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Abstract— In this paper, we present a novel Multi-Objective
Evolutionary Algorithm (MOEA) called MODE-LD+SS, which
combines Differential Evolution with local dominance and a
scalar selection mechanism for improving both its convergence
rate and its distribution of solutions along the Pareto front. In
order to assess the performance of the proposed approach, we
use a set of standard test functions and performance measures
taken from the specialized literature. Results are compared with
respect to three MOEAs representative of the state-of-the-art
in the area: NSGA-II, SPEA2, and MOEA/D.

I. I NTRODUCTION

Many real-world optimization problems require the si-
multaneous optimization of two or more objective func-
tions. Such problems are called Multi-Objective Optimization
Problems (MOPs). In contrast with single-objective optimiza-
tion problems, MOPs do not have a single solution, but a
set of them, which correspond to the best possible trade-
offs among the objectives (i.e., no further improvement in
one objective is possible without worsening another one).
These solutions are contained in the so-calledPareto optimal
set (the vectors of the solutions contained in the Pareto
optimal set are callednondominated) and their corresponding
objective function values are called thePareto front. MOPs
have been a subject of study within Operations Research
for several years [19], but the limitations of mathematical
programming techniques have motivated the use of evolution-
ary algorithms to solve them. Multi-objective evolutionary
algorithms (MOEAs) have gained popularity mainly because
of their generality (i.e., they require little problem-specific
information), ease of use and effectivity. A wide variety of
MOEAs are currently available, although few of them have
become popular [5]. MOEAs aim to find solutions that are as
close as possible to the true Pareto front but that, at the same
time, are as diverse as possible, so that the entire Pareto front
can be covered. These two goals turn out to be quite difficult
in some cases, which has motivated a significant amount of
research. Here, we present a MOEA called MODE-LD+SS,
which is based on the use of Differential Evolution (DE)
[20] as its global search engine. Our main motivation to use
DE was that MOEAs based on this search engine have been
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Col. San Pedro Zacatenco, México, D.F., 07360, MEXICO. Car-
los A. Coello Coello is also affiliated to the UMI LAFMIA 3175
CNRS at CINVESTAV-IPN. (email: aarias@computacion.cs.cinvestav.mx,
ccoello@cs.cinvestav.mx).

Efrén Mezura-Montes is with LANIA A.C. Rébsamen 80, Centro, Xalapa,
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found to be very effective, outperforming those based on
genetic algorithms [23]. Our proposed approach incorporates
two additional mechanisms. The first (local dominance) is
used to improve the convergence rate towards the Pareto
front, while the second (a selection mechanism based on a
scalarization function) is used to find nondominated solutions
covering the entire Pareto front. To assess the performance
of the proposed algorithm, we adopt nine test functions (5
with two objectives and 4 with three objectives), and two
performance measures taken from the specialized literature.
Our results are compared with respect to the NSGA-II [6],
SPEA2 [28], and MOEA/D [25], which are three MOEAs
representative of the state-of-the-art in the area.

The remainder of the paper is organized as follows: In
Section II some basic multiobjective optimization concepts
are introduced. In Section III some previous related work is
summarized. Section IV is devoted to describe the proposed
approach. Then, the experimental setup is presented in Sec-
tion V. In Section VI the obtained results are presented and
discussed. Finally, in Section VII we provide our conclusions
and some possible lines of future work.

II. BASIC CONCEPTS

A Multi-Objective Optimization Problem (MOP) can be
mathematically defined as1:

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fk(~x)] (1)

subject to:
gi(~x) ≤ 0 i = 1, 2, . . . , m (2)

hi(~x) = 0 i = 1, 2, . . . , p (3)

where ~x = [x1, x2, . . . , xn]
T is the vector of decision

variables,fi : IRn → IR, i = 1, ..., k are the objective
functions andgi, hj : IRn → IR, i = 1, . . . , m, j = 1, . . . , p
are the constraint functions of the problem.

The set of constraints of the problem defines the feasible
region in the search space of the problem. Any vector of
variables~x which satisfies all the constraints is considered a
feasible solution.

Regarding optimal solutions in MOPs, the following
definitions are relevant:

1Without loss of generality, minimization is assumed in the following
definitions, since any maximization problem can be transformed into a
minimization one.



