
Towards a More Practically Sound Formulation of
Dynamic Problems and Performance Evaluation of

Dynamic Search Methods
Ali Ahrari

School of Engineering and IT
University of New South Wales

Canberra, Australia
a.ahrari@unsw.edu.au

Saber Elsayed
School of Engineering and IT
University of New South Wales

Canberra, Australia
s.elsayed@unsw.edu.au

Ruhul Sarker
School of Engineering and IT
University of New South Wales

Canberra, Australia
r.sarker@unsw.edu.au

Daryl Essam
School of Engineering and IT
University of New South Wales

Canberra, Australia
d.essam@unsw.edu.au

Carlos A. Coello Coello
Departamento de Computación

CINVESTAV-IPN
Mexico City, Mexico

ccoello@cs.cinvestav.mx

Abstract—The commonly used methodology for the simulation
of dynamic problems formulates them as intervals of static
problems, in which the change occurs between two successive
intervals. This study proposes a more practically sound for-
mulation of steadily changing dynamic problems, a class of
dynamic problems in which the problem landscape continuously,
but smoothly, changes over time. The new formulation provides
more flexibility for a dynamic optimizer to choose the trade-
off between the change frequency and the change severity while
the change rate is prescribed by the actual problem. Besides,
this study introduces a novel performance indicator for dynamic
optimization methods. Unlike conventional ones, this indicator
considers the real-time change in the actual problem during
a time step and the period in which the best solution should
be implemented. The practical importance of this formulation
and the proposed performance indicator are studied on a few
carefully designed controlled experiments. Subsequently, more
comprehensive numerical simulations are performed to investi-
gate the dependency of the optimal change frequency on the
employed prediction method and test problem.

Index Terms—Dynamic Problem, Problem Formulation, Per-
formance indicator, Evolutionary algorithm, Steadily changing
environment

I. INTRODUCTION

Dynamic optimization deals with finding and tracking the
optimal solutions to problems that change over time. For
example, the optimal solution to a vehicle routing problem
may change because of a change in traffic conditions, road ac-
cidents, arrival/cancellation of new orders and so on. Dynamic
optimization has been successfully applied to several classes
of real-world problems such as dynamic vehicle routing [1]
and optimal control of time-varying systems [2].

In some applications, the change in a dynamic problem may
be occasional, unexpected, abrupt, chaotic, and/or significant.

The most straightforward methodology to deal with such prob-
lems is to reinitialize a static optimization method from scratch
whenever a change has occurred. However, this methodology
can be a reasonable choice only if there is sufficient time
or budget to re-optimize the problem, or when the changes
are so severe that a change results in a totally new problem
which hardly resembles the old one. In many applications,
these changes are not radical [3]. Therefore, a more efficient
methodology should utilize information from the optimization
history, e.g. the history of optimal solutions(s) in the past.

Several strategies have been recently developed to handle
the dynamic nature of these problems. Some examples are
memory-based methods [4] prediction methods [5], diversity-
based methods [6], and multi-population methods [7]. These
strategies are generally incorporated into a static optimizer to
form a dynamic optimization method. In particular, some of
these strategies, like prediction strategies, are only activated
immediately after a change and remain inactive until the next
change. If changes are not informed, a dynamic optimizer
needs a change detection mechanism as well. This mechanism
is usually based on re-evaluation of a fraction of population
members or analyzing the behavior of the optimization process
[4].

There is one interesting class of dynamic problems, which
has been referred to as steadily changing problems [8]. For
these problems, there is no distinguishable change, but changes
occur continuously over time. For example, the load on
the electricity network steadily but smoothly changes with
daylight time. Some other examples are supplying fuel to
patrolling boats by a ship, or delivering hazardous materials
to multiple moving units by a robot [9]. The conventional
method to formulate such dynamic problems is to discretize
the problem to intervals of size τt, which is known as978-1-7281-2547-3/20/$31.00 ©2020 IEEE

the change frequency. The problem is assumed to remain
unchanged during each interval [10]. The change frequency
can be small, resulting in more frequently but less severely
changing problems (more accurate representation of the actual
problem) [8]. In contrast, a greater τt means less frequent but
more severe changes in the formulated problem. The value of
τt is thus a part of the problem formulation. As discussed,
the actual problem may be steadily changing, and selection of
τt should not be a part of the dynamic problem. Instead, this
parameter should be regarded as a setting for the optimization
method. Certain dynamic optimization methods may work
better with less frequent changes (but more severe ones),
whereas some other methods may be more efficient when the
changes are less severe (but occur more frequently).

