
An Ensemble of S-energy Based Mating
Restrictions for Multi-Objective

Evolutionary Algorithms
Amı́n V. Bernabé Rodrı́guez
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Abstract—Mating restrictions are a mechanism adopted by
multi-objective evolutionary algorithms to improve the solution
of multi-objective optimization problems (MOPs) by establishing
a strategy to mate individuals during the reproduction step of
the algorithm. Several mating restrictions have been proposed for
MOEAs to solve MOPs having two and three objective functions.
However, in the case of many-objective optimization problems
(four or more objectives), only a few mating restriction schemes
have been proposed so far. The Riesz S-energy is a performance
indicator which can be used to evaluate population’s diversity,
and it is able to provide useful neighborhood information from
individuals in MOPs with any number of objectives. This feature
has been used in some of our previous work to propose a
few different mating restriction schemes based on the s-energy
indicator. In this paper, we propose the use of an ensemble of four
of these mating restriction mechanisms, which is implemented
within the NSGA-III to assess its performance. The ensem-
ble’s behavior is guided by two measurements of each mating
restriction performance throughout the algorithm’s execution.
We performed an experimental validation of this ensemble in
MOPs with up to seven objective functions, and compared
the results obtained using the hypervolume, the s-energy, and
the inverted generational distance performance indicators. The
results obtained show that the use of our mating restrictions
ensemble outperforms the original NSGA-III in most of the test
instances adopted.

Index Terms—Multiobjective Optimization, Evolutionary Al-
gorithms, Mating Restrictions.

I. INTRODUCTION

Multi-objective optimization problems (MOPs) can model
a variety of real-world problems found in many different
fields of knowledge. This has generated a great interest in
developing techniques to solve such problems. One of the
most commonly used techniques to solve MOPs are the
so-called multi-objective evolutionary algorithms (MOEAs),
which are population-based heuristics that emulate the bi-
ological evolutionary process. MOEAs use the “survival of
the fittest” principle found in nature to drive their population
from randomly generated individuals to optimal solutions of a
problem. Following this analogy, mating restrictions are a bio-
inspired mechanism used to bias the way in which individuals
mate during the algorithm’s reproduction step. They were orig-

inally discussed in Goldberg’s book on genetic algorithms [1]
as a way of avoiding the propagation of individuals with
low fitness values (also known as “lethals)”. Ever since,
different mating restrictions have been proposed to enhance
MOEAs. Traditionally, most of these restrictions rely on the
individuals similarity (or dissimilarity) to mate them either
comparing distances in variable or objective space [2]–[4], or
using clustering and neighborhood information [5], [6]. Other
metrics have also been used to guide the mating step, such as
individuals’ survival length [7] or manifold distances [8]. Also,
some restrictions have been tailored to work with a specific
type of algorithm, such as decomposition-based MOEAs [6],
[9], [10].

In this paper, we propose a new mating restriction, which
is in fact an ensemble of four previously proposed s-energy
based mating restrictions. Our main contribution is this new
ensemble as well as the experimental validation of its impact
on the solution of MOPs with up to seven objectives.

The remainder of this paper is organized as follows. In
Section II some basic concepts are introduced. In Section III
we present some previous work concerning mating restrictions
and we also define the s-energy based mating restrictions
adopted in this work. In Section IV we show, in detail, the way
in which our ensemble works. Then, in Section V we present
the experimental setup used to validate the performance of the
ensemble, as well as the results obtained. Finally, in Section VI
we present our conclusions as well as some possible paths for
future work.

II. BASIC CONCEPTS

Multi-objective optimization problems require the simul-
taneous optimization of two or more objective functions.
Without loss of generality, we will assume only minimization.
Formally, a MOP is defined as follows:

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fk(~x)] (1)

subject to:
gi(~x) ≤ 0 i = 1, 2, . . . ,m (2)



hi(~x) = 0 i = 1, 2, . . . , p (3)

where ~x = [x1, x2, . . . , xn]
T is the vector of decision vari-

ables, fi : IRn → IR, i = 1, ..., k are the objective functions
and gi, hj : IRn → IR, i = 1, ...,m, j = 1, ..., p are the
constraint functions of the problem.

In a MOP, it is normally the case that the objective
functions are in conflict, causing that there is no single
solution which may simultaneously optimize all objective
functions at the same time. Instead, finding a set of solutions
that represent the best possible trade-offs among the objective
functions is the goal when solving a MOP. Here, we present
some useful definitions used to characterize such solutions.

Definition 1. Given two vectors ~x, ~y ∈ IRk, we say that ~x ≤ ~y
if xi ≤ yi for i = 1, ..., k, and that ~x dominates ~y (denoted
by ~x ≺ ~y) if ~x ≤ ~y and ~x 6= ~y.