Definition 1. A vector of decision variables~x ∈ IRn

dominates another vector of decision variables~y ∈ IRn,
(denoted by~x ≺ ~y) if and only if ~x is partially less than
~y, i.e. ∀i ∈ {1, . . . , k}, fi(~x) ≤ fi(~y) ∧ ∃i ∈ {1, . . . , k} :
fi(~x) < fi(~y).

Definition 2. A vector of decision variables~x ∈ X ⊂ IRn

is nondominated with respect toX , if there does not exist
another~x′ ∈ X such that~f(~x′) ≺ ~f(~x).

Definition 3. A vector of decision variables~x∗ ∈ F ⊂ IRn

(F is the feasible region) isPareto optimal if it is
nondominated with respect toF .

Definition 4. The Pareto Optimal SetP∗ is defined by:

P∗ = {~x ∈ F|~x is Pareto optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {~f(~x) ∈ IRk|~x ∈ P∗}

The goal when solving a MOP consists on determining the
Pareto optimal set from the setF of all the decision variable
vectors that satisfy (2) and (3).

III. PREVIOUS RELATED WORK

DE is a simple and powerful evolutionary algorithm that
has been found to outperform genetic algorithms in a variety
of numerical single-objective optimization problems [20].
DE encodes solutions as vectors and uses operations such
as vector addition, scalar multiplication and exchange of
components (crossover) to construct new solutions from
the existing ones. DE operates as follows: a newly created
solution, also calledcandidate, is compared to its parent. If
the candidate is better than its parent, it replaces the parent in
the population; otherwise, the candidate is discarded. Being
a steady-state algorithm, it implicitly enforceselitism, i.e., no
solution from the population can be deleted unless a better
solution is created. DE was originally proposed to deal with
real-numbers encoding.

A. Multi-Objective Differential Evolution

DE has been adopted to solve MOPs in several ways. In
the earlier approaches (PDE [1] and GDE [14]), only the
concept of Pareto dominance was used to compare individ-
uals. The parent was replaced only if it was dominated by
the candidate, it was discarded otherwise. Many subsequent
approaches (PDEA [17], MODE [24], NSDE [10], GDE2
[12], DEMO [21], GDE3 [13] and NSDE-DCS [11]), use
nondominated sorting and/or the crowding distance metric
to evaluate the fitness of the individuals. Only recently, new
algorithms that do not follow the environmental selection
of NSGA-II were proposed, such asǫ − MyDE [22],
DEMORS [9], ǫ−ODEMO [4], and MOEA/D-(DE) [16].
The first three algorithms of this last group, make use of
the ǫ-dominance concept, as used by Laumanns et al. [15].
ǫ-dominance is adopted for spreading the solutions in a

uniform manner without resorting to any crowding distance
metric. Finally the MOEA/D-(DE) algorithm is based on
the MOEA/D of Zhang and Li [25], but using the differ-
ential evolution operators. A comprehensive review of some
these multi-objective differential evolution approachescan be
found in [18].

IV. OUR PROPOSEDAPPROACH

Algorithm 1 MODE-LD+SS
1: INPUT:

P [1, . . . , N ] = Population
N = Population Size
F = Scaling factor
CR = Crossover Rate
λ[1, . . . , N ] = Weight vectors
NB = Neighborhood Size
GMAX = Maximum number of generations

2: OUTPUT:
PF = Pareto front approximation

3: Begin
4: g ← 0
5: Randomly createP g

i
, i = 1, . . . , N

6: EvaluateP
g

i
, i = 1, . . . , N

7: while g < GMAX do
8: {LND} = {⊘}
9: for i = 1 to N do

10: DetermineLocalDominance(P g

i
,NB)

11: if P
g

i
is locally nondominatedthen

12: {LND} ← {LND} ∪ P
g

i

13: end if
14: end for
15: for i = 1 to N do
16: Randomly select~u1, ~u2, and ~u3 from {LND}
17: v ← CreateMutantVector(u1, u2, u3)
18: P

g+1

i
← Crossover(P g

i
, v)

19: EvaluateP
g+1

i

20: end for
21: Q← P g ∪ P g+1

22: Determinez∗ for Q
23: for i = 1 to N do
24: P

g+1

i
← MinimumTchebycheff(Q, λi, z∗)