Another important aspect of dynamic optimization is how
the performance indicator is calculated. The commonly ac-
cepted methodology is to average a static performance indica-
tor at the end of each time step (IGD, IGD+, or hypervolume
for multi-objective problems [8], [11], [12]). However, such
an indicator may not accurately predict the performance of a
solution when applied to the actual problem. This issue has
been analyzed by Deb et al. [8], and is briefly explained here.

The actual problem is captured and formulated as an
optimization problem at time t = 0. A static optimization
is then performed and a (near-) optimal solution xbest is
found. The optimization process, however, has taken a time
of τt. Therefore, xbest is available at time τt, from which
this solution can be applied to the actual problem. At this
time, xbest might not be a near-optimal solution for the actual
problem anymore. On the other hand, this solution should
be applied to the actual problem for an interval, known as
the implementing window [8], during which the optimum of
the actual problem further deviates from xbest. A practically
sound performance indicator should take such changes in the
actual problem into account when quantifying the performance
of a dynamic search method.

This study intends to improve existing methodologies for
the formulation of a dynamic problem and performance quan-
tification of dynamic optimization methods. In summary:

• It develops a more practically sound formulation of
steadily changing dynamic problems in which the change
frequency is no longer a problem setting but a part of
algorithmic settings.

• It shows that, for a fixed change rate, the optimal change
frequency is both problem-dependent and algorithm-
dependent.

• A new performance indicator is developed which, unlike
conventional indicators, takes real-time changes in the
actual problem during the optimization process and the
implementing window into account.

• It analyzes the difference between the proposed perfor-
mance indicator and the conventionally adopted ones for
different dynamic multi-objective optimization (DMO)
methods.

In this study, the dynamic problem is assumed to be a
multi-objective problem. However, the findings can be easily

reduced to single objective dynamic problems. The rest of
this study is organized as follows: Section II reviews the
related work on the formulation of dynamic problems and
existing performance indicators for dynamic optimization.
Section III develops an alternative formulation for dynamic
problems and a novel performance indicator for dynamic
methods. Section IV performs two descriptive experiments to
illustrate the importance of the new formulation and trade-
off between change frequency and change severity. Section V
investigates this trade-off for different prediction methods and
test problems. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

The type of dynamic problems considered in this study can
be formulated as follows:

Min. F (x, t) = [f1(x, t), f2(x, t), . . . , fM (x, t)]
T

s.t. xL ≤ x ≤ xU
(1)

In this formulation, F is the vector of objective functions, M is
the number of objectives, and xL and xU define the lower and
upper range of the search space, respectively. This equation
means the search range is fixed, but the relationship between
the decision variables and the objective functions change over
time.

The commonly used formulation of dynamic problems
assumes that the problem remains unchanged during intervals
of τt iterations. Each interval is called a time step, which is
calculated as follows:

t = max

{
0,

⌈
i− T0
τt

⌉
− 1

}
, (2)

in which t is the index of the time step and i is the iteration
number. Parameter T0 specifies when the first change occurs.
The length of the first time step might be set to a different
value than τt. In this study, the iteration number is also used
to measure the time since the start of the optimization process.
This time should not be confused with the time step.

Fig. 1 illustrates this formulation for a typical dynamic
problem. The optimization process starts from a randomly gen-
erated population X

(t=0)
IP . Then, a static optimization process

is performed for a period of τt iterations. After that, a change
occurs in the problem, the severity of which is defined by
the change severity parameter (nt > 0). A greater nt means
the problem changes less severely after each time step. The
population in the final iteration of this time step (X(t=0)

FP)
represents the solution(s) provided by the dynamic optimizer
for time step zero.

When the first change is detected, the updated problem is
provided for the optimization method. The dynamic optimizer
employs some information from the history of the optimization
process, mainly X

(t=0)
FP , to determine the seed population for

time step 1 (X(t=1)
IP). A good seed population will make the

future search more efficient. The problem at time step 1 is
then optimized by the same optimizer. This process continues
until a predefined number of changes occur.