Definition 2. Given a vector of decision variables
~x ∈ X ⊂ IRn, it is nondominated with respect to X ,
if there does not exist another ~x′ ∈ X such that ~f(~x′) ≺ ~f(~x).

Definition 3. Given a vector of decision variables
~x∗ ∈ F ⊂ IRn, being F the feasible region, we say
~x∗ is Pareto-optimal if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {~x ∈ F|~x is Pareto-optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {~f(~x) ∈ IRk|~x ∈ P∗}

Hence, the goal of solving a MOP is to obtain the Pareto
optimal set (P∗) from the feasible set (F) that satisfy the
equality and/or inequality constraints (2) and (3).

III. PREVIOUS RELATED WORK

A. Mating restrictions

A variety of mating restriction mechanisms have been
proposed in the literature with the aim of improving the overall
performance of MOEAs, either by improving the population’s
diversity or the convergence speed. However, few of such
proposals have been tested with many-objective optimization
problems (MaOPs), which are optimization problems having
4 or more objective functions. In this section, we review some
mating restriction mechanisms that have been used to solve
MaOPs, as well as one mating restriction which considers
multiple sources of information, closely related to an ensemble
of mating restrictions.

Multi-objective evolutionary algorithms enhancement has
been performed in [11], where two decomposition-based
MOEAs, namely MOEA/D [12] and EFR [13], were im-
proved using a mating restriction. The resulting algorithms
(MOEA/D-DU and EFR-RR) are able to outperform their
original versions in most tested problems with up to 13

objective functions. The mechanism used consists in deter-
mining neighborhoods for each individual based on their
perpendicular distance to weight vectors in objective space.
Using this information, the mating restriction allows to balance
diversity and convergence by mating individuals within the
same neighborhood in MOEA/D or by selecting individuals
from the same neighborhood in the ranking performed in EFR.

Another modification to MOEA/D in order to improve the
results obtained in many-objective optimization problems is
MOEA/D-LWS [14] which implements a localized weighted
sum method. This algorithm implements a weighted sum
scalarizing function paired with a mating restriction scheme
in order to use the function locally (within a hypercone
around each weight vector). This modification allows to obtain
solutions in non-convex portions of the Pareto fronts, which
is the most well-known downside of using a weighted sum.
Experimental results comparing against two other MOEA/D
variants as well as three other MOEAs show really good results
in problems with up to seven objectives.

The Enhanced-Mating-Selection-Many-Objective-NSGA-II
(EMS-MO-NSGA-II) [15] enhances MO-NSGA-II mating se-
lection mechanism by utilizing two mating mechanisms. The
first one is a reference-point based selection procedure, while
the second one is a neighborhood-based selection scheme.
These two strategies were experimentally evaluated, both
individually and combined, by solving the DTLZ 1-4 test
problems [16] with up to 10 objectives. The results obtained
showed a significant improvement when using both strategies
at the same time.

The many-objective evolutionary algorithm based on di-
rectional diversity and favorable convergence (MaOEA-
DDFC) [17] uses a scalarizing function to obtain convergence
degrees of individuals in the population. Then, using a binary
tournament selection scheme, individuals are selected and
compared using both Pareto dominance and convergence de-
grees to create a mating pool in which only the best individuals
are chosen. This algorithm was compared with respect to seven
other MOEAs, obtaining good results and improving their
performance in the majority of the test problems used, which
comprise problems with up to ten objectives from the DTLZ
and WFG test suites.

The constrained MOEA/D with Directed Mating and
Archives of infeasible solutions (CMOEA/D-DMA) [18] relies
on useful infeasible solutions which are generated during the
search process. Up to eight infeasible solutions per weight vec-
tor are stored in an archive, and they are randomly selected to
be mated with feasible solutions. This mechanism was coupled
to cMOEA/D and used to solve the mCDTLZ problems [19]
as well as m objectives k knapsack problems [20] with up to
eight objective functions. The results obtained indicate that
this algorithm outperforms the original cMOEA/D as well
as NSGA-III and TNSDM [21] (Two-stage Nondominated
Sorting and Directed Mating) in most of the test instances
adopted.

The spectral clustering based multi-source mating selection
strategy (SMMS) is designed to detect regularity proper-



ties and to balance population diversity and convergence.
It was coupled to SMS-EMOA [22] giving rise to the so-
called SMMEA [23]. Given an individual ~x, this algorithm
adopts three different sources for selecting a mate: (1) a sub-
population from the same cluster of ~x, (2) a sub-population
from a cluster adjacent to the cluster containing ~x, or (3)
the whole population. The selection of one mating source
is performed using adaptive probabilities for the first two
sources, obtained from each source efficiency. This proposal
was compared with respect to six MOEAs in the solution of
the MOPF [24], UF [25] and GLT [26] test problems, with
two and three objective functions. The results showed that
SMMEA had a significantly better performance than the other
MOEAs adopted.