25: Q← Q\P g+1

i

26: end for
27: end while
28: ReturnPF

29: End

The MOEA presented in this work (called MODE-
LD+SS), adopts the evolutionary operators from differential
evolution. In the basic DE algorithm, and during the offspring
creation stage, for each current vectorPi ∈ {P}, three
parents (mutually different among them)~u1, ~u2, ~u3 ∈ {P}
( ~u1 6= ~u2 6= ~u3 6= Pi) are randomly selected for creating a
mutant vector~v using the following mutation operation:

~v ← ~u1 + F · ( ~u2 − ~u3) (4)

F > 0, is a real constantscaling factorwhich controls the
amplification of the difference( ~u2 − ~u3). Using this mutant
vector, a new offspringP

′

i (also called trial vector in DE) is
created by crossing over the mutant vector~v and the current
solutionPi, in accordance to:

P
′

j =
{ vj if (randj(0, 1) ≤ CR or j = jrand

Pj otherwise
(5)

In the above expression, the indexj refers to thejth
component of the decision variables vectors.CR is a positive



constant andjrand is a randomly selected integer in the
range[1, . . . , D] (whereD is the dimension of the solution
vectors) ensuring that the offspring is different at least in one
component with respect to the current solutionPi. The above
DE variant is known asRand/1/bin, and is the version
adopted in the present work. Additionally, the proposed
algorithm incorporates two mechanisms for improving both
the convergence towards the Pareto front and the uniform
distribution of nondominated solutions along the Pareto front.
These mechanisms correspond to the concept of local dom-
inance and the use of an environmental selection based on
a scalar function. Below, we explain these two mechanisms
in more detail. Algorithm 1 shows the description of our
proposed MODE-LD+SS.

In Algorithm 1, the solution vectors~u1, ~u2, ~u3, required
for creating the trial vector~v (in equation (4)), are selected
from the current population, only if they are locally
nondominated in their neighborhoodℵ. Local dominance is
defined as follows:

Definition 6. Pareto Local DominanceLet ~x be a feasible
solution, ℵ(~x) be a neighborhood structure for~x in the
decision space, and~f(~x) a vector of objective functions.

- We say that a solution~x is locally nondominated with
respect toℵ(~x) if and only if there is no~x

′

in the
neighborhood of~x such that~f(~x

′

) ≺ ~f(~x)

The neighborhood structure is defined as theNB closest
individuals to a particular solution. Closeness is measured
by using the Euclidean distance between solutions. The
major aim of using the local dominance concept, as defined
above, is to exploit good individuals’ genetic information
in creating DE trial vectors, and the associated offspring,
which might help to improve the MOEA convergence rate
toward the Pareto front. From Algorithm 1, it can be noted
that this mechanism has a stronger effect during the earlier
generations, where the portion of nondominated individuals
is low in the global population, and progressively weakens,
as the number of nondominated individuals grows during
the evolutionary process. This mechanism is automatically
switched off, once all the individuals in the population
become nondominated, and has the possibility to be switched
on, as some individuals become dominated. Aditionally, the
diversity of the created offspring can be controled by the
local dominance neighborhood sizeNB. Low values ofNB
will increase the diversity of offspring, and viceversa.

The second mechanism that we introduced is calledse-
lection based on a scalar function, and is based on the
Tchebycheff scalarization function given by:

g(~x|λ, z∗) = max
1≤i≤m

{λi|fi(x) − z∗i |} (6)

In the above equation,λi, i = 1, . . . , N represents the
set of weight vectors used to distribute the solutions along
the entire Pareto front (see Figure 1). In this work, this set
is calculated using the procedure described in Zhang and Li
[25]. z∗ corresponds to a reference point, defined in objective

Fig. 1. Distribution of the weight vectors

space and determined with the minimum objective values of
the combined populationQ, consistent on the actual parents
and the created offspring. This reference point is updated at
each generation, as the evolution progresses. The procedure
MinimumTchebycheff(Q, λi, z∗) finds, from the setQ, the
solution vector that minimizes equation (6) for each weight
vectorλi and the reference pointz∗.

