

Clearly, the development of multi-objective extensions of continu-

ous variants of ACO could bring a variety of novel applications.

This could potentially place ACO next to other metaheuristics

which are very popular for continuous multi-objective optimization

(e.g., particle swarm optimization).

• Parallelization: ACO algorithms are, by definition, highly dis-

tributed algorithms in which a set of ants are in charge of indepen-

dently building a solution. Thus, their parallelization is relatively

straightforward, but such a feature has not been yet properly ex-

ploited in a multi-objective optimization context. Furthermore,

ACO algorithms are flexible enough to allow the addition of many

components that can be combined in many different ways in order

to obtain improved ACO-based multi-objective optimizers (e.g.,

several pheromone matrices, multiple colonies, heuristic informa-

tion (when available), Pareto archives, etc). Again, the experience

acquired so far regarding parallel MOEAs [6, 61, 62] could be very

valuable here.

• Hybridization: In the last few years, the hybridization of different

types of metaheuristics has become a relatively popular scheme

within multi-objective optimization. For example, some MOEAs

have been hybridized with powerful local search engines, giving rise

to the so-called multi-objective memetic algorithms [63]. MOACOs

also have a great hybridization potential, not only with local search

engines, but also with other metaheuristics such as particle swarm

optimization and genetic algorithms. Such hybrids are expected to

become more common during the next few years.
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1.7. Conclusions

In this chapter we have presented an overview of the use of the Ant Colony

Optimization metaheuristic for solving multi-objective optimization prob-

lems. The chapter has provided some introductory concepts about the ACO

metaheuristic and about multi-objective optimization. The most relevant

features of some recent proposals within the area were briefly reviewed,

too. Based on the existing MOACOs and a particular taxonomy proposed

in the literature, we presented a refined taxonomy of MOACO algorithms

that could help practitioners to better identify and exploit the potential

of the ACO metaheuristic as a multi-objective optimizer. Nevertheless, we

hope that this chapter can be found useful not only for practitioners, but

also for students and researchers interested in multi-objective optimization

using ACO algorithms, for such has been its main purpose.
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T. Stützle, Proceedings of Ant Colony Optimization and Swarm Intelligence,
4th International Workshop, ANTS Workshop 2004, pp. 25–36, Brussels,
Belgium, (2004). Springer-Verlag. Lecture Notes in Computer Science Vol.
3172.

[18] K. Socha and M. Dorigo, Ant colony optimization for continuous domains,
European Journal of Operational Research. 185(3), 1155–1173, (2008).

[19] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. In eds. K. Giannakoglou, D. Tsahalis, J. Pe-
riaux, P. Papailou, and T. Fogarty, EUROGEN 2001. Evolutionary Methods



May 25, 2010 22:45 World Scientific Review Volume - 9in x 6in maco-chapter-final

MOACO: A Taxonomy and Review of Approaches 25

for Design, Optimization and Control with Applications to Industrial Prob-
lems, pp. 95–100, Athens, Greece, (2001).

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA–II, IEEE Transactions on Evolutionary
Computation. 6(2), 182–197 (April, 2002).

[21] D. Angus. Population-based ant colony optimisation for multi-objective
function optimisation. In eds. M. Randall, H. A. Abbass, and J. Wiles,
ACAL, vol. 4828, Lecture Notes in Computer Science, pp. 232–244. Springer,
(2007). ISBN 978-3-540-76930-9.

[22] D. Angus. Crowding Population-based Ant Colony Optimization for the
Multi-objective Travelling Salesman Problem. In Proceedings of the 2007
IEEE Symposium on Computational Intelligence in Multicriteria Decision
Making (MCDM’2007), pp. 333–340, Honolulu, Hawaii, USA (April, 2007).
IEEE Press.

[23] D. A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifica-
tions, Analyses, and New Innovations. PhD thesis, Department of Electrical
and Computer Engineering. Graduate School of Engineering. Air Force In-
stitute of Technology, Wright-Patterson AFB, Ohio (May, 1999).

[24] J. Knowles. A summary-attainment-surface plotting method for visual-
izing the performance of stochastic multiobjective optimizers. In Fifth
International Conference on Intelligent Systems Design and Applications
(ISDA’2005), pp. 552–557. IEEE, (2005).

[25] A. Garcia-Najera and J. A. Bullinaria. Extending ACOR to Solve Multi-
Objective Problems. In ed. G. M. Coghill, Proceedings of the UK Workshop
on Computational Intelligence (UKCI 2007), London, UK, (2007). Imperial
College United Kingdom.

[26] C. A. Coello Coello, G. Toscano Pulido, and M. Salazar Lechuga, Handling
Multiple Objectives With Particle Swarm Optimization, IEEE Transactions
on Evolutionary Computation. 8(3), 256–279 (June, 2004).