B. S-energy based mating restrictions

The mating restrictions that we adopt in this work are based
on the Riesz s-energy [27], which has been used in MOEAs
as a performance indicator [28]. The s-energy of a population
X is obtained using the following expression:

Es(X) =
∑
i 6=j

1

| ~xi − ~xj |s
(4)

where | · | is the Euclidean distance between two individuals
in objective space. A low s-energy value is desirable, since it
implies uniformity in the distribution of points. From equa-
tion (4), we can define the individual s-energy contribution of
a given point ~xi as follows:

CEi = Es(X)− Es(X \ {~xi}). (5)

The individual s-energy contribution provides us with
neighboring information of each individual in the population.
An individual with a low contribution is located in a rela-
tively “non-crowded” region, while an individual with a high
contribution has at least one other individual relatively close
to it. This information is used by the s-energy based mating
restrictions (SMR), proposed in [29]. In this work we adopted
four SMRs to create an ensemble of mating restrictions.
These restrictions compute the s-energy contribution of each
individual in the population and use this information to rank
the population according to the following criteria: individuals
with a low s-energy contribution are considered the best
individuals, conversely, individuals with high contributions
are considered the worst ones. Once these contributions are
obtained, each mating restriction uses a different strategy to
mate parents. The SMRs we used in this ensemble are the
following:
• SMR1 SIM: This restriction mates individuals with sim-

ilar s-energy contribution values. The first pair is formed
with the two best individuals from the population. The
next pair will select the next two best individuals from
the remaining individuals, and so on, until all pairs are
formed.

• SMR1 DIS: This restriction pairs individuals with dis-
similar s-energy contributions. The first pair selects the

best individual and the worst individual. The next pair
mates the second best individual with the second worst.
This is repeated with the remaining individuals.

• SMR3: This restriction employs a mating pool with size
σpool > 0, which is a user defined parameter. In this pool
are contained the worst individuals from the population
which have not been selected yet. SMR3 pairs the best
individual from the population with one of the individuals
in the mating pool. In order to select one individual from
the mating pool, Euclidean distances in objective space
are measured and the individual with the smallest distance
is selected. In our ensemble we adopted this restriction
twice: the first one with σpool = 5, and the second one
with σpool = 9.

We combined these SMRs to create an ensemble of mating
restrictions which is described in detail in the following
section.

IV. ENSEMBLE OF MATING RESTRICTIONS

The ensemble we propose in this work combines the use of
four different mating restrictions at each generation. However,
the number of pairs selected from each restriction varies
according to their individual performance in each problem.
In order to determine how many pairs will be selected, we
employed two different metrics, which are computed for each
mating restriction used at each generation:
• Mating restriction’s efficiency: It is the percentage of

children generated by each mating restriction mechanism
that were selected to survive to the next generation. It
is obtained by computing the quotient of the number
of selected individuals which are offspring of a certain
mating restriction divided by the total number of children
generated by this restriction so far.

• Mating restriction’s dominance: It is the sum of in-
dividuals generated by each mating restriction which
dominate either (or both) of their parents. In contrast
with efficiency, this value is obtained using only the
information from the last few generations, determined by
a user-defined parameter tr > 0.

Since one mating restriction scheme may be better than
the rest during the first stages of the algorithm, but not in
the latter, and one mating restriction may be better in some
problems, but not in others, we propose the use of both
efficiency and dominance metrics in the following way. We
use mating restriction’s dominance to obtain a sort of “local”
information about the performance of the restrictions since it
only considers the last generations. On the other hand, we
use mating restriction’s efficiency as a “global” information
indicator, since it stores how efficient has each restriction been
from the beginning of the algorithm. We alternate between
these two metrics in the following way.

During the first tr generations, we use mating restriction’s
dominance to assign in a directly proportional way the number
of pairs to be obtained from each restriction, allowing the ones
which have generated better individuals in the last generations



to be the ones with more offspring in the next generation.
Here, we mention better individuals in the sense of children
that dominate their parents. However, every tr generations the
dominance metric will be reset to zero (in order for it to reflect
local behavior information), and mating restriction’s efficiency
will be used to assign the number of pairs to be selected from
each restriction instead of dominance. This is to ensure that
restrictions which have been proved to be the most useful
in the solution of the problem keep being used throughout
the execution, even if they may not be the ones with better
offspring in a given particular generation. In this work, we
propose the use of tr = 5, which proved to be the best value
after our experimental validation.

We show the pseudocode of our ensemble in Fig. 1. Since
we limit our proposal to an ensemble of mating restrictions
which may be applied to different algorithms, we only mention
the generic steps of a MOEA, but do not get into the details
of them, since they may vary from algorithm to algorithm.
Such is the case of the population initialization (line 2), and
of the individuals’ crossover and mutation (lines 19 and 20)
and selection of individuals which will survive to the next
generation (line 28).

