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Abstract—There has been a considerable amount of research
on the development of metaheuristic methods for resource-
constrained project scheduling problems. Early methods followed
the building blocks and even the formulation of well-understood
metaheuristic methods as well as simple but effective heuristics
such as forward-backward improvement. In contrast, more
recent methods employ less familiar, more complex (hybrid)
metaheuristics and non-standard components and formulations.
Although the former may provide better results on standard
test problems, it is not easy to understand how each component
has contributed to improving the results and why a deviation
from well-established formulations, components and methods was
necessary. This research advances our knowledge about the im-
pact of different strategies and components of customized genetic
algorithms (some of which have been proposed in this study) on
the optimization results. This task is performed by developing
a comprehensive genetic algorithm with several familiar and
potentially effective components. A modular analysis is then
performed in which one component is suppressed at a time, and
the resultant performance decline is analyzed. With hindsight
from the modular analysis, a simple method is suggested and
the importance of each component is clarified. Thus, no further
simplification can be performed without compromising efficiency.
Our preliminary results reveal that this customized genetic
algorithm outperforms many existing methods and can compete
with the most successful ones, which, in many cases, are much
more complex than our approach.

Index Terms—Combinatorial optimization, evolutionary algo-
rithm, heuristic, schedule generation scheme, self-adaptation

I. INTRODUCTION

A resource-constrained project scheduling problem
(RCPSP) aims to schedule a predefined set of activities with
given durations such that the problem’s objective (usually
the project makespan) is optimized while the constraints
on available resources and precedence relationships of
activities are satisfied. Although there are exact methods
that can guarantee finding the optimal solution (e.g., integer
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programming with the branch and bound method proposed
in [1]), these methods can be applied only to small-scale
problems since the RCPSP belongs to the class of NP-hard
optimization problems [2]. Therefore, there has been a lot
of research on the use of heuristics, and more recently, on
metaheuristic methods for RCPSPs.

Although it is possible to directly optimize the start/finish
times of activities (see the method in [3]), most (meta)heuristic
methods optimize an encoded representation of schedules such
as an activity list (integer values showing the sequence of
activities) or random keys (continuous values showing the
priority of activities). The start times of the activities, which
is referred to as “a schedule”, is then determined by applying
a schedule generation scheme (SGS) to the encoded repre-
sentation. An SGS creates a precedence and resource feasible
schedule by stepwise extension of a partial schedule given the
activity list or priorities. An SGS can be parallel or serial and
may create the partial schedule from left to right (forward
SGS) or right to left (backward SGS). A more detailed
discussion of SGSs will be provided in Subsection II-B.

Priority rule-based heuristic methods optimize a RCPSP
by defining a rule that determines the priority of activities
based on one or more features of the problem, such as the
latest finish time (LFT) [4]. Then, an SGS is employed to
create the schedule, considering the priories of the activities.
The priority rule can be static or dynamic (depending on
whether the priorities of the activities change during the steps
of SGS) and local or global (depending on whether only
the information of the activity under consideration is used to
define the priority) [2]. The resulting heuristic method can
be single-pass (generating only one schedule) or multi-pass
(generating more than one schedule). A single-pass method
combines one SGS with one priority rule and returns a unique
schedule. Multi-pass methods may employ multiple priority
rules, multiple SGSs, iterative forward-backward scheduling,
or some randomness in the SGS scheme or priorities [2]. More
recent research on rule-based priority methods focus on the
identification or even automatic formulation of new priority
rules [5], [6].978-1-7281-8393-0/21/$31.00 ©2021 IEEE



Metaheuristic methods provide an alternative to heuristic
methods for optimizing RCPSPs. They generally employ a
population of solutions that gradually converge to a good
schedule. Their search operators involve some randomness
which improves their global search capability. By the 2000s,
many well-known metaheuristic methods such as genetic
algorithms (GAs) had been applied to RCPSPs [7]. The
superiority of metaheuristic methods over heuristic ones was
soon discovered [7], [8], especially when the evaluation budget
was abundant enough to reveal the advantages of learning
from the past [8], which is a characteristic of metaheuristic
methods. Thereafter, many metaheuristic methods, and in some
cases, methods that hybridize two or more metaheuristics, have
been developed and applied to RCPSPs (see [9] for a survey
and comparison of hybrid methods). As a general trend, more
recent metaheuristic methods outperform older ones; however,
they are more complex with additional components, such as
building blocks, or non-standard operators.

