
 
 

 

  

Abstract— In this paper, a new approach to solve 
constrained multi-objective problems by way of evolutionary 
multi-objective optimization is introduced. In contrast to 
former evolutionary approaches, which amalgamate objective 
space dominance relations with feasibility of solutions 
considered in the design spaces, the hereby suggested approach 
relies solely on objective space based analysis. It is shown in 
this paper that considering the violation of constraints within 
the design space is problematic as it may lead to misleading 
conclusions. Moreover, the current approach is inherently 
capable of dealing with constraints that are imposed directly in 
the objective space.   
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1. INTRODUCTION 
proaches to solve constrained multi-objective problems by 
Evolutionary Multi-objective Optimization (EMO) are 
limited. Apart from the well-known approaches that utilize 

penalties to handle constraints by EMO (see e.g., [1]), most of the 
approaches are based on adapting the dominance relation between 
solutions to take into consideration the feasibility of the solutions. 
For example Jiménez and Verdegay [2] suggested a procedure 
which compares two solutions in a tournament selection. If one 
solution is feasible and the other is not, the feasible solution is 
chosen. If both solutions are infeasible, the solution closer to the 
constraints boundary is chosen. We note that here we regard the 
violation distance as a violation, which is considered in the design 

 
 

space. This is due to the fact that measuring the violation in that 
design may be done directly by considering the constraint 
boundary. Deb et. al., [3], defined a constrained domination 
principle, which differentiates infeasible from feasible solutions 
during the non-dominated sorting procedure.  
Viewing the background for the current research as described 
above, reveals some drawbacks and shortages of existing 
approaches as related to the solution of constrained MOPs by using 
EMO. These include the following: 
1. None of the approaches deals directly with constraints, which 
are imposed within the objective space. An example for such 
constraints' imposing is the limiting of the budget and the allowed 
deflection of a truss. Such inherent objective space constraints 
should be treated during the evolution in order to efficiently use 
computational resources and to direct the search towards the 
unconstrained sub-space.  
2. It is assumed that a small violation of the constraints based on 
the original constraints is directly related to a small violation in 
objective space (this assumption will be referred to as the 
correspondence relation). Such an assumption is wrong! Proving 
this may be done directly by introducing the following example. 
Let the design space consist of two variables 0<=x1<5 and 
0<=x2<5. The design space is constrained by g(x) =x2+2x1-2<0, or 
alternatively x2<-2x1+2. The objectives of the problem are to 
minimize 12 xf = and 2

212 )1x(xf −+= . The feasible design 
space and its corresponding feasible objective space are designated 
by gray areas in the panels of Figure 1.  
 

 

 
Two infeasible solutions are now considered. These are x1= [0, 3] 
and x2= [1, 2], which are designated in Figure 2 by a square and a 
circle, respectively. Both of these solutions are a result of changing 
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Figure 1: An example showing that the 
violation in design space (left panel) in not 
comparable to the violation in the objective 
space (right panel). 



 
 

 

one of the variables by one unit. This means that considering the 
design space, the violation of constraints by both of the solutions is 
identical. Transforming the constraints and the solutions to the 
objective space results in the feasible region and the performances, 
which are depicted in Figure 2 (right panel). It is clear from the 
figure that the performances of x2 just barely violate the objective 
space constraint whereas the performances of x1 substantially 
violate the constraints.  

The current paper tackles the above drawbacks by introducing a 
new approach. It involves the consideration of constraints in the 
objective space allowing an evolutionary search, which applies a 
pressure towards the evolution of a feasible optimal front within 
the constraints boundaries. 