In lines 3-11 we show the variables initialization, and for
the first generation, each mating restriction will be assigned an
equal number of pairs (mating restriction size) to be selected
with them. Then, during the main loop of the algorithm, the
following will occur. In line 13 we will obtain the pairing
from each restriction in the ensemble, according to the mating
restriction size, previously set. Next, in lines 14-23 we will
generate the offspring population using the pairing set from the
mating restriction ensemble. In this part, we use a procedure
to store the dominance information from each restriction (line
20). In line 24, the final population of this generation is
selected (either directly from the offspring population or from
a combination of offspring and parents population). Here, we
must count how many individuals generated with each mating
restriction made it into the final population. Next, we update
the efficiency of each mating restriction (lines 25-28). Finally,
if tr generations have already passed, mating restrictions’
dominance will be set to zero and mating restrictions’ effi-
ciency will be used to assign each restriction size (lines 30-
34). If it is not the case, mating restrictions’ dominance will
be used instead (line 36).

Auxiliary procedures of the algorithm are shown in Figs. 2,
3 and 4. The mating restrictions ensemble selection mechanism
is shown in Fig. 2, and it simply consists of obtaining the
pairing from each individual mating restriction, and then
proceed to select the first pairs from each pairing according
to the predefined mating restriction size.

In Fig. 3, we show the update of the dominance metric
of each mating restriction. Given a pair of parents and their
corresponding children, we count the number of parents for
which each child dominates either of its parents, then we
update the corresponding mating restriction metric.

Finally, in Fig. 4, we show the procedure used to adjust
each mating restriction size according to a given metric (either

1: procedure MOEA(MOP, tr)
2: MOEA initializePopulation( ~Pp)
3: nr ← 4
4: t← 0
5: for i← 1, nr do
6: mrsize[i]← ~Pp.size/nr

7: mrdom[i]← 0
8: mreffic[i]← 0
9: mroffspring[i]← 0

10: mrselected[i]← 0
11: end for
12: while stopping criterion not fulfilled do
13: mrpairing ←MR select( ~Pp,mrsize)
14: ~Po ← ∅
15: for i← 1, ~P .size do
16: p1← ~P [mrpairing[i]]
17: p2← ~P [mrpairing[i+ 1]]
18: c1, c2← MOEA crossover(p1, p2)
19: c1, c2← MOEA mutate(p1, p2)
20: MR dominates(mrdom, p1, p2, c1, c2)
21: ~Po ← Po ∪ {c1, c2}
22: i← i+ 2
23: end for
24: ~Pp,mrselected ← MOEA select( ~Pp, ~Po)
25: for i← 1, nr do
26: mroffspring[i]← mroffspring[i] +mrsize[i]
27: mreffic[i]← mrselected[i]/mreffic[i]
28: end for
29: if t == tr then
30: MR adjust( ~Pp,mrsize,mreffic)
31: for i← 1, nr do
32: mrdom[i]← 0
33: end for
34: t← 0
35: else
36: MR adjust( ~Pp,mrsize,mrdom)
37: end if
38: t← t+ 1
39: end while
40: end procedure

Fig. 1. Mating restrictions ensemble main algorithm.

efficiency or dominance). Given the above-mentioned metric,
we compute its total sum and use it to assign a number of
pairs in direct proportion of each restriction’s contribution to
the metric sum.

The computational cost of our mating restrictions ensemble
is directly related to the cost of computing s-energy con-
tributions of each individual in the population, since this is
required for each of the four mating restrictions adopted in
the ensemble, and it is also the most computational time
consuming part of the algorithm. Using a naive approach, the
calculation of a single s-energy contribution is O(n2), being
n the size of the population. Then, this process would be
repeated for every individual, causing a total computational
cost of O(n3). However, this can be done more efficiently,
using the memoization structure proposed in [30], producing
a total computational cost of O(n2) to compute all the
individuals’ s-energy contributions. Once these contributions
are obtained, this information can be used by all four mating
restrictions, so it will only be performed once per generation.



1: procedure MR SELECT(~P ,mrsize)
2: nr ← 4
3: counter ← 0
4: mrpairing ← {0, 0, . . . , 0}
5: for i← 1, nr do
6: Pairi =SMRi(~P )
7: end for
8: for i← 1, nr do
9: for j ← 1,mrsize[i] do

10: mrpairing[counter] = Pairi[j]
11: mrpairing[counter + 1] = Pairi[j + 1]
12: counter ← counter + 2
13: end for
14: end for
15: return mrpairing

16: end procedure

Fig. 2. Selection of mating restriction according to previously determined
values stored in mrsize.