A. Motivation for This Work

Even in their general form, the proper formulation of a
building block has a substantial impact on the performance
of a metaheuristic method. For example, evolutionary algo-
rithms, the most well-known class of metaheuristic methods,
employ selection, recombination, and mutation. Moreover,
when applied to RCPSPs, these methods should employ some
problem-specific building blocks, such as forward-backward
improvement (FBI) [10], customized representation, and SGS,
to improve their capability, which further exacerbates their
complexity. Non-standard modifications of metaheuristics and
their hybridization also intensify this complexity.

It seems that the primary focus of many new studies has
been on developing methods that can compete or even outper-
form the existing ones. Even for the most complex methods,
the overall performance can be easily compared numerically
on standard test problems (e.g., the test problems of PSPLIB
[11]). Therefore, being a complex method is not a drawback
from this perspective. However, there is the caveat that such
studies provide little contribution to advancing knowledge in
this field. In many cases, theoretical or numerical motivations
for non-standard components of a method are missing or
insufficient. It remains unclear whether each modification was
necessary to reach better results. Even if that was the case,
the question remains of whether the additional complexity was
worth the gain obtained in the results (practical significance
of improvement). This knowledge is particularly important for
other researchers who wish to know how each component
or modification has contributed to the performance of a suc-
cessful method and properly integrate it with new or existing
methods.

B. Objectives and Contributions

The primary objective of this research is NOT to develop
a method that outperforms the best existing methods for
RCPSPs but to reveal the impact of some existing and a few
novel strategies and operators. It aims to pave the path for

developing methods that are robust and efficient but do not
have unnecessary complexities since each component provides
a substantial contribution to the overall performance.

One way to identify promising components is to find the
shared features among a large number of existing methods, a
methodology followed by Kolisch and Hartmann in their com-
prehensive comparative study [8]. This study favors a more
controlled methodology in which the effect of each component
is studied in isolation. To achieve this task, it develops a self-
adaptive GA with reasonable complexity. Justification for the
formulation of each building block of this GA is provided.
Controlled experiments are performed to reveal the impact
of each component by comparing the performance of the
developed method when that specific component is active or
suppressed. In particular, this study:

• formulates a standardization procedure for the representa-
tion of schedules to avoid representation redundancy. The
importance of this module is numerically demonstrated.

• explores the effect of self-adaption of the direction (for-
ward or backward) and the type (serial or parallel) of
SGS.

• analyzes the importance of crossover direction (forward
or backward)

• Investigates potential merits of restrictions for recombina-
tion between parents with identical SGS type or direction.

• studies the best setting for the forward-backward im-
provement operator.

The rest of this paper is organized as follows: Section II
provides some technical preliminaries related to this study.
Section III develops a self-adaptive GA. Controlled simula-
tions are performed in Section IV. A comparison with some
existing methods is performed in Section V. Finally, our
conclusions are drawn in Section VI.

II. TECHNICAL PRELIMINARIES

Some technical preliminaries related to this study are ex-
plained in this section.

A. Problem Formulation

The RCPSPs considered in this study is summarized as fol-
lows: There are D+2 activities (0, 1, 2, . . . , D + 1), in which
activities 0 and D + 1 are dummy activities that correspond
to the start and finish time of the project, respectively [2].
Activity j takes dj time units to complete. There are K types
of resources. The number of available units for each resource
is denoted by Rk, k = 1, 2, . . . ,K. Activity j requires rkj
units of the kth resource type. Activities 0 and D + 1 have
zero duration and zero resource requirements.