V. EXPERIMENTAL SETUP

In order to validate the proposed approach, our results
are compared with respect to those of NSGA-II [6], SPEA2
[28], and MOEA/D [25], which are three MOEAs represen-
tative of the state-of-the-art in evolutionary multiobjective
optimization. Our approach was validated using nine test
problems: five from the ZDT (Zitzler-Deb-Thiele) test suite
[27] each with 2 objectives (ZDT1, ZDT2, ZDT3, ZDT4,
and ZDT6), and four more from the DTLZ (Deb-Thiele-
Laumanns-Zitzler) test suite [8], each with 3 objectives
(DTLZ1, DTLZ2, DTLZ3, and DTLZ4). The selected test
functions comprise different difficulties such as convex,
concave, and disconnected Pareto fronts, as well as problems
with multiple fronts. The details of these test problems are
omitted here due to space constraints, but can be found in
[26], [7], [5].

Two performance measures were adopted in order to assess
our results:Hypervolume (Hv)and Two Set Coverage (C-
Metric). A brief description of them is presented next.

A. Hypervolume (Hv):

Given a Pareto approximation setPFknown, and a refer-
ence point in objective spacezref , this performance measure
estimates theHypervolumeattained by it. Such hypervolume
corresponds to the non-overlaping volume of all the hyper-
cubes formed by the reference point (zref ) and every vector
in the Pareto set approximation. This is mathematically
defined as:

HV = {∪ivoli|veci ∈ PFknown}

veci is a nondominated vector from the Pareto set approx-
imation, andvoli is the volume for the hypercube formed
by the reference point and the nondominated vectorveci.
Here, the reference point (zref ) in objective space for the 2-
objective MOPs was set to (1.05,1.05), for DTLZ1 was set to



(0.6,0.6,0.6), and to (1.05,1.05,1.05) for DTLZ2, DTLZ3 and
DTLZ4. This performance measure is Pareto compliant [29],
[30], and is used to assess both convergence and distribution
of the solutions along the approximated Pareto front. High
values indicate that the solutions are closer to the true Pareto
front and that they cover a wider extension of it.

B. Two Set Coverage (C-Metric):

This performance measure is also Pareto compliant, and
estimates the coverage proportion, in terms of percentage
of dominated solutions, between two sets. Given the setsA
andB, both containing only nondominated solutions, the C-
Metric is mathematically defined as:

C(A, B) =
|{u ∈ B|∃v ∈ A : v dominates u}|

|B|

This metric indicates the portion of vectors inB being
dominated by any vector inA. In the present work this
measure is used in two different ways. In the first, the setA
is the true Pareto front, which is knonw for all test functions
used; therefore, the C-Metric can be considered as a measure
for the ability of the algorithm to find solutions that are
nondominated with respect to the Pareto optimal set (i.e.,
solutions that also belong to the Pareto optimal set). In the
second way, setsA andB correspond to two different Pareto
approximations, as obtained by two different algorithms.
Therefore, the C-Metric is used for pairwise comparisons
between the two algorithms used.

C. Parameters settings:

The parameters used in the experiments for the differ-
ent algorithms adopted were set as follows. The common
parameters for all algorithms comprise the population size
N and maximum number of generationsGMAX . These
were set toN = 100 for all the bi-objectives MOPs and
N = 300 for all the MOPs having three objectives. We
adoptedGMAX = 150 for all MOPs, except for ZDT4 and
DTLZ3, in which we usedGMAX = 200. As for specific
parameters of each algorithm, for both, the NSGA-II and
the MOEA/D algorithms, some common parameters used
were: Crossover probabilitypc = 1.0; mutation probability
pm = 1/NV ARS; and, distribution index for mutation
ηm = 20. For the NSGA-II, distribution index for crossover
ηc = 15; while for the MOEA/D, distribution index for
crossoverηc = 20. SPEA2 was taken from PISA [2], [3],
and was used with the parameters defined therein:

individual mutationprobability = 1.0;
individual recombinationprobability = 1.0;
variablemutationprobability = 1/NVARS;
variableswapprobability = 0.5;
variablerecombinationprobability = 0.5;
distribution index for crossoverηc = 15;
distribution index for mutationηm = 20;
usesymmetricrecombination = 0.