[27] N. Liu, B. Huang, and X. H. Pan, Using the Ant Algorithm to Derive Pareto
Fronts for Multiobjective Siting of Emergency Service Facilities, Transporta-
tion Research Record: Journal of the Transportation Research Board. 1935,
120–129, (2005).

[28] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. (Addison-Wesley Publishing Company, Reading, Massachusetts,
1989).

[29] L. T. Bui, J. M. Whitacre, and H. A. Abbass. Performance Analysis of
Elitism in Multi-Objective Ant Colony Optimization Algorithms. In 2008
Congress on Evolutionary Computation (CEC’2008), pp. 1633–1640, Hong
Kong (June, 2008). IEEE Service Center.

[30] X. Benlian and W. Zhiquan, A multi-objective-ACO-based data association
method for bearings-only multi-target tracking, Communications in Nonlin-
ear Science and Numerical Simulation. 12(8), 1360–1369, (2007).

[31] A. M. Mora, J. J. M. Guervós, C. Millán, J. Torrecillas, J. L. J. Laredo,
and P. A. C. Valdivieso. Comparing ACO Algorithms for Solving the Bi-
criteria Military Path-Finding Problem. In eds. F. A. e Costa, L. M. Rocha,



May 25, 2010 22:45 World Scientific Review Volume - 9in x 6in maco-chapter-final

26 Guillermo Leguizamón and Carlos A. Coello Coello

E. Costa, I. Harvey, and A. Coutinho, Advances in Artificial Life. 9th Eu-
ropean Conference (ECAL’2007), pp. 665–674. Springer, Lecture Notes in
Computer Science, Vol. 4648, Lisbon, Portugal (September 10-14, 2007).
ISBN 978-3-540-74912-7.

[32] A. Mora, J. Merelo, C. Millan, J. Torrecillas, and J. Laredo. CHAC. A
MOACO Algorithm for Computation of Bi-Criteria Military Unit Path
in the Battlefield. In eds. D. Pelta and N. Krasnogor, Proceedings of the
First Workshop in Nature Inspired Cooperative Strategies for Optimization
(NICSO’06), pp. 85–96, Granada, Spain (June, 2006).

[33] A. M. Mora, J. J. M. Guervós, C. Millán, J. Torrecillas, J. L. J. Laredo, and
P. A. C. Valdivieso. Enhancing a moaco for solving the bi-criteria pathfinding
problem for a military unit in a realistic battlefield. In eds. M. Giacobini,
A. Brabazon, S. Cagnoni, G. D. Caro, R. Drechsler, M. Farooq, A. Fink,
E. Lutton, P. Machado, S. Minner, M. O’Neill, J. Romero, F. Rothlauf,
G. Squillero, H. Takagi, S. Uyar, and S. Yang, EvoWorkshops, vol. 4448,
Lecture Notes in Computer Science, pp. 712–721. Springer, (2007). ISBN
978-3-540-71804-8.

[34] B. Barán and M. Schaerer. A Multiobjective Ant Colony System for Vehicle
Routing Problem with Time Windows. In Proceedings of the 21st IASTED
International Conference on Applied Informatics, pp. 97–102, Innsbruck,
Austria (February, 2003). IASTED.

[35] P. R. McMullen and P. Tarasewich, Multi-objective assembly line balancing
via a modified ant colony optimization technique, International Journal of
Production Research. 44, 27–42, (2006).

[36] L.-N. Xing, Y.-W. Chen, and K.-W. Yang. Interactive fuzzy multi-objective
ant colony optimization with linguistically quantified decision functions for
flexible job shop scheduling problems. In FBIT ’07: Proceedings of the 2007
Frontiers in the Convergence of Bioscience and Information Technologies,
pp. 801–806, Washington, DC, USA, (2007). IEEE Computer Society. ISBN
978-0-7695-2999-8. doi: http://dx.doi.org/10.1109/FBIT.2007.18.

[37] M. Guntsch and M. Middendorf. A Population Based Approach for ACO.
In Applications of Evolutionary Computing. EvoWorkshops 2002: EvoCOP,
EvoIASP, EvoSTIM/EvoPLAN, pp. 72–81, Kinsale, Ireland (April, 2002).
Springer. Lecture Notes in Computer Science Vol. 2279.
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M. Clerc, T. Stützle, and A. F. Winfield, Ant Colony Optimization and
Swarm Intelligence. 6th International Conference, ANTS 2008. Proceedings,
pp. 331–338. Springer, Brussels, Belgium (September, 2008).

[51] M. Chica, O. Cordón, S. Damas, J. Bautista, and J. Pereira. Multi-objective,
constructive heuristics for the 1/3 variant of the time and space assembly
line balancing problem: Aco and randomised greedy. Technical Report AFE-
08-01, European Centre for Soft Computing, Asturias (Spain), (2008).
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