The objective is to find the start/finish time of D non-
dummy activities such that the project makespan is minimized
while the schedule is precedence and resource feasible. The
precedence constraints enforces that each activity can start
only when all of its predecessors have finished. The set of
predecessors of activity j is denoted by Pj . The resource
constraints ensure that for each type of resource, the sum
of the resource units required by the ongoing activities does



not exceed the available resources. This problem can be
formulated as follows:

Minimize FTD+1

Subject to:

FTh ≤ FTj − dj ,∀h ∈ Pj , j = 1, 2, . . . , D+1∑
j∈A(t)

rkj ≤ Rk, k = 0, 1, 2, . . . ,K

FTj ≥ 0, j = 0, 1, 2, . . . , D+1

(1)

In this formulation, FTj is the finish time of the jth activity
and A(t) = {j ∈ {0, 1, . . . , D + 1}|FTj − dj ≤ t < FTj} is
the set of activities that are ongoing (active) at time t. In this
formulation, the first line states the precedence constraints, and
the second line describes the resource constraints. Preemption
is not allowed, which means that each activity cannot be
interrupted once it has started.

B. Schedule Generation Scheme
The choice of SGS can have a major impact on optimization

results. An SGS is a stepwise approach which can be serial
(activity-based increment) or parallel (time-based increment)
[7]. Given a partially set schedule, in which the start times
of activities 0, 1, . . . , k have already been set, a serial SGS
finds the earliest possible time for activity k+1. In contrast, a
parallel SGS determines the schedule by increments over time.
For time t, the eligible activities (i.e., the activities whose
predecessors have been completed) are determined, and the
one with the highest priority would start at time t. If no eligible
activity can be set, t is increased.

The schedule generated from a serial SGS is always an
active schedule [12] (i.e., a schedule in which no activity
can start earlier without delaying another activity [2]). For
makespan minimization, the optimal schedule is always an
active schedule [2]. A parallel SGS results in a non-delay
schedule [13], a subset of active schedules for which even
if preemption is allowed, no activity can start earlier without
delaying another activity. The optimal schedule is not always
a non-delay schedule; therefore, a parallel SGS has a severe
theoretical shortcoming: There may be no representation of
the optimal solution which is mapped to the optimal schedule
if a parallel SGS is applied. This may explain why most
metaheuristic methods opt for serial SGS or the union of both
types of SGSs [8].

Hartmann and Kolisch [7] showed that although serial SGS
can potentially find the global optimum, it may fall behind
parallel SGS for large-size problems with a limited evaluation
budget. They argued that parallel SGS only searches the space
of non-delay schedules. Besides, a parallel SGS implies a
greedy use of available resources, which on average, results
in a good schedule. Thus, it can be beneficial when there is
not enough evaluation budget to sufficiently explore the whole
space of active schedules.

Besides the type of SGS, which can be serial or parallel,
the direction of SGS may affect the optimization process [14].

The explained procedure of SGSs assumed that a schedule is
generated from left to right (forward scheduling). A backward
SGS generates the schedule from right to left. For example,
when the partial schedule of activities j, j +1, . . . , D+1 has
been generated by a backward serial SGS, the latest time in
which activity j−1 may finish is determined, and this activity
is set such that it finishes at this time. A backward serial
SGS results in a right-active schedule. Similarly, a backward
parallel SGS can be used by decreasing the time and applying
one final shift in the start times of all activities such that
activity zero starts at time t = 0. For example, the GA in [14]
generated both froward and backward schedules and selected
the better one as the mapped schedule for the activity list.
Another example is the GA developed in [15], which divides
the population into two subpopulations: those generated by
a forward SGS and those generated by a backward one.
It also restricts the recombination to solutions in the same
subpopulation.