1: procedure MR DOMINATES(mrdom, p1, p2, c1, c2)
2: counter ← 0
3: for ci ∈ {c1, c2} do
4: for pi ∈ {p1, p2} do
5: if ci Pareto dominates pi then
6: counter ← counter + 1
7: end if
8: end for
9: end for

10: mr ← mating restriction used to generate p1 and p2
11: mrdom[mr]← mrdom[mr] + counter
12: end procedure

Fig. 3. Procedure to increase the dominance counter of a mating restriction
from the offspring generated with it.

1: procedure MR ADJUST(~P ,mrsize,mrmetric)
2: nr ← 4
3: total←

∑nr
i=1 mrmetric[i]

4: for i← 1, nr do
5: mrsize[i] = mrmetric[i]/total ∗ ~P .size
6: end for
7: end procedure

Fig. 4. Procedure to proportionally assign the new size corresponding to each
mating restriction in the ensemble according to a given metric.

On the other hand, the mating restriction selection procedure
has a computational cost of O(n), while the dominance
metric update has a computational cost of O(nm2), being
m the number of objectives. Finally, both efficiency metric
update and mating restriction size adjustment procedure have
a computational cost of O(nr), being nr = 4 the number
of mating restrictions used in the ensemble. Then, the total
cost of our ensemble is O(n2 + nm2) per generation, which
reduces to O(n2) for populations with over 100 individuals
and problems with up to 10 objectives. In Fig. 5 we show the
average execution time required to solve all 16 test problems
used with different numbers of objectives. From these values,
it can be seen that there is a slight increase due to the mating
restriction ensemble used. Nonetheless, such time increase is,
in all cases, of less than one second.
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Fig. 5. Average execution time of our proposal compared against the original
NSGA-III.

V. EXPERIMENTAL VALIDATION

In order to validate the functionality of our proposed en-
semble, we implemented the ensemble in NSGA-III [31], so
that we could solve a series of test problems with and without
the ensemble to compare the results obtained. We adopted the
Deb-Thiele-Laumanns-Ziztler (DTLZ) [16] and the Walking
Fish Group (WFG) test suites [32], since they contain a variety
of problems with different Pareto front characteristics, such as
linear, convex, concave, degenerate or discontinuous Pareto
fronts. From these, we used DTLZ1-DTLZ7 and WFG1-
WFG9 with 2-7 objectives, to assess how well the ensemble
performs in problems with many objectives (more than three).
This gives a total of 96 test problems, each of which we solved
30 times using both the original NSGA-III implementation
and the one with the ensemble of mating restrictions incor-
porated within it. We adopted three performance indicators
to compare the Pareto approximations obtained in each of
these test instances. The indicators used were the hypervolume
(HV) [33], the inverted generational distance (IGD) [34], and
the s-energy [27]. In the first case, the greater the HV value,
the better the approximation, whereas smaller IGD and s-
energy values are preferred. The performance indicator values
obtained were compared using the Wilcoxon rank-sum test at
a confidence interval of 95%.

Our experimental results are shown in Table I. In each
indicator pair of columns, the best value is shown in boldface,
while the cells in gray represent the values that are statistically
better according to the Wilcoxon test used.

From Table I, we can observe that the use of our ensemble
of mating restrictions produced a better performance in 57 out
of the 96 test instances when comparing with respect to the
HV, while it only had a worst performance in one test problem
(DTLZ3 with 3 objectives). In the remaining 38 problems,
results are statistically similar at a confidence interval of 95%.



TABLE I
COMPARISON OF THE AVERAGE HV, IGD AND S-ENERGY VALUES OBTAINED USING THE PROPOSED MATING RESTRICTIONS ENSEMBLE IN NSGA-III.

CELLS IN GRAY SHOW THE STATISTICALLY BETTER VALUES, ACCORDING TO THE WILCOXON TEST.