For our MODE-LD+SS, the associated parameters were
the following: Scaling factor, F = 0.5 for all MOPs; crossover

rate, CR = 0.5 for all MOPs, except for ZDT4 and DTLZ3,
where we adopted CR = 0.3; Neighborhood size NB = 5
for all MOPs, except for ZDT4, where NB = 1 was used.
The statistics presented for the Hypervolume (Hv) and the
C-Metric, when measured with respect to the true Pareto
front, were obtained as average values from 32 independent
runs for each MOP and for each algorithm. In the case of
the statistics for the C-Metric comparing pairs of algorithms
(i.e. C-Metric(A,B)), they were obtained as average values
of the comparison of all the independent runs from the first
algorithm with respect to all the independent runs from the
second algorithm.

VI. RESULTS AND DISCUSSION

In this section, we present the results obtained by the
proposed algorithm MODE-LD+SS, for the nine selected test
functions. We also present the comparison with respect to the
results attained by NSGA-II, SPEA2, and MOEA/D.

Table I shows the results obtained for the Hypervolume
(Hv) measure for all MOPs, and for the four algorithms
compared in this paper. From this table it can be observed
that, with respect to the Hv performance measure, MODE-
LD+SS outperforms NSGA-II and SPEA2, in all the bi-
objective MOPs. It also outperforms MOEA/D (with respect
to Hv as well) in four (ZDT1, ZDT2, ZDT3, and ZDT6) of
five bi-objective MOPs. In the case of the 3-objective MOPs,
SPEA2 attains the best results for the Hv measure in three
MOPs (DTLZ1, DTLZ2, and DTLZ4), while MODE-LD+SS
attains the best result in DTLZ3. However, our proposed
MODE-LD+SS obtained values very close to those of SPEA2
in DTLZ1, DTLZ2 and DTLZ4 and better values in DTLZ2
and DTLZ3, as compared to those of MOEA/D. In all cases,
our proposed approach outperforms NSGA-II by an ample
margin.

Tables II to X show the comparison matrices for the C-
Metric values obtained with the different algorithms and
for all the MOPs used in the experiments. The diagonal
values of each matrix correspond to the C-Metric for each
algorithm, as evaluated with respect to the true Pareto front
(i.e. C-Metric(PFtrue,Algorithm)); while the off-diagonal
elements correspond to the comparisons between each pair
of algorithms. From these tables, it can be observed that
MODE-LD+SS significantly outperforms all other algorithms
in terms of convergence. MODE-LD+SS is able to converge
closer to the true Pareto front in all MOPs, and to generate
Pareto front approximations, having fewer solutions (none
in many cases) being dominated by those generaterd by the
other algorithms. Additionally, our proposed MODE-LS+SS
generated more solutions that dominate those generated by
the other algorithms. It is also important to note that for
ZDT6, our proposed MODE-LD+SS, was able to reach the
true Pareto front in the 32 independent runs performed.

For the case of DTLZ1 and DTLZ2, and regarding the
C-Metric values presented in Tables VII and VIII, it can be
observed that MODE-LD+SS is able to converge very close
to the true Pareto front as indicated by the corresponding
C-Metric measure.



TABLE I

COMPARISON OF THEHYPERVOLUME METRIC (HV) FOR ALL THE ALGORITHMS

Test Function
ALGORITHM

NSGA SPEA2 MOEA/D MODE-LD+SS
Mean σ Mean σ Mean σ Mean σ

ZDT1 0.757357 0.000928 0.761644 0.000556 0.749964 0.009777 0.763442 0.000112
ZDT2 0.422221 0.001263 0.321971 0.171286 0.387237 0.061361 0.430358 0.000141
ZDT3 0.611480 0.008038 0.615533 0.000416 0.608377 0.015638 0.616381 0.000150
ZDT4 0.217626 0.192914 0.287359 0.188726 0.745887 0.009983 0.741770 0.058697
ZDT6 0.345949 0.008772 0.392697 0.002336 0.397720 0.002886 0.411054 0.000003

DTLZ1 0.165918 0.026090 0.191437 0.000248 0.188726 0.000371 0.187445 0.000347
DTLZ2 0.571146 0.001942 0.590833 0.000900 0.578679 0.001460 0.581028 0.001193
DTLZ3 0.000000 0.000000 0.467163 0.148867 0.568895 0.007220 0.581129 0.003303
DTLZ4 0.572327 0.002537 0.590942 0.000978 0.579301 0.001550 0.578038 0.001840