C. Forward-Backward Improvement
Forward-backward improvement (FBI) [10] is a simple

yet robust strategy to improve a generated schedule from
SGS. In forward improvement, each activity is shifted to
the earliest time that does not violate the precedence and
resource constraints. Activities that start earlier are shifted
first. Similarly, in backward improvement, activities are shifted
to the latest time such that no constraint is violated. In this
case, activities that finish later are shifted first. In the case of
identical start/finish times, some tie-breaking heuristics should
be used. Iterative forward and backward scheduling results in
a reduction or no change in the schedule makespan. However,
since each forward or backward pass is counted as a solution
evaluation, the FBI process terminates when there is no change
in two successive forward/backward passes. The robustness of
FBI allows for its integration with almost any search method.
A statistical analysis from Kolisch and Hartmann [8] showed
the importance of FBI for metaheuristic-based methods.

III. CUSTOMIZED GA-BASED METHOD

This study employs a self-adaptive GA as the core meta-
heuristic method for optimization. The structure and the build-
ing blocks of this GA are explained in this section.

A. General Structure
The building blocks of the proposed GA, which is called

self-adaptive genetic algorithm with standardized activity list
(SAL-SAGA), are as follows:

• Activity list representation
• Self-adaptation of SGS type and direction
• Forward and backward multipoint discrete crossover
• Precedence-compliant insertion mutation
• Tournament selection with dynamic tournament size
• FBI with controlled evaluation budget
• Standardized representation
Fig. 1 shows the flowchart of SAL-SAGA and the interac-

tion between its building blocks. These building blocks are
discussed in this section.
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Fig. 1. Flowchart of the SAL-SAGA

B. Solution Representation

Each represented solution (encoded solution) is a chro-
mosome of size D + 2. The first two genes represent the
SGS type (0 for serial and 1 for parallel) and the SGS
direction (0 for forward and 1 for backward). The next D
genes form a precedence feasible activity list. Fig. 2 depicts
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Activity List 

SGS Direction 

SGS Type 

Fig. 2. A chromosome representing an encoded solution with six non-dummy
activities. The values of the first two genes show that a backward serial SGS
will be applied to this encoded solution to generate the corresponding schedule

an exemplary chromosome with six non-dummy activities, to
which the backward serial SGS will be applied to generate the
corresponding schedule.

C. Schedule Generation Scheme

The employed schedule generation scheme can be serial or
parallel, forward or backward. The type and direction of the
SGS are determined by the first two genes of the chromosome.

D. Forward-Backward Improvement

After generating a schedule from a chromosome, FBI is
performed iteratively to improve the generated schedule. For
schedule S with the corresponding chromosome C, forward
and backward improvements are performed alternately. As-
suming c2 is the second gene of C (the gene storing the SGS
direction), the following rules are applied:

• If the second gene in C is zero, then backward im-
provement is performed because it shows that a forward
SGS or a forward improvement pass has recently been
applied, and thus, the schedule is already left-active.
After performing backward improvement, the value of
the second gene in the chromosome is changed to one.

• Similarly, if the second gene in C is one, then a forward
improvement is performed because it shows a backward
SGS or a backward improvement pass has recently been
applied, and thus, the schedule is already right-active.
After performing the forward improvement, the value of
the second gene in the chromosome is changed to zero.

Each forward or backward pass counts as one iteration of
FBI. A maximum of FEFBI iterations of FBI are allowed per
each schedule. However, the FBI terminates if there is no
change in the makespan in two successive iterations.

E. Evolutionary Operators

The employed GA in this study is a (λ+λ)-GA, in which λ
parents generate λ offspring. The parents for the next gener-
ation are selected from the union of the current parents and
the recently generated offspring. Based on some preliminary
parameter studies, we set λ = max{2, ⌊

√
FEmax⌋}, in which

FEmax is the evaluation budget (measured in terms of the
maximum number of function evaluations). The evolutionary
components of the employed GA are discussed in this section.
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Fig. 3. Effect of the crossover direction on two parent activity lists (AL1 and
AL2) and the resultant offspring

1) Crossover: The crossover operator in GAs generally
creates two offspring from two parents. The crossover in this
study, however, produces only one offspring from two parents.
This allows for a less noisy selection especially when the
population size is small.