𝐗FP
(𝑡=0)

 𝐗IP
(𝑡=1)

Change #1

𝐗FP
(𝑡=1)

 𝐗IP
(𝑡=2)

Change #2

𝐗IP
(𝑡=0)

 𝐗FP
(𝑡=2)

 𝐗IP
(𝑡=3)

Change #3

Static

Optimization

𝜏𝑡

Fig. 1: Commonly used formulation of dynamic problems

The common methodology, such as the one employed in the
CEC’2018 test suite for DMO [13] treats τt and nt as a part
of the problem settings, e.g. τt = 30 and nt = 10. Besides,
the performance of a DMO method is commonly calculated by
averaging its performance at the end of each time step. For this
purpose, first, a well-known static multi-objective performance
indicator, such as hypervolume (HV), is calculated at the end
of each time step:

HVR (t) =
HV
(
F
(
X

(t)
FP, t

))
HV
(
F
(
S(t), t

)) , (3)

in which S(t) is the true efficient set of the dynamic problem
at time step t. HVR (t) is regarded as the hypervolume ratio
for time step t. Mean HVR is then calculated by averaging the
calculated hypervolume ratios at the end of each time step:

MHVR =
1

tmax

t=tmax∑
t=1

HVR (t) (4)

This commonly used methodology provides a simple ap-
proach for the formulation of dynamic problems and per-
formance evaluation of a dynamic optimizer. However, this
formulation might overlook some practical (and important)
features of dynamic problems that steadily change. These
features have been highlighted by Deb et al. [8]:

• The actual dynamic problem changes during a time step,
whereas the formulated problem does not.

• A selected solution from the population should be applied
to the actual problem for an interval (implementing win-
dow). During this period, the actual problem is changing
while the implemented solution is fixed.

Deb et al. [8] also stated that steadily changing dynamic
problems can be simulated as a dynamic problem with frequent
but non-severe changes (a small τt but a large nt), or less
frequent but more severe changes (a large τt but a small
nt). They also considered the former option closer to practice
since the effect of dynamic changes during the optimization
process is smaller. This means that the value of τtnt, which is
called the change rate in this study, is prescribed by an actual
problem while the selection of τt or nt (but not both) can be
left to the employed optimization method.

Deb et al. [8] argued that a fraction of the time step should
be used for optimization, and the remaining time should be
allocated for implementing the selected solution from the
optimization outcome. During both periods, the actual problem
is changing. They also theorized that there should be a trade-
off between the advantages of using a greater τt versus a
greater nt for a predefined ntτt. A greater τt provides more
time for the optimization method to converge to the optimal
solution(s); however, the formulated problem will deviate
more from the actual one. They investigated the effect of τt
for a fixed change rate for FDA2 using dynamic NSGA-II;
however, a greater τt turned out to be always beneficial. The
following reasons may explain the absence of trade-off in their
simulation:

• Their employed performance indicator, MHVR, was cal-
culated according to the existing conventional method
(see 4)). This means that the change in the actual problem
during a time step was ignored.

• Dynamic NSGA-II employs hypermutation for handling
dynamic aspects of the problem, which does not make use
of the pattern in the changes. Therefore, the presence of
simple patterns, which is the case for less severe changes,
does not improve the performance of dynamic NSGA-II.

III. PROPOSED FORMULATION

Although Deb et al. [8] highlighted the importance of
considering the change during a time step and implementing
window, their numerical simulation did not involve such fac-
tors. Furthermore, they assumed that the optimization process
halts during the implementing window. A more practically
sound formulation and performance indicator is proposed in
this section to address these shortcomings.

A. Novel Formulation

The main features of the proposed formulation in this study
are as follows:

• It is possible to continue the dynamic optimization pro-
cess in the background while the selected solution from
previous time steps is being implemented during the
implementing window.

• The length of the implementing window (τw) and the
change rate are prescribed by the dynamic problem.

0 10 20 30 40 50

τt
τa

𝑥
𝑥opt

Implementing window

Iter.

No.
τw

𝑥best

Time

Step (t) 0 1 2 3 4

Fig. 2: Illustration of the simulation of a dynamic problem
with one decision parameter. The solid line represents the best
solution value, whereas the dotted line represents the actual
optimum of the dynamic problem.

However, the selection of τt is left for the optimization
method.

An exemplary case with one objective and one decision
parameter is illustrated in Fig. 2 for τt = 10 and τw = 20. The
problem initiates at time 0 when the actual problem is captured
and formulated. This formulated problem remains unchanged
for a period of τt iterations. The optimization process then
initiates from a random population and continues until the
tenth iteration. During this period, the best solution found by
the search method gets closer to the optimal solution of the
formulated problem at time 0, which is x(t=0)

opt . However, since
the optimization process takes time, the actual problem, and
thus, the optimal solution of the actual problem changes while
the formulated problem is being optimized. Therefore, after
τt iterations, x(t=1)

best approximates x(t=0)
opt , not x(t=1)

opt . Further-
more, this best-found solution is expected to be implemented
for τw iterations, during which the actual problem changes
even more. For this example, the implementing period is 20
iterations (τw = 20). Although the implemented solution does
not change during the implementing window, the optimization
process can continue in the background. For example, the
formulation of the actual dynamic problem can be updated
after each τt iterations. From iteration 11 to iteration 20,
the optimization process gradually converges to x

(t=1)
opt . This

solution cannot be implemented but it may be useful to speed
up convergence in subsequent time steps.