TABLE II

C-METRIC(A,B) FOR ZDT1

C-Metric(A,B)
NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean
(σ) (σ) (σ) (σ)

NSGA-II
0.968750 0.000771 0.033167 0.000000

(0.013854) (0.003989) (0.034072) (0.000000)

SPEA2
0.378115 0.895000 0.106198 0.000000

(0.115819) (0.036100) (0.067101) (0.000000)

MOEA/D
0.299833 0.047767 0.883930 0.000000

(0.107821) (0.042724) (0.064323) (0.000000)

MODE-LD+SS
0.589893 0.214844 0.274901 0.374333

(0.088597) (0.064899) (0.100480) (0.0783750

TABLE III

C-METRIC(A,B) FOR ZDT2

C-Metric(A,B)
NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean
(σ) (σ) (σ) (σ)

NSGA-II
1.000000 0.000303 0.026203 0.000000

(0.000000) (0.001877) (0.035988) (0.000000)

SPEA2
0.362813 0.985938 0.041712 0.004331

(0.227343) (0.037232) (0.045770) (0.007530)

MOEA/D
0.450922 0.154067 0.393976 0.057031

(0.164440) (0.121784) (0.170768) (0.030938)

MODE-LD+SS
0.702266 0.242832 0.110288 0.381057

(0.086673) (0.167042) (0.061098) (0.064387)

TABLE IV

C-METRIC(A,B) FOR ZDT3

C-Metric(A,B)
NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean
(σ) (σ) (σ) (σ)

NSGA-II
0.656875 0.002246 0.064717 0.000000

(0.075666) (0.008387) (0.073280) (0.000000)

SPEA2
0.339297 0.389375 0.142818 0.000067

(0.106685) (0.065102) (0.092675) (0.000958)

MOEA/D
0.221500 0.082778 0.389439 0.023824

(0.070634) (0.037489) (0.106475) (0.025038)

MODE-LD+SS
0.377051 0.171533 0.299007 0.199554

(0.073449) (0.046961) (0.112709) (0.039211)

TABLE V

C-METRIC(A,B) FOR ZDT4

C-Metric(A,B)
NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean
(σ) (σ) (σ) (σ)

NSGA-II
1.000000 0.301200 0.002571 0.000166

(0.000000) (0.455773) (0.004654) (0.001994)

SPEA2
0.546084 1.000000 0.003022 0.000566

(0.489198) (0.000000) (0.004910) (0.003887)

MOEA/D
0.977144 0.938814 0.952296 0.164757

(0.019361) (0.176612) (0.083845) (0.368419)

MODE-LD+SS
0.988408 0.976602 0.689329 0.220064

(0.106452) (0.151037) (0.359937) (0.357158)

TABLE VI

C-METRIC(A,B) FOR ZDT6

C-Metric(A,B)
NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean
(σ) (σ) (σ) (σ)

NSGA-II
0.986873 0.000000 0.001372 0.000000

(0.004523) (0.000000) (0.003499) (0.000000)

SPEA2
1.000000 0.990000 0.040134 0.000000

(0.000000) (0.000000) (0.076380) (0.000000)

MOEA/D
0.986999 0.615444 0.990552 0.000000

(0.007570) (0.272926) (0.003241) (0.000000)

MODE-LD+SS
0.992119 0.990000 0.976816 0.000000

(0.005944) (0.000000) (0.051151) (0.000000)

TABLE VII

C-METRIC(A,B) FOR DTLZ1

C-Metric(A,B)
NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean
(σ) (σ) (σ) (σ)

NSGA-II
0.655461 0.001915 0.000095 0.000000

(0.143824) (0.003127) (0.001111) (0.000000)

SPEA2
0.707633 0.258360 0.012861 0.000000

(0.234981) (0.100637) (0.027180) (0.000000)

MOEA/D
0.377986 0.019929 0.163130 0.0005383

(0.130387) (0.017216) (0.102328) (0.001719)

MODE-LD+SS
0.611632 0.045080 0.263892 0.008116

(0.243895) (0.019503) (0.110080) (0.004630)