The crossover of the first two genes is simple: the cor-
responding gene in the offspring is the average of the cor-
responding genes in the parents. If this value is 0.5, it is
stochastically rounded down/up to zero or one with equal
probability.

For recombination of the activity lists, this study employs a
generalized case of multi-point discrete crossover developed in
[16] to avoid fixing the number of cut points. This study favors
the selection of the number of cut points from a truncated
normal distribution with standard deviation σxover with lower
and upper bounds of 1 and D. By default, σxover = 1.

It is worth noting that, like SGS, crossover can be performed
from left-to-right (forward) and right-to-left (backward). For
example, Alcaraz [14] used an extra gene to decide on
the direction of the crossover based on whether forward or
backward SGS was used for the parents. In this study, we use
forward and backward crossover, each with a fixed probability
of 0.5. Fig. 3 depicts one example of forward and one example
of backward crossover.

2) Mutation: For the first and second gene of a chromo-
some, mutation is performed with a probability of P Type

mut and
PDir

mut, respectively. The mutation changes the value of the gene
from zero to one or vice versa. Based on some preliminary
results, we set P Type

mut = PDir
mut = 0.1.

For the activity list, a standard insertion mutation is applied.
For each activity (in a random sequence), mutation is per-
formed with a probability of PAL

mut. If activity j is selected for
mutation, its closest predecessor and successor in the activity
list are identified, and activity j is placed in a random position
between these two limits. This type of insertion keeps the
precedence feasibility of the activity list. Based on a few
numerical experiments, the value of PAL

mut = 1/(D + 1) is
used.

3) Selection: Tournament selection is employed to select
parents for recombination. Quite often, the tournament size is
two, which is roughly equivalent to linearly decreasing weights
(e.g. in [14]). This setting is followed in this study.

It may be beneficial to restrict the recombination between
chromosomes that have SGSs of identical type and direction
(e.g., the GA in [15]). Therefore, the selection operator has
two other Boolean parameters: rtype, rdir, for which a true
value means that the restriction is enforced on the type
and direction of SGS, respectively, when selecting a pair of
parents for crossover. This means that the selected parents
for recombination must have identical SGS type/direction.
Otherwise they are rejected and the tournaments are repeated.

F. Standardization of Representation

One challenge associated with using a representation for
RCPSPs is that there is not a one-to-one correspondence
between the represented solution and the generated schedule.
In summary:

• There can be multiple activity lists which map to the
same schedule when applying a SGS [14]. If a random
keys representation is employed, there will be plateaus in
the search space.

• For a fixed activity list, the generated schedule depends
on the type and direction of the employed SGS. If both
types of SGS (serial and parallel) and both directions
(forward and backward) are employed, one activity list
may be mapped to four different schedules.

The first redundancy creates extra local/global optima in
the search space, all of which map to a single schedule. We
speculate that this redundancy is severely detrimental because
it divides the population into multiple niches, each around a
different minimum, thus reducing the number of individuals
that search for a basin. Recombination among solutions from
different niches is unlikely to result in good solutions. It
is noteworthy that this redundancy has nothing to do with
multimodal optimization [17] (finding multiple solutions to a
problem) since the schedules generated from all these different
representations are identical.

The representation standardization module aims to over-
come this challenge by using one standard activity list for all
activity lists that map to identical schedules. For the schedule
created from a forward SGS or a forward improvement pass,
the standard activity list is the one in which activities that
start earlier appear earlier in the list. If two activities have an
identical start time, the one with the smaller slack time should
come first. If the slack times are also identical, the activity with
the smaller number comes earlier in the list.

Following the same idea, for the schedule created from a
backward SGS or a backward improvement pass, the standard
activity list is the one in which activities that finish later appear
later in the list. If two activities have identical finish time, the
one with smaller slack time should come later. If slack times
are also identical, the activity with the greater number comes
later in the list.