2. PROBLEM DEFINITION 
A constrained MOP may be defined as follows: 
Find x which minimizes T

K21 )]x(f....,),x(f),x(f[)x(F =            (1) 
Subject to: 
                   m,....,1i,0)x(gi =≤  
 
In the above definition all equality constraints are transformed into 
inequality constraints.  
In the current paper the interest is on the assessment of 
performances and of constraint violation within the objective 
space. Moreover, there is an interest in solving problems where the 
constraints are directly posed within the objective space. As a 
result, the problem is reformulated as follows: 
Find x which minimizes T

K21 )]x(f....,),x(f),x(f[)x(F =            (2) 
Subject to: 
                   m,....,1i,0))x(g(T i =≤  
                   kk C)x(f ≤         k=1,….K                     
The first constraint expression refers to the constraints of the 
design space, which are transformed to objective space. The second 
constraint expression refers to the limits of performances at each 
objective (objective space based constraints). A sub-set of all the 
solutions, which comply with the above constraints, may be 
defined. This set is termed here as the Constraint Envelope Set, 
CES, and its related performances set Constraint Envelope, CE, are 
defined as follows: 
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In fact, equation 3 suggests that the CE is a set of solutions, whose 
performances lie on the boundary between feasibility and 
infeasibility, sorted in the objective space.  

3. THE EVOLUTIONARY SEARCH 
The following summarizes the influences that the performances 

of a solution should have, on the solution's fitness.  
a. A solution belonging to a lower level of non-dominance 

should be rewarded. This demand allows applying a pressure 
towards the Pareto front.   

b. An un-crowded solution should be awarded. Such a reward 
enhances the spreading of solutions along the constrained Pareto 
front. With that respect, boundary solutions should be maintained.   

c. A solution should be rewarded with relation to its distance 
from the CE (the closer, the higher the reward). It is clear that a 
feasible solution is as close as can be and should be highly 
rewarded. Such rewarding should enhance a differential pressure 
towards feasible solutions. 

On the basis of these desired influences, an EC algorithm is 
suggested. The algorithm, apart from the common elements of an 
EC algorithm (e.g., cross-over) is composed out of the following 
steps: a. Sort all solutions and than just the feasible solutions 
according to non-dominance and assign the solutions with fitness 
between upper and lower values for each level of non-dominance, 
taking the lower level for each solution. b. Spread the fitness of the 
solutions within each level, between the upper and lower values of 
the level, based on crowding distances, assigning the boundary 
solutions the highest fitness of the level. c. Find the CE of the 
problem (see equation 3). d. Penalize all non-feasible solutions 
based on their distance from the CE. This step will allow a higher 
pressure towards the constrained front as also depicted by the 
example of figure 2. 

 

 

 
The results of the introduced algorithm have been compared with 
an algorithm suggested in [3] for several test cases. Averaging the 
results over three different examples and over 20 runs for both 
algorithms and using the proximity indicator, it is shown that the 
hereby introduced approach converges 7.1% faster than that of [5]. 
If mutation is not used in both algorithms, this grows up to 11.6%.  

4.    ACKNOWLEDGEMENTS 
The second author acknowledges support from project 45863-Y. 

REFERENCES 
[1] Coello Coello, C.A., Theoretical and Numerical Constraint-

Handling Techniques used with Evolutionary Algorithms: A 
Survey of the State of the Art, Computer Methods in Applied 
Mechanics and Engineering, 191(11-12), pp. 1245-1287, 
January 2002.  

[2] Jiménez, F. and Verdegay, J.L., Constraint Multiobjective 
Optimization by Evolutionary Algorithms, Proceedings of the 
International ICSC Symposium on Engineering of Intelligent 
Systems (EIS'98), pp:266-271, 1998.  

[3] Deb, K., Pratab, A. and Meyarivan, T., Constrained, Test 
Problems for Multi-objective Evolutionary Optimization, in E. 
Zitzler et al. (editors), First International Conference on 
Evolutionary Multi-Criterion Optimization (EMO’01), pp. 
284-298, Springer-Verlag, Lecture Notes in Computer Science 
Vol. 1993, 2001.  

Figure 2: Preferring the solution associated with 
B (feasible solution) as done till today, over the 
solution associated with A may hamper the 
development of the feasible front as it drives the 
search away from it.  