B. Performance Evaluation

The proposed performance indicator in this study aims to
address the drawback of the conventionally used one. More
specifically, it intends to consider the actual fitness of the
obtained solution(s) during the implementing window instead
of their fitness at the end of each time step of the formulated
problem. For this study, T0 = 0, which means the problem
is steadily changing from the first iteration. Although it is not

mandatory, for benchmarking purposes, it is assumed that only
solution(s) at the end of each time step are recorded and may
be used for implementation.

First, the whole optimization process is divided into Nw
equally sized implementing windows. For the implementing
window that starts at iteration i, the latest solutions that can
be applied are those at the end of time step t, in which t is
calculated as follows:

t =

(⌈
i
τw

⌉
− 1
)
τw

τt
− 1 (5)

When a solution from X
(t)
FP is implemented at time i, its

actual fitness is the one calculated according to the actual
problem (which steadily changes) at this time. It is worth
mentioning that the only difference between the actual and
the formulated problem is that the actual problem changes
steadily while both problems have identical change rate. The
formulated problem with a very small τt can reliably represent
a steadily changing problem. Therefore, this study considers
the formulated problem when τt = 1 and an identical change
rate as an equivalent to the actual problem. The objective
function of this equivalent problem is denoted by Fe. The
real-time hypervolume ratio (RTHVR) at iteration i is then
calculated as follows:

RTHVR (i) =
HV
(
Fe

(
X

(t)
FP, i

))
HV
(
Fe

(
Se

(i), i
)) , (6)

in which Se
(i) is the efficient set of the equivalent problem

at iteration i. The overall performance is then calculated by
averaging RTHVR (i) over the optimization process:

MRTHVR =
1

imax − τw

imax∑
i=τw+1

MHVR (i), (7)

in which imax is the maximum number of iterations. The first
τw iterations were excluded from the calculation of MRTHVR.

IV. DESCRIPTIVE EXPERIMENTS

This section performs two descriptive experiments to pro-
vide insights into the proposed formulation and performance
indicator. For this purpose, a simple initialization method is
used in combination with a slightly modified NSGA-III [14]
to form a DMO method. This modification employs a simpler
heuristic to estimate the Nadir point: the union of the parent
and offspring population is sorted according to their non-
domination rank. The Nadir point is the maximum of all ob-
jective values of population members whose non-domination
rank is equal or less than the critical rank. The critical rank is
the rank of the N th solution (N is the population size). This
modification was motivated by a theoretical issue regarding
the hyperplane-based heuristic in NSGA-III for estimating the
Nadir point [15]. Other parameters of the modified NSGA-III
are set following the recommended settings as follows:

• N = 100.

(a) (b)

0

0.2

0.4

0.6

0.8

1

0 0.5 1

x2

x1

nt = 4

t=0 t=1
t=2 t=3
t=4

0

0.2

0.4

0.6

0.8

1

0 0.5 1

x2

x1

nt = 8

t=0 t=1 t=2
t=3 t=4 t=5
t=6 t=7 t=8

(a)

(a) (b)

0

0.2

0.4

0.6

0.8

1

0 0.5 1

x2

x1

nt = 4

t=0 t=1
t=2 t=3
t=4

0

0.2

0.4

0.6

0.8

1

0 0.5 1

x2

x1

nt = 8

t=0 t=1 t=2
t=3 t=4 t=5
t=6 t=7 t=8

(b)

Fig. 3: The efficient set of DF1 in different time steps when
a) nt = 4 and b) nt = 8

• Simulated Binary Crossover (SBX): Pcross = 0.9, swap
probability of 0.5, ηc = 20

• Polynomial-based mutation: Pmut=1/D, ηm = 20;
in which D is the problem’s dimensionality.

A simple prediction method, called controlled random
variation (CRV), is used in this section as the prediction
method. This method adds some random variation to the final
population of the previous time step (time step t) to generate
the initial population for the new time step (time step t+ 1):

x
(t+1)
IPj

= x
(t)
FPj

+ND
(
0, σ2

r

)
, j = 1, 2, . . . , N (8)

in which ND
(
0, σ2

r

)
is a vector of D randomly generated

numbers from the normal distribution with mean 0 and stan-
dard deviation σr, which is calculated as follows:

σr =

∥∥c(t) − c(t−1)
∥∥

2
√
D

, (9)

in which c(t) is the centroid of X
(t)
FP. For the first change,

σr = 0.
The employed test problem in this section is DF1 [13]. In

this two-objective function, (Fig. 3), the efficient set moves
along a fixed direction over time. The length of this movement
is controlled by nt. Therefore, it is an excellent example to
study the effect of τt for a fixed change rate.