        

 

19.60

19.80

20.00

20.20

20.40

20.60

0 3 6 9 12 15

Var. ID

Avg. DevLB%
95% CI

Mean

Fig. 4. Average deviation from the lower bound (mean and 95% confidence
interval) calculated for 15 variants of SAL-SAGA on 480+480+600 problems
when FEmax = 1000

IV. MODULAR ANALYSIS

This section performs a modular analysis to discover the
impact of each component of SAL-SAGA. Each time, one
component is suppressed, and the significance (statistical or
practical) of the performance decline is analyzed to reveal the
impact of that component. The default variant of SAL-SAGA
is as follows:

• SGS: Self-adaptation of the SGS type and direction.
• Crossover: Forward and backward crossover (each one

may be selected with a probability of 0.5). No restriction
for similarity of SGS type or direction is enforced for
crossover (rtype = rdir = 0). Besides, σxover=1.

• Standardization: The activity list is standardized after
performing FBI (see Fig. 1)

• FBI: FEFBI = 2: one forward and one backward pass are
performed. The order of these passes depends on the SGS
direction.

In addition to this default variant, which is denoted by
SAL-SAGA, some other variants are considered, each identical
to SAL-SAGA except for the explained component. Table I
presents these variants.

The widely adopted test problems of PSPLIB [11] are
used for performance analysis. Each variant is tested on J30,
J60, and J120 problems (480+480+600=1560 problems). For
each problem, 20 independent runs were performed and the
deviation from the lower bound was calculated:

DevLB =
makespanmin − LB

LB
∗ 100% (2)

in which LB is the lower bound calculated using the critical
path method and makespanmin is the minimum makespan
found by the method. Fig. 4 shows the mean and 95% confi-
dence interval of DevLb, when calculated over 1560 problems.
From the obtained results, the following observations can be
made:

• Effect of SGS type: Using only serial or parallel SGS
results in a significant decline in performance (compare

Variant 1 with Variants 2 and 3). Using both with a fixed
probability of 0.5 for each (row 6) is still worse than
self-adaptation of the SGS type, although it is better than
using only one type of SGS. This clarifies the usefulness
of (self-)adaptation of the SGS type. If only one SGS type
must be used, parallel SGS turns out to be a better choice
for J60 and J120, whereas serial SGS is more successful
for J30. Considering the limited evaluations budget, this
observation parallels the findings in [7] in which parallel
SGS may work better in the short term for problems of
higher dimensionality.

• Effect of SGS Direction: Using self-adaptation for the
SGS direction results in a significant improvement com-
pared to using only one direction for SGS (row 1 versus
rows 4 and 5). Surprisingly, using both forward and
backward SGS with a fixed probability of 0.5 (row 7)
is even a better or at least an equally good option.
This shows that self-adaptation has not worked for the
SGS direction. We speculate that the offspring of parents
that were generated/improved in the forward (backward)
direction are more likely to be good solutions if they are
scheduled in the backward (forward) direction.

• Effect of restrictions for crossover: Restricting recombi-
nation to parents with identical SGS type or direction
is detrimental to the algorithm’s performance (row 1
versus rows 8 and 9). Besides, it introduces an additional
operator to the method.

• Effect of crossover direction: Using both forward and
backward crossover with a fixed probability of 0.5 for
each of them does not show a practical advantage over
using only forward or only backward crossover.
Effect of standardization of activity list: Performing stan-
dardization of the represented activity list resulted in a
substantial improvement (row 1 versus row 12).
FBI effect: Suppressing FBI results in a major decline in
performance (row 1 versus row 15). Using FBI for only
one iteration (forward pass if the schedule was generated
by backward SGS, backward pass otherwise) is a better
choice than the conventional choice of FEbudget = 2. An
additional increase in FEbudget results in a minor deteri-
oration in performance since the FBI may be terminated
after two iterations if there is no further improvement.