Number of Hypervolume S-energy IGD
Problem

objectives NSGA-III NSGA-III+Ensemble NSGA-III NSGA-III+Ensemble NSGA-III NSGA-III+Ensemble
DTLZ1 5.3357E-01 5.3368E-01 1.1956E+05 1.1723E+05 1.8466E-03 1.7915E-03
DTLZ2 4.1999E-01 4.2013E-01 5.3542E+04 5.3392E+04 4.0073E-03 3.9632E-03
DTLZ3 4.1811E-01 4.1800E-01 5.3496E+04 5.4529E+04 4.4526E-03 4.4405E-03
DTLZ4 3.3742E-01 3.6844E-01 3.9162E+04 4.4493E+04 2.0079E-01 1.2698E-01
DTLZ5 4.1999E-01 4.2013E-01 5.3542E+04 5.3392E+04 4.0073E-03 3.9632E-03
DTLZ6 4.6875E+00 4.7444E+00 5.1342E+04 7.4879E+04 1.0889E-01 8.1561E-02
DTLZ7 7.3494E-01 7.3499E-01 8.6183E+04 8.8229E+05 5.1686E-03 5.1674E-03
WFG1 6.1667E-01 5.9821E-01 1.3790E+05 1.0715E+05 1.5035E+00 1.4348E+00
WFG2 1.3095E+00 1.3119E+00 1.3326E+05 6.6367E+04 6.5824E-01 6.5764E-01
WFG3 3.8506E+00 3.9094E+00 2.8483E+04 2.5233E+04 6.9185E-02 3.5092E-02
WFG4 2.2182E+00 2.2363E+00 2.5083E+04 2.9992E+04 4.8849E-02 3.3118E-02
WFG5 1.9551E+00 1.9620E+00 2.3735E+04 2.1515E+04 9.2752E-02 8.4103E-02
WFG6 2.6415E+00 2.6216E+00 2.3202E+04 2.4043E+04 6.3791E-02 6.7504E-02
WFG7 2.0603E+00 2.1096E+00 4.0793E+04 3.5452E+04 3.6238E-01 2.7336E-01
WFG8 3.2720E+00 3.3934E+00 5.6673E+04 8.1960E+04 2.1185E-01 1.7505E-01
WFG9

2

2.2130E+00 2.2053E+00 2.3704E+04 1.9445E+05 3.9788E-02 4.0386E-02
DTLZ1 8.7400E-01 8.7383E-01 3.6472E+06 5.0248E+09 1.8958E-02 1.9614E-02
DTLZ2 7.4898E-01 7.4905E-01 1.8627E+05 1.5963E+06 4.9361E-02 4.9359E-02
DTLZ3 7.4327E-01 7.3947E-01 1.1968E+06 1.5548E+07 4.9667E-02 5.0218E-02
DTLZ4 6.4110E-01 6.8052E-01 5.2214E+11 2.8705E+11 2.2900E-01 1.6367E-01
DTLZ5 1.3322E-01 1.3872E-01 7.4448E+11 6.9681E+11 5.9339E-02 2.3632E-02
DTLZ6 4.2607E+01 4.2730E+01 1.4683E+11 5.2693E+11 1.2659E-01 1.1320E-01
DTLZ7 1.5000E+00 1.5079E+00 1.7976E+06 1.9217E+10 6.8762E-02 7.0361E-02
WFG1 3.0108E+01 3.1520E+01 1.4561E+06 1.2302E+07 1.2766E+00 1.2311E+00
WFG2 3.9822E+01 4.0654E+01 1.5196E+05 1.4073E+06 3.3398E-01 2.9433E-01
WFG3 2.6393E+01 2.6680E+01 1.9949E+07 1.1890E+10 1.1101E-01 1.0206E-01
WFG4 2.3866E+01 2.4057E+01 5.1545E+03 5.4314E+03 2.0165E-01 2.0121E-01
WFG5 2.2018E+01 2.2069E+01 1.1436E+05 1.3130E+04 2.1580E-01 2.1530E-01
WFG6 2.2226E+01 2.2362E+01 1.7143E+04 1.1931E+04 2.1430E-01 2.1276E-01
WFG7 2.4337E+01 2.4397E+01 3.1662E+05 2.6767E+04 2.0034E-01 2.0050E-01
WFG8 2.4152E+01 2.4370E+01 1.1761E+08 4.1370E+05 2.6456E-01 2.5984E-01
WFG9

3

2.3192E+01 2.2571E+01 1.4636E+04 8.1013E+03 2.2803E-01 2.3811E-01
DTLZ1 3.1888E+00 3.1888E+00 2.8918E+09 4.5400E+06 4.0922E-02 4.1081E-02
DTLZ2 1.1648E+00 1.1644E+00 8.4928E+04 8.4942E+04 1.1382E-01 1.1385E-01
DTLZ3 7.7152E+01 7.7161E+01 3.9478E+07 2.1937E+07 1.2657E-01 1.1775E-01
DTLZ4 1.0208E+00 1.1058E+00 2.1598E+11 6.8190E+10 2.9346E-01 1.9139E-01
DTLZ5 3.8983E+00 3.9205E+00 5.2442E+11 2.5628E+12 1.1110E-01 8.8104E-02
DTLZ6 8.4201E+02 8.4454E+02 1.9505E+11 4.2948E+11 5.7990E-01 4.7092E-01
DTLZ7 2.2224E+00 2.2505E+00 1.7251E+08 5.6368E+09 2.0624E-01 2.0128E-01
WFG1 2.0317E+02 2.1846E+02 1.2278E+09 2.6709E+09 1.6261E+00 1.5393E+00
WFG2 3.5401E+02 3.5210E+02 5.0981E+07 6.2388E+09 4.5992E-01 4.7892E-01
WFG3 3.2675E+02 3.2734E+02 3.8606E+09 1.1193E+11 2.9053E-01 3.0261E-01
WFG4 2.4600E+02 2.4978E+02 1.2469E+03 1.2170E+03 5.6932E-01 5.7066E-01
WFG5 2.3152E+02 2.3346E+02 1.4598E+03 1.4079E+03 5.6728E-01 5.6884E-01
WFG6 2.3278E+02 2.3480E+02 1.2446E+03 1.2099E+03 5.6924E-01 5.6907E-01
WFG7 2.5949E+02 2.6122E+02 1.1993E+03 1.1790E+03 5.7119E-01 5.7204E-01
WFG8 2.8328E+02 2.8470E+02 1.6037E+06 5.1743E+06 6.2484E-01 6.2229E-01
WFG9