A. HVR versus RTHVR

To show the difference between HVR and RTHVR, DF1 is
optimized when τt= 30, nt= 10, and τw= 60. Optimization
continues for 20 Changes. Fig. 4 illustrates the calculated
values of HVR (at the end of each time step) and RTHVR
(for each iteration after the 60th iteration). It can observed
that:

• RTHVR is generally (but not always) maximal at the
beginning of each time step (iteration numbers 61, 121,
181, . . . , 540). However, even at this specific iteration,
RTHVR ≤ HVR. The reason for this is that RTHVR

0

0.2

0.4

0.6

0.8

1

0 120 240 360 480 600

HVR /

RTHVR

Iter. No.

HVR

RTHVR

Fig. 4: Performance of the developed DMMO method: HVR
versus DHVR for DF1 when τt = 30, nt = 10, τw = 60.
Note that each 30 iterations represent one time step.

considers the change in the actual problem during a time
step.

• HVR is calculated at the end of each time step, whereas
RTHVR changes during each time step. This change is
generally a reduction in the performance indicator.

• For this function, the gap between HVR and RTHVR
is huge at the early time steps because the change in
the efficient set of two successive time steps is huge.
Therefore, RTHVR is much less than HVR, even at the
beginning of each implementing window. Furthermore,
RTHVR reduces fast during this window. In contrast,
the difference between the efficient sets of the problem
in time steps 9-11 is small, resulting in a smaller gap
between HVR and RTHVR, as well as a lower reduction
rate in RTHVR over the corresponding implementing
window.

This experiment has shown that there can be a huge gap be-
tween the real-time performance of the implemented solution
(RTHVR in this case) and the one calculated according to the
existing performance indicator (HVR in this case).

B. Effect of the Change Severity

This experiment compares the effect of the change severity
for a fixed change rate on MHVR and MRTHVR. For this
experiment, τw = 0.2τtnt and the maximum number of
changes is set to 4nt. This means that the cumulative changes
in the problem and during the implementing window are
identical for all values of τt and nt. Fig. 5 shows MHVR
and MRTHVR as a function of the change severity (nt) for
selected values of the change rate (τtnt). This figure reveals
that:

• For a fixed τtnt, a smaller nt (or a greater τt) always
improves MHVR. This observation parallels the results

Effect of the change severity (𝑛𝑡) and change rate (𝑛𝑡𝜏𝑡) on the calculated performance indicators

0

0.2

0.4

0.6

0.8

1

4 16 64 256

nt

MHVR

0

0.2

0.4

0.6

0.8

1

1 4 16 64 256

τt

tt*nt=150

tt*nt=300

tt*nt=600

tt* nt=1200

𝑛𝑡𝜏𝑡 = 150
𝑛𝑡𝜏𝑡 = 300
𝑛𝑡𝜏𝑡 = 600
𝑛𝑡𝜏𝑡 = 1200

MHVR

0

0.2

0.4

0.6

0.8

4 16 64 256

nt

MRTHVR

0

0.2

0.4

0.6

0.8

1 4 16 64 256

τt

MRTHVR

(a) MHVR as a function of nt and τt

Effect of the change severity (𝑛𝑡) and change rate (𝑛𝑡𝜏𝑡) on the calculated performance indicators

0

0.2

0.4

0.6

0.8

1

4 16 64 256

nt

MHVR

0

0.2

0.4

0.6

0.8

1

1 4 16 64 256

τt

tt*nt=150

tt*nt=300

tt*nt=600

tt* nt=1200

𝑛𝑡𝜏𝑡 = 150
𝑛𝑡𝜏𝑡 = 300
𝑛𝑡𝜏𝑡 = 600
𝑛𝑡𝜏𝑡 = 1200

MHVR

0

0.2

0.4

0.6

0.8

4 16 64 256

nt

MRTHVR

0

0.2

0.4

0.6

0.8

1 4 16 64 256

τt

MRTHVR

(b) MRTHVR as a function of nt and τt

Fig. 5: Effect of the change severity (nt) and change rate (ntτt)
on the calculated performance indicators.

reported in [8] for FDA2. This trend is more severe for
a smaller τtnt.

