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ABSTRACT

Since the introduction of the particle swarm optimization
(PSO) algorithm, a considerable amount of research has
been devoted to devise mechanisms that can control its pos-
sible premature convergence. The most common approach
to deal with premature convergence in PSO consists of con-
trolling (e.g., by limiting) the velocity of a particle. In this
paper, we present a method that consists of limiting the ve-
locity of a particle using the elements of a sequence of a
geometric series. This approach is not only simplest than
the current available methods, but also presents compet-
itive results, and even better convergence in some cases,
than two other PSO-based approaches. Additionally, the
proposed approach provides more flexibility to balance be-
tween exploration or exploitation, through the tuning of a
single parameter.
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1. INTRODUCTION
The Particle Swarm Optimization (PSO) algorithm was

introduced by Kennedy and Eberhart in 1995 [2] and, since
then, it has gained increasing importance. The PSO algo-
rithm is based on the social behavior of some species, such
as birds in a flock that fly looking for food. A problem with
the PSO algorithm is that, in its simpler form, the velocity
of a particle is accumulated and tends to increase and di-
verge causing poor convergence, or even no convergence at
all. To solve this problem, two main methods have been pro-
posed: the Inertia Weight model from Shi and Eberhart [6]
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and the Constriction Factor model from Clerc and Kennedy
[1]. However, these two methods give rise to another prob-
lem: premature convergence. This is normally caused by
the tendency of the two above PSO models to decrease the
velocity of a particle too fast.

2. THE SEQUENCE BOUND METHOD
Our proposed method consists of limiting the velocity of

the particles. Such velocity limit is computed at each gener-
ation according to the corresponding element of a sequence
of terms obtained from a geometric series. A geometric se-
ries S [4] is a sum of algebraic terms and is given by the
Equation (1).

S =
∞

X

m=0

acr
m (1)

The geometric series S converges provided that |r| < 1
and ac is a constant value. The ordered list of terms acr

m

of a series with m = 0..∞ is called a sequence. A known
result is that, if the geometric series defined in Equation (1)
converges, then the elements of its sequence converge to zero,
i.e., acr

m → 0 as m → ∞. More information and results on
geometric series can be found in [4].

We construct a limit for the velocities as follows: at the
iteration t, the ith coordinate of the velocity of a particle is
bounded by the term rtli, where r is a constant value with
0 < r < 1 in order to guarantee the convergence to zero
of the bound, and li = |xmaxi

− xmini
| is the longitude of

the search space in the ith coordinate with i = 1 . . . n. To
compute the velocity and position of a particle we use the
simplest version of PSO, which is defined by Equations (2)
and (3).

vt+1 = vt + c1r1(pg − pt) + c2r2(pl − pt) (2)

pt+1 = pt + vt+1 (3)

After computing vt+1 and before computing xt+1, we limit
the velocity of each particle with the term rtli. The Se-
quence Bound Particle Swarm Optimization (SBPSO) method
is described in the algorithm of Figure 1.

In general, if we set the value of the parameter r closer to
1, the limit of the velocity is decreased more slowly. This
benefits the exploration of the search space, and allows us
to guarantee that the velocity limit tends to zero.
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swarm = generate swarm(ranges, number of particles)
evaluate(swarm)
for i from 1 to generations

compute velocities(swarm)
bounds = compute bounds(ranges, i)
apply bounds(swarm, bounds)
update positions(swarm)
evaluate(swarm)

endfor

Figure 1: The Sequence Bound Particle Swarm Op-

timization Algorithm.

3. EXPERIMENTS AND RESULTS
For assessing the performance of our proposed SBPSO al-

gorithm, we decided to compare it with respect to the Com-
prehensive Learning Particle Swarm Optimizer (CLPSO) re-
ported in [3], and with respect to the Inertia Weight Particle
Swarm Optimizer (IWPSO) reported in [5].

Our test suite consists of five problems that have been
commonly used to validate mechanisms that prevent pre-
mature convergence in PSO algorithms: the Sphere, Rosen-
brock, Ranstrigin, Griewank, and Ackley. They are de-
scribed in Equations (4) to (8).
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In all the experiments that we performed, the number of
dimensions was set to 30. We adopted a setup similar to the
one described in [3]: Pci is computed in the range [0.05, 0.5]
using the empirical relation indicated therein. The number
of iterations for each experiment was 5000, we used a swarm
of 40 particles, an initial inertia value ωi = 0.9 and final
inertia value of ωf = 0.4, the learning constants had equal
values of C1 = C2 = 1.49445, and in the case of CLPSO
a refreshing gap m = 7 was adopted. For our proposed
SBPSO, the value of the parameter r was set to 0.998. The
initialization, search space ranges and limits for the velocity
and position of the particles adopted for the PSO algorithms
are shown in Table 1 and are the same as in [3].

Each experiment has been repeated 100 times, in order to
obtain statistical measures. Table 2 shows the mean of the
best values obtained after the 5000 iterations.

From Table 2, we can observe that our proposed SBPSO
method obtained the best results in two problems. However,
it is worth noting that our proposed SBPSO approach shows
better results than IWPSO in all the test problems. Also,
except for f4, the results obtained by our SBPSO in two of

Table 1: Search and Initialization Ranges

Function Search space Init. range Limit

f1(x) [-100.0,100.0] [-100.0,50.0] 100.0
f2(x) [-2.048,2.048] [-2.048,2.048] 100.0
f3(x) [-600.0,600.0] [-600.0, 200.0] 600.0
f4(x) [-5.12,5.12] [-5.12,2.0] 10.0
f5(x) [-32.768,32.768] [-32.768,16.0] 40.0

Table 2: Mean of the best value obtained.
Function CLPSO IWPSO SBPSO

f1 7.79e-16 0.001 2.20e-39

f2 25.55 31.66 22.69

f3 5.45e-10 2.021e-2 1.89e-3
f4 1.79e-3 24.8 8.42
f5 1.04e-8 2.33 2.26e-3

the three problems in which it is outperformed by CLPSO,
are competitive.

4. CONCLUSIONS AND FUTURE WORK
Our proposed approach only requires one extra parameter

with respect to a traditional PSO algorithm. Additionally,
it does not require any changes in the equations for comput-
ing the velocity and position of the particles and does not
use the inertia parameter. Nevertheless, and in spite of its
simplicity, our proposed approach outperforms the inertia
weight model and obtains competitive results with respect
to a more elaborate PSO algorithm.

Although our SBPSO method does not show better results
in all the test functions adopted, we argue that its simplicity
can make it an interesting choice for those wishing to use a
simple, but still competitive PSO algorithm. Furthermore,
our approach can also be combined with other methods. As
part of our future work, we plan to test our SBPSO with
other PSO methods that have been reported in the special-
ized literature.
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