4

2.3721E+02 2.3435E+02 1.5574E+03 1.5563E+03 5.7438E-01 5.7430E-01
DTLZ1 2.9055E-01 2.9054E-01 1.6853E+11 6.9391E+10 5.0368E-02 5.0654E-02
DTLZ2 1.3054E+00 1.3064E+00 2.0765E+10 1.3373E+11 1.5560E-01 1.5548E-01
DTLZ3 3.9891E+05 3.9891E+05 1.1463E+11 1.3830E+11 2.0915E-01 1.9739E-01
DTLZ4 1.3021E+00 1.3021E+00 8.0186E+10 1.3632E+11 1.6338E-01 1.6333E-01
DTLZ5 1.2508E+02 1.2619E+02 3.2513E+11 3.1227E+12 2.3114E-01 1.9705E-01
DTLZ6 6.2840E+03 6.3378E+03 2.7431E+10 1.5967E+11 1.9394E+00 1.7942E+00
DTLZ7 3.0123E+00 3.0622E+00 1.8919E+10 1.0755E+11 2.7940E-01 2.6670E-01
WFG1 1.0342E+02 1.0699E+02 2.4901E+10 1.5357E+10 1.9929E+00 1.9588E+00
WFG2 3.4511E+03 3.3359E+03 3.6792E+07 6.7396E+09 5.0293E-01 6.4402E-01
WFG3 2.5916E+03 2.5810E+03 3.5651E+10 1.6769E+11 5.9354E-01 6.2907E-01
WFG4 3.0867E+03 3.2460E+03 1.3402E+03 5.7594E+05 9.4493E-01 9.2570E-01
WFG5 3.0391E+03 3.1292E+03 2.1655E+06 7.1581E+07 9.5438E-01 9.3867E-01
WFG6 2.7510E+03 2.8592E+03 3.3400E+06 9.9717E+07 9.3486E-01 9.2226E-01
WFG7 2.9288E+03 3.0308E+03 1.1611E+06 2.0022E+10 9.2918E-01 9.1124E-01
WFG8 3.2599E+03 3.3744E+03 9.5577E+05 3.7906E+07 9.9004E-01 9.6865E-01
WFG9

5

2.8869E+03 2.9086E+03 8.6278E+04 3.7789E+03 1.0043E+00 1.0102E+00
DTLZ1 6.5860E+00 6.5860E+00 2.2901E+05 2.0608E+05 6.4333E-02 6.2869E-02
DTLZ2 1.7054E+00 1.7078E+00 6.6797E+04 6.6926E+04 2.1009E-01 2.0974E-01
DTLZ3 1.9893E+06 1.9893E+06 6.6059E+04 6.1406E+04 2.6801E-01 3.7702E-01
DTLZ4 1.5375E+00 1.5453E+00 7.7555E+04 7.8952E+04 2.2195E-01 2.1492E-01
DTLZ5 4.1175E+02 4.1222E+02 6.8224E+04 9.4598E+04 3.5843E-01 3.3632E-01
DTLZ6 5.6260E+04 5.8987E+04 1.5554E+04 1.7993E+05 3.6113E+00 3.1331E+00
DTLZ7 3.5956E+00 3.6867E+00 4.1904E+04 4.3668E+04 4.1830E-01 3.8385E-01
WFG1 1.8159E+01 1.8701E+01 8.1161E+04 1.0444E+05 2.2494E+00 2.2314E+00
WFG2 3.4097E+04 3.3910E+04 2.8538E+04 2.8846E+04 7.5766E-01 7.9188E-01
WFG3 2.3652E+04 2.3992E+04 2.3608E+04 9.0770E+04 8.5291E-01 8.7398E-01
WFG4 3.9876E+04 4.2229E+04 9.5086E+03 9.4351E+03 1.4087E+00 1.3843E+00
WFG5 4.0046E+04 4.1580E+04 9.5051E+03 9.4559E+03 1.4132E+00 1.3932E+00
WFG6 4.1404E+04 4.3121E+04 9.4639E+03 9.4293E+03 1.3901E+00 1.3730E+00
WFG7 3.8606E+04 4.0161E+04 9.4405E+03 9.4211E+03 1.3870E+00 1.3647E+00
WFG8 4.2133E+04 4.3719E+04 9.6780E+03 9.6254E+03 1.4386E+00 1.4086E+00
WFG9