• In contrast, an optimal trade-off between the advantages
and disadvantages of a greater τt can be observed when
MRTHVR is employed as the performance indicator.

• When MRTHVR is considered, the optimal value of nt
substantially increases when ntτt is greater. In contrast,
the optimal value of τt does not considerably change.

V. NUMERICAL COMPARISON

The results of descriptive experiments revealed the funda-
mental difference between the proposed and existing perfor-
mance indicators for DMO for a simple prediction method and
a simple DMO test problem. It also revealed the presence of
an optimal value for nt. This section investigates these effects
for a more diverse set of test problems and prediction methods.

The employed test problems in this section are a subset of
the CEC’2018 test suite for DMO [13]. These problems were
selected with an emphasis on the smoothness of the change
and the diversity in the change pattern of the efficient set.
These test problems are DF1, DF3, DF4, DF7, DF10, DF12.

The first four problems have two objectives, whereas the last
two problems have three objectives.

Furthermore, six prediction methods are considered in com-
bination with the modified NSGA-III used in the previous
section. These prediction methods are: Controlled Translation
with Random and Directional Variation (CTRDV) [16], Con-
trolled Random Variation (CRV), the prediction method from
Steady State and Generational Evolutionary Algorithm [17],
which is denoted by SSGEA, the pointwise prediction method
(PRE) [18], Multidirectional Prediction (MDP) approach [11],
and the hypermutation (HM) method developed in [8].

For all the problems, τtnt = 240; however, ten different
values for nt are used to formulate the problem. These
values range from 4 to 240. A maximum of 5nt changes
are considered and τw = 60. Each prediction method is used
to solve each formulated problem 20 times independently to
calculate MHVR and MRTHVR. Fig. 6 illustrates MHVR and
MRTHVR obtained from each method, each problem, and
each value of nt. The value of n∗t for each method and each
problem is provided in Fig. 7.

Fig. 6 shows that for DF1, DF4, DF10 and DF12, MHVR of
all methods improves when nt decreases. For DF3 and DF7,
this trend is generally observable except for a few prediction
methods. In contrast, when MRTHVR is the performance
indicator, most prediction methods show an optimal value for
nt which is not the minimum or the maximum of the tested
values.

When MRTHVR is the performance indicator, the optimal
value of nt strongly depends on the prediction method (Fig. 6).
For example, for DF3, n∗t = 8, 16, 40, 60 for MDP, PRE,
CTRDV, and SSGEA, respectively. The optimal nt depends
on the problem as well. For example, for CTRDV, n∗t =
4, 24, 40, 80 for DF10, DF7, DF3, and DF1, respectively.

Fig. 7 shows that when MRTHVR is the performance
indicator, there is hardly a detectable trend in relative values
of n∗t for different prediction methods. For example, for DF3,
n∗t for CTRDV is much higher than n∗t for HM, while the
situation is the opposite for DF7. The only exception is MDP,
which has the smallest n∗t almost for all problems.

VI. SUMMARY AND CONCLUSIONS

In steadily changing dynamic problems, the problem land-
scape continuously, but smoothly changes over time. The
common methodology for the simulation of dynamic problems
formulates these problems as piecewise static ones, in which
the change occurs at the end of each time step. This study has
proposed a more practically sound formulation for steadily
changing dynamic problems. In this formulation, the change
rate is prescribed by the problem. However, selection of the
change frequency or change severity (but not both) is a matter
of choice which is left to the employed optimization method.
The numerical simulation in this study revealed that there is
generally an optimal value with the best trade-off between
the advantages of less frequent changes and less severe ones.
Nevertheless, this optimal value is both problem-dependent
and method-dependent.