TABLE VIII

C-METRIC(A,B) FOR DTLZ2

C-Metric(A,B)
NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean
(σ) (σ) (σ) (σ)

NSGA-II
0.354375 0.027106 0.000000 0.000000

(0.031910) (0.009214) (0.000000) (0.000000)

SPEA2
0.044411 0.806858 0.000000 0.000000

(0.012929) (0.029297) (0.000000) (0.000000)

MOEA/D
0.722926 0.071016 0.142447 0.005816

(0.013865) (0.013078) (0.023822) (0.005185)

MODE-LD+SS
0.082272 0.078098 0.008309 0.074566

(0.014202) (0.013666) (0.012255) (0.017111)

TABLE IX

C-METRIC(A,B) FOR DTLZ3

C-Metric(A,B)
NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean
(σ) (σ) (σ) (σ)

NSGA-II
1.000000 0.000221 0.000000 0.000000

(0.000000) (0.000868) (0.000000) (0.000000)

SPEA2
0.877437 0.798140 0.010756 0.001108

(0.163622) (0.107026) (0.042299) (0.008432)

MOEA/D
0.418284 0.380625 0.639418 0.008286

(0.084607) (0.265565) (0.181815) (0.022365)

MODE-LD+SS
0.977820 0.535140 0.370058 0.339882

(0.041731) (0.262711) (0.158495) (0.128920)



TABLE X

C-METRIC(A,B) FOR DTLZ4

C-Metric(A,B)
NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean
(σ) (σ) (σ) (σ)

NSGA-II
0.361563 0.026370 0.000008 0.000000

(0.038679) (0.010174) (0.000180) (0.000000)

SPEA2
0.043145 0.746696 0.000000 0.000000

(0.014076) (0.020173) (0.000000) (0.000000)

MOEA/D
0.076018 0.067166 0.124613 0.009343

(0.019680) (0.014841) (0.035191) (0.006096)

MODE-LD+SS
0.077891 0.077581 0.001519 0.107422

(0.019727) (0.016563) (0.002431) (0.006116)

These results contrast with the Hv measure obtained by
SPEA2 for these same MOPs. The differences can be ex-
plained by the fact that SPEA2 obtained a better distribution
of solutions. Thus, in this case, one algorithm provided bet-
ter convergence (MODE-LD+SS), while the other provided
better spread of solutions (SPEA2) (see Figures 7 and 8).
Figures 2 to 10 show the comparison of the obtained Pareto
fronts by the four MOEAs, for all the MOPs adopted in our
study. It is worth noting that for the two-objective MOPs, and
for comparison purposes, the Pareto front approximations are
plotted with a horizontal and vertical shifts.

VII. C ONCLUSIONS ANDFUTURE WORK

We have introduced a new MOEA called MODE-LD+SS,
which combines differential evolution with local dominance
and scalar selection mechanisms. Local dominance aims
to improve the convergence rate and the scalar selection
mechanism intends to improve the distribution of solutions
along the Pareto front. In order to assess the performance of
our proposed approach, we adopted 9 test problems and two
performance measures (Hypervolume and C-Metric) taken
from the specialized literature. Our results were compared
with respect to those produced by NSGA-II, SPEA2, and
MOEA/D, which are elitist MOEAs representative of the
state-of-the-art in the area.

Our comparative study showed that our proposed MODE-
LD+SS outperforms NSGA-II, SPEA2 and MOEA/D in 5
of the 9 MOPs used with respect to the Hypervolume.
Our approach was also found to be competitive with re-
spect to SPEA2 and MOEA/D in those 3-objective MOPs
in which it did not attain the best Hypervolume measure
(DTLZ1, DTLZ2 and DTLZ4). Regarding the C-Metric, our
proposed MODE-LD+SS outperformed NSGA-II, SPEA2
and MOEA/D in all the 9 MOPs adopted. Based on these
results, we can conclude that our proposed approach has good
convergence properties.

As part of our future work, we are interested in under-
taking a thorough statistical analysis of the performance of
our proposed approach, including an analysis of variance that
allows us to determine its most suitable parameter values. We
also intend to apply our proposed approach to real-world
problems to see if its good convergence properties remain
valid in practical applications.
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Fig. 9. Pareto front obtained by the different algorithms for DTLZ3 MOP.
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