6

4.0286E+04 4.0794E+04 1.0119E+04 1.0014E+04 1.5206E+00 1.5023E+00
DTLZ1 4.0388E+00 4.0387E+00 2.8691E+11 1.8059E+12 8.8486E-02 9.3266E-02
DTLZ2 1.7665E+00 1.7699E+00 2.7608E+05 2.8053E+05 2.8168E-01 2.8133E-01
DTLZ3 1.3269E+14 1.3269E+14 7.1103E+11 1.8082E+12 7.6479E-01 1.0279E+00
DTLZ4 2.5112E+00 2.5227E+00 9.3437E+11 3.9384E+12 3.1834E-01 3.0798E-01
DTLZ5 7.3010E+02 7.2946E+02 1.4659E+12 3.2859E+12 5.1439E-01 5.0450E-01
DTLZ6 3.7784E+05 3.9944E+05 1.4011E+10 7.1655E+10 3.8287E+00 3.1421E+00
DTLZ7 3.7340E+00 3.8467E+00 1.1474E+11 4.4794E+11 6.0591E-01 5.9054E-01
WFG1 3.7775E+00 4.2824E+00 7.5017E+11 4.0344E+12 2.6143E+00 2.5898E+00
WFG2 4.0164E+05 3.9833E+05 2.0529E+11 2.3815E+11 1.1664E+00 1.1423E+00
WFG3 5.5539E+05 5.6725E+05 3.4851E+11 1.3329E+12 9.0588E-01 8.3514E-01
WFG4 5.9929E+05 6.1767E+05 1.3301E+02 4.5438E+09 2.0410E+00 2.0628E+00
WFG5 6.0194E+05 6.2018E+05 2.0522E+02 1.8461E+02 2.0456E+00 2.0481E+00
WFG6 5.4668E+05 5.6211E+05 9.7861E+01 8.4634E+01 2.0245E+00 2.0205E+00
WFG7 5.7509E+05 5.9665E+05 9.8455E+01 8.4844E+01 2.0327E+00 2.0233E+00
WFG8 7.3226E+05 7.3653E+05 4.8377E+09 2.3037E+11 2.1442E+00 2.2305E+00
WFG9

7

5.6265E+05 5.6151E+05 1.7632E+02 5.3218E+04 2.1393E+00 2.1357E+00



Regarding s-energy values, the ensemble outperformed the
original algorithm in 20 test problems, whereas the original
algorithm obtained better values in 24 test problems. Finally,
the ensemble improved the results obtained in 45 problems
when comparing IGD values, while the original algorithm only
had better results in 7 test problems.

From these results, we can observe that the use of our
ensemble does improve the performance of NSGA-III in more
than half of the test problems when comparing HV values.
In particular, good results were obtained in problems with
5 and 6 objectives (there were improvements in 68% of
the test problems adopted) and in problems with 2 and 3
objectives (improvement of 62%). On the other hand, the
worst performing scenarios were the problems with 4 and
7 objectives (43% and 50% of the test problems improved,
respectively). Regarding the test problems adopted, the WFG
test suite was the one with the largest number of problems
improved (around 64%), while the DTLZ test problems had a
smaller improvement (52%).

Regarding the IGD values, a similar behavior was obtained,
being the problems with 6 and 2 objectives the ones with a
larger number of problems improved (68% and 62%, respec-
tively). However, problems with 3 and 4 objectives were the
least improved (only 31%).

Concerning the s-energy results, this was the only perfor-
mance indicator for which the original algorithm obtained
a better overall performance than the ensemble. The only
exceptions are problems with 2, 4 and 6 objectives, where the
ensemble improved more problems than the original algorithm.

VI. CONCLUSIONS AND FUTURE WORK

We proposed here the use of an ensemble of mating restric-
tions to improve the performance of MOEAs. In particular,
we implemented this ensemble in NSGA-III and conducted
an experimental validation to explore its effect in solving a
series of MOPs with up to seven objective functions. Exper-
imental results in which the HV and the IGD performance
indicators were adopted, seem to confirm that the use of our
ensemble improves NSGA-III’s convergence, hence improving
the obtained results.

On the other hand, even though the s-energy is the diversity
metric adopted in the mating restriction mechanism, it is
not directly minimized throughout the algorithm’s execution,
resulting in the overall diversity of the population not being
particularly improved. Thus, future work may involve refining
the ensemble mechanism to improve diversity as well.
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