a) DF1 b) DF3

 DF4 DF7

DF10 DF12

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

CTRDV
CRV
SSGEA
PRE
MDP
HM

MRTHVR

nt
0

0.2

0.4

0.6

0.8

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

4 16 64 256

MRTHVR

nt 0

0.2

0.4

0.6

0.8

M

n

t

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt 0

0.2

0.4

0.6

0.8

M

n

t

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 64

MWHVR

nt
0

0.2

0.4

0.6

0.8

M

n

t

(a) DF1

a) DF1 b) DF3

 DF4 DF7

DF10 DF12

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

CTRDV
CRV
SSGEA
PRE
MDP
HM

MRTHVR

nt
0

0.2

0.4

0.6

0.8

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

4 16 64 256

MRTHVR

nt 0

0.2

0.4

0.6

0.8

M

n

t

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt 0

0.2

0.4

0.6

0.8

M

n

t

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 64

MWHVR

nt
0

0.2

0.4

0.6

0.8

M

n

t

(b) DF3

a) DF1 b) DF3

 DF4 DF7

DF10 DF12

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

CTRDV
CRV
SSGEA
PRE
MDP
HM

MRTHVR

nt
0

0.2

0.4

0.6

0.8

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

4 16 64 256

MRTHVR

nt 0

0.2

0.4

0.6

0.8

M

n

t

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt 0

0.2

0.4

0.6

0.8

M

n

t

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 64

MWHVR

nt
0

0.2

0.4

0.6

0.8

M

n

t

(c) DF4

a) DF1 b) DF3

 DF4 DF7

DF10 DF12

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

CTRDV
CRV
SSGEA
PRE
MDP
HM

MRTHVR

nt
0

0.2

0.4

0.6

0.8

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

4 16 64 256

MRTHVR

nt 0

0.2

0.4

0.6

0.8

M

n

t

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt 0

0.2

0.4

0.6

0.8

M

n

t

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 64

MWHVR

nt
0

0.2

0.4

0.6

0.8

M

n

t

(d) DF7

a) DF1 b) DF3

 DF4 DF7

DF10 DF12

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

CTRDV
CRV
SSGEA
PRE
MDP
HM

MRTHVR

nt
0

0.2

0.4

0.6

0.8

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

4 16 64 256

MRTHVR

nt 0

0.2

0.4

0.6

0.8

M

n

t

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt 0

0.2

0.4

0.6

0.8

M

n

t

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 64

MWHVR

nt
0

0.2

0.4

0.6

0.8

M

n

t

(e) DF10

a) DF1 b) DF3

 DF4 DF7

DF10 DF12

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

CTRDV
CRV
SSGEA
PRE
MDP
HM

MRTHVR

nt
0

0.2

0.4

0.6

0.8

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

4 16 64 256

MRTHVR

nt 0

0.2

0.4

0.6

0.8

M

n

t

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt 0

0.2

0.4

0.6

0.8

M

n

t

0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MWHVR

nt
0

0.2

0.4

0.6

0.8

1

4 16 64 256

MHVR

nt
0

0.2

0.4

0.6

0.8

1

4 64

MWHVR

nt
0

0.2

0.4

0.6

0.8

M

n

t

(f) DF12

Fig. 6: Calculated performance indicators (MHVR and MWHVR) as a function of nt for the tested problems

(a) MHVR (b) MRTHVR

4

8

16

32

64

128

CTRDV
CRV
SSGEA
PRE
MDP
HM

𝑛𝑡
∗

D
F

1

D
F

3

D
F

4

D
F

7

D
F

1
0

D
F

1
2

 4

8

16

32

64

128

𝑛𝑡
∗

D
F

1

D
F

3

D
F

4

D
F

7

D
F

1
0

D
F

1
2

(a)

(a) MHVR (b) MRTHVR

4

8

16

32

64

128

CTRDV
CRV
SSGEA
PRE
MDP
HM

𝑛𝑡
∗

D
F

1

D
F

3

D
F

4

D
F

7

D
F

1
0

D
F

1
2

 4

8

16

32

64

128

𝑛𝑡
∗

D
F

1

D
F

3

D
F

4

D
F

7

D
F

1
0

D
F

1
2

(b)

Fig. 7: The optimal value for the change severity (n∗n) for
different prediction methods and different problems when the
performance indicator is a) MHVR and b) MRTHVR

The performance of a dynamic optimization method is
commonly measured by averaging its performance at the
end of each time step. This performance is calculated by
comparing the fitness of the solutions at the end of each time
step and the optimal solution(s) for the formulated problem for
that time step. However, such indicators ignore the change in
the actual problem during the time step. Besides, in practice,
the selected solution from the optimization process should be
applied for a finite time (implementing window), during which
the applied solution may not change. During this period, the
actual problem further deviates from the formulated problem
from the optimization of which the implemented solution was
selected.

The proposed performance indicator in this study, called
real-time hypervolume ratio (RTHVR), addresses these short-
comings by considering the real-time change in the actual
problem during a time step and the implementing window.
It provides a more practically meaningful measure that can
predict the average performance of the implemented solution
during the implementing window. For a fixed change rate,
the presence of an optimal trade-off value for the change fre-
quency has been observed when mean RTHVR was employed
as the performance indicator. This performance indicator also
highlights the importance of finding solutions which are not
only near-optimal but also insensitive to small changes in the
problem.