V. COMPARISON WITH OTHER METHODS

Following the hindsight from Section IV, the recommended
variant of SAL-SAGA is the default one except that:

• Forward and backward SGS are performed with a fixed
probability of 0.5 for each (instead of the self-adaptation
of the SGS direction).

• The budget of FBI is one (FEFBI = 1).
The test problems of PSPLIB [11] have generally been

optimized with budgets of 1000, 5000, and 50,000 evaluations.
The same setting is followed in this study. Table II compares
the results of the suggested variant of SAL-SAGA with some
of the existing methods for RCPSPs. For J30, the results are
the average difference from the theoretical optimum. For J60



TABLE I
DESCRIPTION OF DIFFERENT VARIANTS OF SAL-SAGA FOR MODULAR ANALYSIS

Var.
No. Variant Description

1 SAL-SAGA Default variant
2 SAL-SAGA-{S-SGS} Only serial SGS for schedule generation is used
3 SAL-SAGA-{P-SGS} Only parallel SGS for schedule generation is used
4 SAL-SAGA-{F-SGS} Only forward SGS for schedule generation is used
5 SAL-SAGA-{B-SGS} Only backward SGS for schedule generation is used
6 SAL-SAGA-{S&P-SGS} Serial or Parallel SGS is used with equal probabilities (no self-adaptation)
7 SAL-SAGA-{F&B-SGS} Forward or backward SGS is used with equal probabilities (no self-adaptation)
8 SAL-SAGA-{Xover-Type} Crossover is restricted between parents who have identical SGS type
9 SAL-SAGA-{Xover-Dir} Crossover is restricted between parents who have identical SGS Direction
10 SAL-SAGA-{Xover-F} Crossover is performed only in forward direction
11 SAL-SAGA-{Xover-B} Crossover is performed only in backward direction
12 SAL-SAGA-{Standard} Standardization of the activity list after FBI is suppressed
13 SAL-SAGA-{FEFBI = 0} FBI is suppressed
14 SAL-SAGA-{FEFBI = 1} FBI is performed for one iteration only (either forward or backward improvement)
15 SAL-SAGA-{FEFBI = 4} FBI is performed with a maximum of four iterations. It terminates if there is no change in the last two iterations

and J120, the performance indicator is the average deviation
(percentage) from the lower bound determined by the critical
path method (see equation (2)).

A comparison of the results reveals that SAL-SAGA outper-
forms or is at least competitive with respect to the majority
of these methods, especially when the evaluation budget is
limited. More importantly, SAL-SAGA consists of simple and
intuitively familiar components, and the effect of each of them
has been well-understood from the literature and from this
study.

VI. SUMMARY AND CONCLUSIONS

Providing promising results on standard test problems is
indeed an essential factor for the evaluation of optimization
methods. However, it is also important that these methods
are created as simple as possible, but not simpler.1 For
metaheuristic methods, this implies not only fewer and simpler
components but also more occasional deviations from well-
understood strategies and formulations. Of course, additional
complexity can be introduced if the importance of a compo-
nent is properly justified and demonstrated. A modular analysis
has been suggested and followed in this study to reveal
the significance (statistical and practical) of extra operators.
This methodology analyzes the performance decline when the
specific component has been suppressed.

The simplicity of a method and clarification of the actual
importance of each module can substantially contribute to ad-
vancing knowledge in the field of RCPSPs. Other researchers
can easily understand how each component of a particular
method has contributed to its success. This knowledge allows
them to excerpt a specific module as well as to integrate it with
other (new or existing) algorithms to introduce more robust
and efficient methods.