So far, the potential pattern in the changes of a dynamic
problem has been mainly used for predicting the location of
the new optimal solutions whenever a change occurs. The
findings in this study open new possibilities for using such
a pattern: how good the optimized solution will be during the
implementing window? This consideration can help the opti-
mization process find solutions that are predicted to perform
best during the implementing window, which is ultimately, the
goal of dynamic optimization.

VII. ACKNOWLEDGMENTS

The research is partly supported by a Australian Research
Council project ARC DP190102637. Computational work in
this project was supported by Australian National Computa-
tional Infrastructure. The last author acknowledges support
from CONACyT grant no. 1920 and from a SEP-Cinvestav
grant (application no. 4).

REFERENCES

[1] N. R. Sabar, A. Bhaskar, E. Chung, A. Turky, and A. Song, “A self-
adaptive evolutionary algorithm for dynamic vehicle routing problems
with traffic congestion,” Swarm and evolutionary computation, vol. 44,
pp. 1018–1027, 2019.

[2] S. Scolan, S. Serra, S. Sochard, P. Delmas, and J.-M. Reneaume,
“Dynamic optimization of the operation of a solar thermal plant,” Solar
Energy, vol. 198, pp. 643–657, 2020.

[3] L. Cao, L. Xu, E. D. Goodman, and H. Li, “Decomposition-based
evolutionary dynamic multiobjective optimization using a difference
model,” Applied Soft Computing, vol. 76, pp. 473–490, 2019.

[4] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic opti-
mization: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 6, pp. 1–24, 2012.

[5] A. Meier and O. Kramer, “Prediction in nature-inspired dynamic op-
timization,” in Frontier Applications of Nature Inspired Computation.
Springer, 2020, pp. 34–52.

[6] G. Ruan, G. Yu, J. Zheng, J. Zou, and S. Yang, “The effect of diversity
maintenance on prediction in dynamic multi-objective optimization,”
Applied Soft Computing, vol. 58, pp. 631–647, 2017.

[7] R. Vafashoar and M. R. Meybodi, “A multi-population differential
evolution algorithm based on cellular learning automata and evolutionary
context information for optimization in dynamic environments,” Applied
Soft Computing, vol. 88, p. 106009, 2020.

[8] K. Deb, S. Karthik et al., “Dynamic multi-objective optimization and
decision-making using modified nsga-ii: a case study on hydro-thermal
power scheduling,” in International conference on evolutionary multi-
criterion optimization. Springer, 2007, pp. 803–817.

[9] Q. Jiang, R. Sarker, and H. Abbass, “Tracking moving targets and the
non-stationary traveling salesman problem,” Complexity International,
vol. 11, no. 2005, pp. 171–179, 2005.

[10] W. T. Koo, C. K. Goh, and K. C. Tan, “A predictive gradient strategy for
multiobjective evolutionary algorithms in a fast changing environment,”
Memetic Computing, vol. 2, no. 2, pp. 87–110, 2010.

[11] M. Rong, D. Gong, Y. Zhang, Y. Jin, and W. Pedrycz, “Multidirectional
prediction approach for dynamic multiobjective optimization problems,”
IEEE transactions on cybernetics, vol. 49, no. 9, pp. 3362–3374, 2018.

[12] A. Ahrari, S. Elsayed, R. Sarker, D. Essam, and C. A. C.
Coello, “Weighted pointwise prediction method for dynamic mul-
tiobjective optimization,” Information Sciences, pp. in press, doi:
0.1016/j.ins.2020.08.015, 2020.

[13] S. Jiang, S. Yang, X. Yao, K. C. Tan, M. Kaiser, and N. Krasnogor,
“Benchmark problems for cec2018 competition on dynamic multiobjec-
tive optimisation,” Newcastle University, Tech. Rep., 2017.

[14] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part i: solving problems with box constraints,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2014.

[15] J. Blank, K. Deb, and P. C. Roy, “Investigating the normalization
procedure of nsga-iii,” in International Conference on Evolutionary
Multi-Criterion Optimization. Springer, 2019, pp. 229–240.

[16] A. Ahrari, S. Elsayed, R. Sarker, and D. Essam, “A new prediction
approach for dynamic multiobjective optimization,” in 2019 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2019, pp. 2268–
2275.

[17] S. Jiang and S. Yang, “A steady-state and generational evolutionary
algorithm for dynamic multiobjective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 21, no. 1, pp. 65–82, 2017.

[18] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang, “Prediction-based
population re-initialization for evolutionary dynamic multi-objective op-
timization,” in International Conference on Evolutionary Multi-Criterion
Optimization. Springer, 2007, pp. 832–846.