Following these objectives, this study has developed a
comprehensive GA that integrates several components. The
underlying ideas of these components are well-understood,
and for many of them, there are comprehensive numerical or

1From a quote by Albert Einstein.

theoretical analyses available in the literature. This GA has al-
lowed us to investigate the potential benefit from each module
using the aforementioned modular analysis. In particular, our
modular analysis revealed that:

• Standardizing the representation of solutions is crucial.
For a fixed SGS, it ensures a one-to-one correspon-
dence between the represented solution and the generated
schedule. Thus it eliminates the formation of redundant
basins in the search space of solutions. This study has
developed a standardized representation for the activity
list. However this idea can be easily applied to other types
of representations.

• Using both types (serial and parallel) and both directions
(forward and backward) with SGS is advantageous. For
the SGS type, self-adaptation works well. In contrast, for
the SGS direction, selecting the SGS direction with pre-
defined probabilities worked better than self-adaptation.

• When employing different SGS types or directions, there
is no need to ensure that only parents with identical SGS
type or direction may recombine. In fact, applying such
restrictions turned out to be slightly disadvantageous.

• FBI has a substantial impact on performance. In our
method, FBI with a budget of one iteration was the
best option. This implies one forward (backward) pass
for schedules generated from a backward (forward) SGS
or a previous backward (forward) pass. It is noteworthy
that performing only one iteration of FBI has a similar
effect to changing the direction of SGS. Therefore, the
suitability of this setting (FBI with one iteration) may be
valid only for methods that use both directions for SGS.

In hindsight of this analysis, a slightly simpler GA was pro-
posed and compared with several existing (complex) methods
on standard test problems given a limited evaluation budget.
This GA could outperform many of these methods and could
compete with the rest except for a few. More importantly, this
GA consists of distinguishable and well-justified modules, the
importance of which has been already shown. Thus, no further
simplification could be made without sacrificing the quality of



TABLE II
COMPARISON OF THE RESULTS OF THE SUGGESTED VARIANT OF SAL-SAGA WITH THE RESULTS OF SOME EXISTING METHODS FOR DIFFERENT VALUES

OF FEmax . FOR J30, THE RESULTS ARE THE AVERAGE DIFFERENCE FROM THE THEORETICAL OPTIMUM. FOR J60 AND J120, THE PERFORMANCE
INDICATOR IS THE AVERAGE DEVIATION (PERCENTAGE) FROM THE LOWER BOUND AS DETERMINED BY THE CRITICAL PATH METHOD.

Method Year Results FEmax = 1000 FEmax = 5000 FEmax = 50, 000
From J30 J60 J120 J30 J60 J120 J30 J60 J120

SAL-SAGA (This work) 2021 - 0.1 11.36 34.14 0.05 10.95 32.72 0.01 10.71 31.24
TS-MODE [18] 2020 [18] 0.06 11.9 34.41 0.01 11.21 32.86 0 10.63 30.59
Sequential(SS(FBI)) [19] 2018 [18] 0.1 11.38 34.01 0.02 10.93 32.52 0 10.58 31.16
COA [20] 2017 [20] 0.04 11.13 34.04 0 10.77 32.9 0 10.58 31.22
PSO-HH [21] 2014 [20] 0.26 11.74 35.2 0.04 11.13 32.59 0.01 10.68 31.23
GA-MBX(FBI) [22] 2013 [18] 0.14 11.33 34.02 0.04 10.94 32.89 0 10.65 31.3
GA(LS) [23] 2011 [18] 1.83 11.35 33.45 1.27 10.53 31.51 0.71 10.52 30.45
Scatter Search—FBI [24] 2006 [8] 0.27 11.73 35.22 0.11 11.1 33.1 0.01 10.71 31.57
GA-FBI [25] 2005 [8] 0.34 12.21 35.39 0.2 11.27 33.24 0.02 10.74 31.58
GA—self-adapting [26] 2002 [8] 0.38 12.21 37.19 0.22 11.7 35.39 0.08 11.21 33.21
GA—forw.–backw. [14] 2001 [8] 0.33 12.57 39.36 0.12 11.86 36.57 NA NA NA

the results. It is predicted that the insight provided from our
modular analysis paves the way to the development of simpler
and more efficient methods for RCPSPs.
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